Personal Pagerank \& $\quad \begin{aligned} & 15-750 \\ & 4 / 19 / 19\end{aligned}$ Spilling Paint
$G=(V, E)$ undid (weighted)

$$
A \equiv \operatorname{adj} \quad D \equiv \text { deg matrix }
$$

Def $S \subseteq V$ vol $(s)=d(s)=\sum_{v \in S} d(v)$

$$
\begin{gathered}
\partial S=\{(v, w) \mid v \in S \& w \notin S\} \\
\text { Conductance }(S)=\frac{|\partial S|}{\min \{d(S), d(v \backslash S)\}}
\end{gathered}
$$

Goal: Given $v \in V$ find small $v \in S$ with small conduct.

Idea: Use "local" random wail ks to find S.

Goal: Local page rank (Google)

Two random walks
Regular on eager Wall.

$$
\begin{aligned}
p^{(t+1)} & =A^{\top} D^{-1} p^{(t)} \quad W \equiv A^{\top} D^{-1} \\
& =W p^{(t)}
\end{aligned}
$$

Lazy Walk.

$$
\begin{aligned}
p^{(t+1)} & =\frac{1}{2}(I+W) p^{(t)} \\
& \cong \widehat{W} p^{(t)}
\end{aligned}
$$

Walks with reset's
Let u be a distribution over V

$$
\text { ie. } 0 \leq u \in \mathbb{R}^{n} \quad|u|_{1}=1
$$

eg u is charactorister vector of $v \in V, X_{V}$.

$$
\begin{aligned}
p^{(t+1)} & =\alpha u+(1-\alpha) w p^{(t)} \\
& =\alpha u+(1-\alpha) \hat{w} p^{(t)} \\
& 0<\alpha<1
\end{aligned}
$$

The $\exists!\quad P_{u}=\alpha u+(1-\alpha) W P_{u}$
pf rewrite

$$
\begin{aligned}
& P_{u}-(1-\alpha) W P_{n}=\alpha u \\
& {[I-(1-\alpha) W] P_{u}=\alpha u}
\end{aligned}
$$

Claim: $(I-(1-\alpha) W)$ is non -sing
We show all eigenvalues of $(I-(1-\alpha) W)>0$ Let $M \in R^{n \times n}$
Def: $\lambda(M)=$ set of all eigenvalues of M.

$$
|\lambda(m)|=\max \{|\lambda| \mid \lambda \in \lambda(m)\}
$$

Note In general eigenvalue \& vectors may be complex.

$$
\text { Def }|a+i b|=\sqrt{a^{2}+b^{2}}
$$

Lemma: $M \in R^{n \times n}, M \geqslant 0$,
$S=$ max rowsum then $|\lambda(M)| S S$.
pf Suppose $\lambda \in \lambda(M)$ ie $M X=\lambda X$ some X.
WLOG $\left|x_{n}\right| \geqslant\left\{\left|x_{1}\right|_{1} \cdots,\left|x_{n-1}\right|\right\}$
Let $\delta_{n}=$ sum of row n in M.

$$
\operatorname{Now}\left(1 / \delta_{n} M X\right)_{n}=\lambda / \delta_{n} X_{n}
$$

LHS is a convex combination of $\left\{x_{,}, \ldots, x_{n}\right\}$.
Thus $\left|\lambda / s_{n}\right| \leq 1$ or $|\lambda| \leq s_{n} \leqslant \delta$
Note: $W=A D^{-1} \geqslant 0$ \& each row sum $=1$.
Thus: $\forall \lambda|\lambda(w)| \leqslant 1$

$$
\begin{align*}
& \Rightarrow|\lambda((1-\alpha) W)| \leq 1-\alpha<1 \\
& \Rightarrow|\lambda(I-(1-\alpha) W)|>0 \quad \text { (*) } \tag{*}
\end{align*}
$$

Thus: $P_{n}=(I-(1-\alpha) W)^{-1} \alpha U$ since inverse exists To see (*) note $M X=\lambda X$ then

$$
(I+M) x=x+M x=x+\lambda x=(1+\lambda) x
$$

Spectral The

Recall the spectral the.
The Sym $M \in R^{n \times n}$ the $M=U^{\top} \Lambda U$ where $U^{\top} U=I$ \& Λ is diagond.

Thus if $M \in R^{n \times n} \&|\lambda(M)|<1$
then $(I-M)^{-1}=\left(I+M+M^{2}+\cdots\right)$
Note $W=A D^{-1}$ is not sym but still

$$
P_{n}=\alpha \sum_{t \geqslant 0}(1-\alpha)^{t} w^{t} u
$$

Thus P_{u} can be expressed as a sum of deprecated (lossy) random walks from u.

Spilling Paint View
Idea: 1) Start with a bucket of paint at vertex v.
2) Let $r^{(t)}$ be wet paint at time t.
3) At time we spill $\alpha \gamma^{(t)}$ paint it dries/sticks
4) We move the remaining wet paint to avandom neighbor.
Let $S^{(t)}, r^{(t)}$ be dist of $d r y /$ wet paint. Thus our evolution equations are:

$$
\begin{aligned}
& S^{(t+1)}=S^{(t)}+\alpha r^{(t)} \\
& r^{(t+1)}=(1-\alpha) W r^{(t)} \text { or } r^{(t)}=(1-\alpha)^{t} W^{t} r^{(0)}
\end{aligned}
$$

Where is the stuck paint?

$$
\begin{aligned}
S^{\infty}=\alpha \sum_{t \geqslant 0} r^{(t)} & =\alpha \sum_{t \geq 0}(1-\alpha)^{t} W^{t} v^{(0)} \\
& =\alpha \sum_{t \geqslant 0}(1-\alpha)^{t} W^{t} \mu
\end{aligned}
$$

Thus $P_{n}=S^{\infty}$!

