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Abstract
In these notes we present an overview of some classic (approximate) multi-commodity max-flow min-cut

theorems and some of their applications to approximation algorithms.

1 Introduction

Consider a single-commodity network flow instance, N = (G, s, t, c). The maximum amount of flow which
can be sent from the source s to the sink t is clearly upper bounded by the capacity of the minimum
cut separating s and t. The celebrated Maximum-Flow Min-Cut Theorem of Ford and Fulkerson [4] (also
proven in the same year by Dantzig and Fulkerson [2] and Elias, Feinstein and Shannon [3]) asserts that
these quantities coincide. This fundamental theorem has found myriad applications over the years, including
simple proofs of classic combinatorial theorems such as Menger’s, Hall’s, König’s and Dilworth’s theorems,
as well as countless algorithmic applications. One might therefore wonder which generalizations of maximum
flow admit similar max-flow min-cut theorems and what applications they may yield.

A natural generalization of the maximum flow problem to consider is multi-commodity flow problems.
One such generalization is the concurrent multi-commodity flow, where we have source-sink pairs {(si, ti)}ki=1

and demand Di for each pair (si, ti). This problems asks to send the maximum common fraction f of each
demand Di along the set of paths Pi = {p : si  ti}, while respecting the edge capacities, ce.1 (Single-
commodity flow is the special case of a single source-sink pair with demand one.) Written as an LP, the
concurrent multi-commodity flow problem and its dual are the following.2

Primal Dual
maximize f minimize

∑
e le · ce

subject to:
∑

p∈Pi
xp ≥ f ·Di ∀i subject to:

∑
iDi · d(si, ti) ≥ 1∑

p3e xp ≤ ce ∀e ∈ E
∑

e∈p le ≥ d(si, ti) ∀p ∈ Pi

xp ≥ 0 ∀i,∀p ∈ Pi d(si, ti), le ≥ 0 ∀i, e

Figure 1: The Concurrent Multi-commodity Flow LP and its dual

The dual variable names are somewhat suggestive. We think of the le as edge lengths, and the d(si, ti)
variables as the length of the shortest path (according to these lengths) between si and ti.

As in the single-commodity flow problem, the max flow is bounded by the (appropriate generalization of)
min cut. Here we define the min-cut as follows. For a cut (U, Ū), we denote the capacity of edges crossing
this cut by C(U, Ū) :=

∑
e∈(U,Ū) ce and the demand separated by it by D(U, Ū) :=

∑
i:|{si,ti}∩U |=1Di. The

sparsity of a cut (U, Ū) is R(U, Ū) := C(U,Ū)
D(U,Ū)

. The min-cut (sparsest cut) is simply the minimum such ratio
over all cuts separating source-sink pairs,

R∗ := min
U⊆V,D(U,Ū)6=0

R(U, Ū),

1Another generalization is the sum multi-commodity flow problem, where we have source-sink pairs {(si, ti)}ki=1 and we wish
to maximize the amount of flow sent between these source-sink pairs along the set of paths Pi = {p : si  ti} connecting the
pairs si and ti, again while respecting the edge capacities, ce. We will not discuss this problem in great depth here, though.

2Note that this LP generalizes the path-form LP for max single-commodity flow we saw in class before.
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We first verify that the min-cut is indeed an upper bound on the max flow. Let i1, i2, . . . , ir denote
the set of source-sink pairs separated by some cut (U, Ū). Since all flow between these source-sink pairs
must cross this cut and the flow must respect the capacities across the cut, we have for a flow of value f
that

∑r
j=1 f · Dij ≤ C(U, Ū). But as D(U, Ū) =

∑r
j=1Dij , this implies that any flow has value at most

f ≤ C(U, Ū)/D(U, Ū) = R(U, Ū). This bound holds for the max flow, f∗, and (U, Ū) the min cut, and so
the max multicommodity flow is upper bounded by the min-cut, as for the single-commodity case. However,
unlike for single-commodity flow, these values need not coincide. In fact, these values can be as far as an
Ω(log n) multiplicative factor apart. In this lesson we will show that that is the most these terms can differ
by.

Figure 2: Illustration of cut (U, Ū) proving that f ≤ C(U, Ū)/D(U, Ū) = 2/5.

2 Undirected Concurrent Flow with Uniform Demands

For simplicity, we will focus on undirected concurrent multi-commodity flow with uniform demands, first
studied in the seminal work of Leighton and Rao [5]. Here all node pairs (u, v) are source-sink pairs, and
they all have the same demand. By normalizing appropriately, we may assume this common demand is one.
As Leighton and Rao showed, even for this simple case of multi-commodity flow there exist instances with a
logarithmic gap between max flow and the min cut.

