15-750: Graduate Algorithms January 18, 2016

Lecture 17: 2D Closest Pair using Hashing

Lecturer: Gary Miller Scribe: Yanzhe Yang, Yao Liu

1 Introduction to Hashing and the Problem

Imagine that we want to maintain a set of keys, which belong to a huge space of keys U. Often,
the space can be larger than universal large constant:

|u’ Z 10100 Z 1060

However, the size of key set K C U would not be such huge. Usually |K| ~ 10'°. If we want to
maintain the set of keys so that we can insert, lookup, and delete any keys, our solution so far has
been maintaining a ordered set so that we can do those options in O(logn) times.

1.1 Hashing

We can also maintain such a set by hashing. Hash function is a random mapping from the space
of key U to another smaller space T' (table). Usually we set the size of T, denoted |T'|, to be
approximately equal to |K| . We know that hashing method has the property:

Claim 1.1. Hashing table can insert, lookup, or delete any single element in O(1) expected time.

1.2 The Closest Pair Problem

The closest pair problem is defined as:

Input: P C R? P C Unit Box; |P| =n

Output: CP(P)= argmin ||p — ql|2"
p#q¢;p,gEP

Now we place the points into boxes using hashing. The main idea is that we partition unit box

into boxes of side length . We define boxes partition G, as a grid partition of boxes with length
of a.. See figure 1. Note that if « is small, say 107! = one over 10 billion, then 10?° boxes is too
big!
Recall that we can use hashing to map the keys to a smaller space rather than key universe. Here,
in this problem, the key universe is the universe of name of all boxes. The key space is the space of
names of boxes containing a point. Note that there are n points in total, so the size of hash table
is O(n) (some boxes might contain several points). We also can use dynamic sizing to maintain the
hash table.

Lemma 1.2. Hashing points into its box is O(1) time.

Definition 1.3. (extended neighbor) If B is a box of G,. Then the extended neighbor of B is all
the 9 boxes next to B and B itself. See figure 2. We denote it Ext(B).

1For the compactness, later we may also treat the output of C'P as the distance between p and g. That is because
we want to be consistent with Gary’s lecture note in this definition and later, also that is easy to compute ||p — ¢||2
in O(1) time given g and p.

"

1/a

1
a

Figure 1: A grid boxes partition G,. There are in total ()2 boxes in the partition.

Figure 2: Ext(B)

Lemma 1.4. (Packing Lemma) Let B be a box with side length o, « < CP(P), and P C B. Then
|P| < 4.

Proof. Split B into 4 boxes:

B B: a2

Bs B.

The diameter of each B; is a/v/2 < o < CP(P). Thus each B; contains at most one point. O

2 Test a Algorithm

Before introducing the algorithm to calculate C'P(P), we need a procedure satisfying

Definition 2.1.

B<a ifIp#qeP;s t |p—qllz=8<a
Test(a > 0,P) =< « if CP(P) =«

False otherwise

Here is a procedure Test(a, P):
Let]P)l = {Pl, Pz, ceey Pifl}.

Algorithm 1 Test(«, P)
: Make hash table H, for grid G,
: Insert P; into G,
: for i =2 ton do
Insert P; into its box B
Compute mindist(P;,P; (| Ext(B)) = 3
if § < a then
return “CP(P) < g < a”
end if
if 5 = o then
Flag < true
end if
: end for
: if Flag then
return “CP(P) = a”
: else
return “CP(P) > a”
. end if

© % NPT w

e e e e
O A T A rul =

Note: From Packing Lemma, there are at most 4 points in each box when the procedure is running
the lines 3 — 5 (otherwise the procedure would terminate at step 7 in the previous round of the
cycle) , so Ext(P) contains at most 36 points. So computing min dist(P;, P; (| Ext(B)) is O(1).

Claim 2.2. Test is linear time and correctly tests the relationship between CP(P) and «.

3 2D CP Algorithm

Algorithm 2 CP(P)
Input: P C UnitBox
Output: o

1: if n < 4 then

2 Check all pairs.

3: end if

4: Randomly permute P = { Py, ..., P,}
5 a1
6
7
8
9

: while Test(a, P) =" < a” do
a+ [

: end while

: return «

3.1 Correctness

If n <4, done.
By Lemma 1.4, if n > 4, then a < 1.

3.2 Backward Analysis
Theorem 3.1. CP(P) is expected linear time.

Definition 3.2. «; be random variable. o; = CP(Py,..., P;), i > 2.

Note that a; 11 < a;. And we restart Test (1) for each i s.t. o; < 1.
Then we need to know Prob(c; < co;—1). There are three cases.

1. There exists a unique closest pair within {P, P», ..., P;}, say (Pj, Px).
Then, only removing P; or P, will cause a restart, so the T'est runs only when j =1 or k = 1.
So Prob(a; < a;—1) = 2

=

2. There exists multiple closest pairs, and all these pairs include one point, say P; (shown in
Figure 3: Left). Then we need to restart only if we remove Pj. So, Prob(a; < ai—1) = 1

3. There are two or more disjoint closest pairs (shown in Figure 3: Right). If we remove only
one point from these pairs, we can see the closest distance will not change. So, we don’t need
to restart anymore, and Prob(a; < a;—1) = 0.

Pj
| S }
P- Pt e—-— P,
P, P,

Figure 3: Left: Case 2. Right: Case 3

From the three cases, we learn P(a; < a;—1) < % Each restart is O(i) new work. So, the total
expected work is

