Random Walks on Graphs

Graph: $G=(V, E, W)$ (possibly directed)

$$
w_{i}=w\left(v_{i}\right) \equiv \sum_{(j, j) \in E} w_{i j} \quad P_{i j} \equiv w_{i j} / w_{i}
$$

Random walk on G :
Suppose at a given time we are at $V_{i} \in V$.
We move to V_{j} with probability $P_{i j}$
e.g. $V \equiv$ all ordings of a deck of 52 cards
$P_{i j} \equiv P_{r o b}$ of going from order ${ }_{i}$ to order; in one shuffle.

Question: Why do professionals 2 play after 5 shuffles?

Two views of a random walk

1) Particle view (def)
2) Ware, Probability dist, or large \# of simultaneous of independent walkers
for 2) $X^{(i)} \equiv$ dist at time i then

$$
A D^{-1} x^{(i)}=x^{(i+1)}
$$

$A \equiv \operatorname{adj}$ matron
$D \equiv$ die degree.

Important Parameters
Access time: or Hotting time
$H_{i j} \equiv$ Expected time to visit j starting at 2
Commute Time:

$$
K(i, j)=H(i, j)+H(j, i)
$$

Cover Time:
Expected time to visit all nodes max over all starting nodes Mixing Rate: (not do)

Random Walks - the Symmetric Case
Idea: View a random walk as a walk on a network of conductors?
Input: $\quad G=(V, E, C) \quad C_{i j}=C_{j i}$
Consider a random walk starting at x and ending at b.
Def $h_{x} \equiv$ prob we visit a before b starting at $x, a \neq b$.
eg

$$
h_{a}=1 \& \quad h_{b}=0
$$

$h_{R} ? \quad h_{2}>1 / 2$ why?

$$
h_{a}=1 \& h_{b}=0
$$

Suppose $X \neq a, b$
Claim $h_{x}=\sum_{y} P_{x y} h_{y}$

$$
P_{x y} \geq 0 \& \sum_{y} P_{x y}=1
$$

$\therefore h_{x}$ is a convex comb of its neighbors!
h is harmonic with bodary a, b !
Lets construct an identrial electrical prob!

Consider: $V_{a}=1$ \& $V_{b}=0$
$\forall x \neq a, b \quad V_{x}=\sum_{y} \frac{C_{x y}}{C_{x}} V_{y}$
$b_{u t} C_{x y} / C_{x}=P_{x y}!\Rightarrow h=V$
The Set $V_{a}=1$ \& $V_{b}=0$; Let $x \neq a, b$ "float" then $V_{x}=$ prob visit a before b. Residual current at $x=0$.
eg.

$$
h_{c}=3 / 4 \quad a=x_{1}, 8 b=x_{n}
$$

Algebraically: $L\left(\begin{array}{l}1 \\ 0 \\ \vdots \\ 0\end{array}\right)=\left(\begin{array}{l}* \\ 0 \\ 0 \\ k\end{array}\right)$

In general may have multi; sinks and goals.

Thus computable in one Laplacian solve.

Inter pretation of Current for Ron dom Walk.

Consider 1 unit of potential Current flow from a to b, say i what does $i_{x y}$ corves pond to in random walk from a to b ?
The $i_{x y}=$ Expected net \# of traversals of $E_{x y}$ in a randoms walk from a to b. (No proof)

How to compute hitting time
Def $h(x, b) \equiv$ expected time to reach b from x.
$h_{x}=h(x, b) \quad b$ foxed
Lets write en recurrence:

$$
\begin{aligned}
& h_{b}=0 \\
& x \neq b \quad h_{x}=1+\sum_{y} h_{y} P_{x y}
\end{aligned}
$$

Lets think of h_{x} as voltage V_{x}

$$
V_{b}=0 \quad V_{x}=1+\sum_{y} \frac{C_{x y}}{C_{x}} V_{y}
$$

$$
\begin{aligned}
& C_{x} V_{x}=C_{x}+\sum_{y} C_{x y} V_{y} \\
& C_{x} V_{x}-\sum C_{x y} V_{y}=C_{x}
\end{aligned}
$$

Graph Laplacian residua current $n-1$ constraints by adding constraint for $V_{n}=b$

$$
\underset{V_{n}=0}{L V}=\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{n-1} \\
\delta
\end{array}\right) \quad \begin{aligned}
& b=V_{n} \\
& c=\sum c_{i}
\end{aligned}
$$

where $\delta=C_{n}-C$
As for hitting time to V_{n}. solve $L V=\left(\begin{array}{c}c \\ \vdots \\ c_{n}-c\end{array}\right)$ return V_{x}

What about commute time?
For $V_{1}=a$ \& $V_{n}=b$.
Solution 1
Solve $L V^{b}=\left(\begin{array}{c}c_{1} \\ \vdots \\ c_{n}-c\end{array}\right) L V^{a}=\left(\begin{array}{c}c_{1}-c \\ \vdots \\ c_{n}\end{array}\right)$

$$
h(2, n)=V_{1}^{b}-V_{n}^{b} \& h(n, 1)=V_{n}^{a}-V_{1}^{a}
$$

set $V=V^{b}-V^{a}$

$$
C(1, n)=\left(V^{b}-V^{a}\right)_{1}-\left(V^{b}-V^{a}\right)_{n}=V_{1}-V_{n}
$$

Solution 2

$$
\begin{aligned}
& L\left(V^{b}-V^{a}\right)=L V^{b}-L V^{a}= \\
& \left(\begin{array}{c}
c \\
\vdots \\
c_{n}-c
\end{array}\right)-\left(\begin{array}{c}
c_{1}-c \\
\vdots \\
c_{n}
\end{array}\right)=\left(\begin{array}{c}
c \\
0 \\
1 \\
0 \\
-c
\end{array}\right)=c\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0 \\
-1
\end{array}\right)
\end{aligned}
$$

Solve $L V=\left(\begin{array}{c}1 \\ 0 \\ \vdots \\ -1\end{array}\right)$
vetorn $C\left(V_{1}-V_{n}\right)$ bwt $\left(V_{1}-V_{n}\right)=E R_{1 n}$
Thm

$$
C(a, b)=C \cdot E R_{a b}=2 m E R_{a b}
$$