Theorem 2.1 ([5]). There exist n-node graphs for which the uniform concurrent multi-commodity maximum
flow and min cut values differ by a Ω(log n) factor.

As we shall see, Θ(log n) is the correct answer: for every network the max flow is always at least Ω(1/ log n)
times the min-cut. We will prove this theorem in the remainder of this section. In Section 3, we shall see
applications of this result.

One component we will rely on in our proof of our approximate min-cut max-flow theorem are low-
diameter decompositions as we saw in class before, generalized to weighted graphs. A low-diameter decompo-
sition of a graph G with capacities ce and edge lengths le (think of a dual solution to the LP) is a partition
of the graph G into parts of low diameter (according to these le) which “cuts” few edges. The properties we
need of low-diameter decompositions are captured by the following lemma. (These properties are obtained by
the low-diameter decomposition using exponential delay we saw in class before, by generalizing to weighted
graphs appropriately.)

Lemma 2.2 (Low-Diameter Decompositions). Given parameter β and undirected graph G = (V,E) with edge
lengths {le}e and capacities {ce}e, one can compute in polytime a partition of G into connected components
such that with probability at least 1/4,

1. Each part has l-diameter at most log n/β.

2. The capacity of the edges E′ ⊆ E separated is at most
∑

e∈E′ ce ≤ 2
∑

e ce · le · β.
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We now return to the concurrent multi-commodity flow LP and its dual. Let f∗ be the max flow value.
Consider some optimal dual solution with variables le and d(si, ti). As observed before, we can set the d(si, ti)
to be as high as the minimum l-length path from si to ti. As we consider the uniform multi-commodity
problem where all node pairs have demand of one, the LP constraints imply that∑

u,v

d(u, v) ≥ 1. (1)

Let f∗ =
∑

e le · ce be the dual solution’s value (and the max flow value). We will show a cut with sparsity
at most O(f∗ log n), implying our claimed bound on the flow-cut gap. We start with a simple application of
Lemma 2.2 to potentially finding a cut of sparsity at most O(f∗ log n).

Lemma 2.3. For any graph G with lengths {le}, capacities {ce} and with f∗ =
∑

e ce · le, we can either

1. find a connected component with l-diameter 1/2n2 that contains at least n/3 nodes of G, or

2. find a cut in G with sparsity O(f∗ · log n).

Proof. We run the algorithm of Lemma 2.2 with parameter β = 2n2 · log n. If one of the components
contains at least n/3 of the nodes of G, we are done (as the parts have l-diameter at most log n/β = 1/2n2).
Otherwise, we group the parts into two sides of a cut, both of size at least n/3.3 By Lemma 2.2, we know
that the capacity of edges cut by the partition is at most 2

∑
e cele · β = 4f∗n2 log n. But as the two sides of

the partition have at least n/3 nodes, the sparsity of this cut is at most

4f∗n2 log n

(n/3)(n/3)
= 36f∗ log n = O(f∗ log n).

Now, the second condition of Lemma 2.3 is exactly what we want, while the first condition seems a little
cryptic. We will show that it will also allow us to find a cut with sparsity O(f∗) ≤ O(f∗ log n).

Lemma 2.4. Let T ⊆ V be a set of |T | ≥ n/3 vertices with l-diameter at most 1/2n2. Then we can find a
cut with sparsity at most O(f∗).

To prove the above lemma, we will need the following lemma, which asserts that a ball of small diameter
must be relatively far away from nodes outside of this ball.

Lemma 2.5. Let T ⊆ V be a set of vertices with l-diameter at most 1/2n2. Then
∑

u∈V \T d(T, u) ≥ 1
2n .

Proof. By triangle inequality and the diameter bound we have that for each pair of vertices u, v we have
d(u, v) ≤ d(T, u) + 1/2n2 + d(T, v). By Equation (1) and the above we find that

1 ≤
∑
u,v

d(u, v)

≤
∑
u,v

(
d(T, u) + 1/2n2 + d(T, v)

)
< n ·

 ∑
u∈V \T

d(T, u)

+
1

2
.

3We can do this by starting with an empty group U and adding parts to U until its size first exceeds n/3 due to addition of
some part P . This means the group previously had size less than n/3 and together with P (which has size at most n/3). So, we
find that this group has size at most |U \P |+ |P | ≤ 2n/3, and so its complement also has size |Ū | = n− |U | ≥ n− 2n/3 = n/3.
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The above distance constraint for vertices outside of T will allow us to show the complementary result
to Lemma 2.3 — a procedure to compute a sparse cut in the case that one component with many nodes has
low l-diameter.