Claim: Reg \& hazy walls differ by at most a constant for local page rank.
Recall Eager $W=A^{\top} D^{-1}$
Lazy $\widehat{w}=I / 2+W / 2$
Final struck paint

$$
\begin{aligned}
& S^{\infty}(\text { hay, } \alpha)=\alpha(I-(1-\alpha) \widehat{W})^{-1} u \\
& =\alpha\left(I-(1-\alpha)\left(\frac{T}{2}+W / 2\right)\right)^{-1} u \\
& =\alpha\left(\left(\frac{1+\alpha}{2}\right) I-\left(\frac{1-\alpha}{2}\right) W\right)^{-1} u \\
& \quad=\frac{2 \alpha}{1+\alpha}\left(I-\left(\frac{1-\alpha}{1+\alpha}\right) W\right)^{-1} u
\end{aligned}
$$

Set $\beta=\frac{2 \alpha}{1+\alpha}$ the $1-\beta=1-\frac{2 \alpha}{1+\alpha}=\frac{1-\alpha}{1+\alpha}$
Thus $=\beta(I-(1-\beta) W)^{-1} U=S^{\infty}\left(E_{\text {eger }}, \beta\right)$

Pushing wet Paint
Suppose we have S dry \& r wet paint. If we run Paint-Spilling from (S, r) we get.

$$
\begin{align*}
P_{s, r} & =S+\alpha \sum_{t \rightarrow 0}(1-\alpha)^{t} W^{t} r \quad \text { (r) } \tag{v}\\
& =S+\alpha(I-(1-\alpha) W)^{-1} r \quad(\text { dry paint })
\end{align*}
$$

Consider a partial update at some $u \in V$.
Def Update $(V) \equiv$ (unweighted case)

$$
\begin{aligned}
& S^{\prime}(v)=S(v)+\alpha r(v) \\
& r^{\prime}(v)=0 \\
& r^{\prime}(w)=r(w)+\frac{(1-\alpha)}{d(v)} r(v) \quad \forall w \in N(v)
\end{aligned}
$$

Here we are doing eager walks.
Let $\left(s^{\prime}, r^{\prime}\right)=$ Update $_{n}(s, r)$

Lemma $P_{s^{\prime}, r^{\prime}}=P_{s, r}$
pf See Spielman's notes.

Alg: Approx Painting (u, α, ε)
Init: $S=0 ; r=X_{u}$
While: $\exists v \in V r(v) \geq \varepsilon \alpha(v)$
Pick $\underset{V \in V}{\operatorname{argmax}} r(v) / d(v)$
Update (v)
The Alg ApporP Painting terminates after $1 / \varepsilon \alpha$ iterations.
(N opt)

Understanding the stationary P_{v}
for walks with resets from V.
Consider $q_{u}(v)=P_{u}(v) / d(v)$ $d(v) \equiv$ degree of v.
Sort q_{u} giving $q_{1}(v) \geqslant q_{3}(v) \geqslant \cdots \geqslant q_{n}(v)$
Let $S_{k}=$ Vertices $\{1, \cdots, k\}$

We consider two types of flow in the Stationary P_{u}.

1) Reset-flow: flow back to u.
2) Graph-flow: flow on edges of G.

Note Total flow is a circulation!

The stationary as a flow (circulation)
Note $q(i)=\frac{p(i)}{d(i)} \cong$ prot of leaving V_{i} on some fixed edge out of V_{i}.

$$
\begin{gathered}
f_{i j}=(1-\alpha)[q(i)-q(j)] \equiv \text { net prob of traversing } \\
(i, j) \& E, \quad(i, j) \in E .
\end{gathered}
$$

Let $f_{i j}$ be the graph-flow.
Since $q(i) \geqslant q(j)$ for $i \leqslant j$ all
Graph-flow on edges is left to right.

Since graph -flow + reset flow is a circulation.
Intuitively the reset-flow should be from right to left.

Claim: V_{1} is the reset vertex U.
pf All graph flow is out of V_{1}
Thus V, must be the reset vertex.
Consider graph flow crossing V_{x}

$$
\begin{align*}
\text { flow } & =\text { reset for } V_{k+1)} t_{0} V_{n} \\
& =\alpha\left(p_{k+1}+\cdots p_{n}\right) \quad(x) \tag{x}
\end{align*}
$$

Observe that $P_{1} \geq \alpha$

Main The
In words: If CSV is of low conductance and we do LPR from random $u \in C$ then one of the sets S_{k} will have low conductance.
$\operatorname{Th} m(\subseteq V, d(C) \leq d(V) / 2, \Phi(C) \leq \phi$ $\alpha=\phi / c \cdot \log n$. If we pick u by degree in C then with prob $\geqslant 1 / 2$ $\exists k$ st

1) $\Phi\left(S_{k}\right) \leq O(\sqrt{\phi(C) \log m})$
2) $2 / 3 d\left(S_{K}\right) \leq d\left(S_{K} \cap C\right)$