Proof of Lemma 2.4. We expand every edge e of G into a path of length dC·lef∗ e, where C =
∑

e ce is the total
graph capacity and f∗ =

∑
e ce · le is the dual solution’s value. We assign each edge in the path replacing

edge e a capacity of ce. We refer to this expanded graph as G+. (Expanding edges this way is mainly done
to simplify discussion and allow us to think about distances as integer values.) By its definition we find that
the capacity of G+ is not much larger than that of G. Specifically, it is at most

C(G+) =
∑
e

ce ·
⌈
C · le
f∗

⌉
≤
∑
e

ce ·
(

1 +
C · le
f∗

)
= 2C, (2)

where we rely on
∑

e ce · le = f∗ in the last step.
Moreover, as every path p in G is replaced by a path in G+ of length at least C/f∗ times the l-length of

p. Consequently, distances in G+ are at least C/f∗ times larger than their counterparts in G. In particular,
we have that

dG+(T, u) ≥ C

f∗
· dG(T, u), ∀u ∈ V \ T. (3)

Now, let Vi ⊇ T be the set of nodes in G at distance at most i from T in G+, and let ni := |V − Vi|
be the number of nodes at distance greater than i from T in G+. By definition of ni and integrality of the
distances in G+, we have that ∑

e∈V \T

dG+(T, u) =
∑
i≥0

ni. (4)

(To see this, note that a node at distance d from T is counted in n0, n1, n2, . . . , nd−1, or d of the summands
of the right hand side.)

Combining inequalities 3 and 4 together with the lower bound of Lemma 2.5, we obtain∑
i≥0

ni
4
=
∑

e∈V \T

dG+(T, u)
3
≥ C

f∗
·
∑

e∈V \T

dG(T, u)
2.5
≥ C

2nf∗
. (5)

As every cut (Vi, V \Vi) has at least |Vi| ≥ |T | ≥ n/3 nodes on one side and ni on the other, and as every
edge of G+ is counted in exactly one of these cuts, we find that the ratio of capacities to demands of these
cuts is at most ∑

iC(Vi, V \ Vi)∑
i |Vi||V \ Vi|

2, |Vi|≥n/3

≤ 2C

(n/3)
∑

i ni

5
≤ 3f∗. (6)

But as at least one of the cuts (Vi, V \ Vi) must have sparsity (or ratio of capacity to demands separated)
at most this average, we find that one of these cuts has sparsity at most 3f∗ = O(f∗). As there are only
polynomially-many distinct cuts (Vi, V \Vi) as above, this existence claim can also be made algorithmic.

Given Lemmas 2.3 and 2.4, our desired approximate max-flow min-cut theorem follows immediately.

Theorem 2.6 ([5]). Let f∗ be the value of a maximum uniform concurrent multi-commodity flow problem
on an n-node graph G with capacities {ce} and let R∗ be the minimum cut in G. Then there exists a constant
c > 0 such that R∗/(c · log n) ≤ f∗ ≤ R∗. Moreover, a cut with sparsity at most c · f∗ log n can be found in
polynomial time.

Remark: Note that the proofs above are completely algorithmic, and we have seen all ingredients needed
to output a cut with sparsity O(f∗ log n) (and not just prove its existence). The only missing ingredient to
make this into a polytime algorithm is a polytime solution for the dual LP, which has exponentially many
constraints. This can be done in polynomial time using the Ellipsoid Method, which we will unfortunately
not have time to cover in this course.
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3 Applications

Here we outline two simple applications of Theorem 2.6 to approximation algorithms for some NP-hard
problems. This theorem and its extensions to non-uniform demands, directed graphs and others have found
applications to multiple other problems not covered in these notes. These include approximation algorithms
for as disparate problems as crossing number, VLSI layout, minimum feedback arc set, among many others.
See Leighton and Rao [5] for more.

3.1 Sparsest Cut

The first application is an immediate one. The sparsest cut problem is the problem of computing a cut
(U, Ū) of minimum density, defined to be |(U,Ū)|

|U ||Ū | , where |(U, Ū)| denotes the set of edges crossing the cut.
This problem can be approximated within an O(log n) term by applying Theorem 2.6 on the graph with unit
capacities and unit demands. No approximation algorithm was known for this problem prior to Leighton
and Rao’s work. Moreover, this bound was the best known until the 2004 work of Arora et al. [1], who
showed how to obtain an O(

√
log n)-approximation using an SDP relaxation of this problem and much more

elaborate machinery, including expander flows.

3.2 Flux, Expansion and Minimum Quotient Separators

A second application of Theorem 2.6 is to the edge expansion or flux of a graph, defined to be minU⊆V
|(U,Ū)|

min{|U |,|Ū | .
As max{|U |, |Ū |} ∈ [n/2, n] always, the edge expansion of a cut is always within a factor of at most n from
it sparsity. Consequently, the O(log n) approximation to sparsest cut of Section 3.1 also yields an O(log n)
approximation to the cut of minimum edge expansion, also termed the minimum quotient separator.
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