$$
15-750
$$

Johnson - Lindenstrass (JL)

Def $f: X \subseteq R^{n} \rightarrow \mathbb{R}^{d}$ is an isoperometric embedding if $\forall p, q \in X \quad\|p-q\|_{2}=\|f(p)-f(q)\|_{2}$
Def $f: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{d}$ is $\underline{k-h i-h i p s c h i t z ~}$

$$
\text { if } \exists c \text { sit } c\|p-q\|_{2} \leq\|f(p)-f(q)\|_{2} \leq c \cdot k \cdot\|p-q\|_{2}
$$

Such f is called a k-embedding
The (Johnson-Lindenstrauss)
Let $X \subseteq \mathbb{R}^{m},|x|=n, 0<\varepsilon \leq 1, \exists(1+\varepsilon)$-embedding of X into \mathbb{R}^{d} for $d=O\left(\varepsilon^{-2} \log n\right)$.

Note May assume $m \leq n-1$
Consider affine subspace S spanned by

$$
\begin{aligned}
& P_{1} \cdots P_{n} \in R^{m} \\
& \operatorname{dim}(S) \leq n-1
\end{aligned}
$$

Claim: Project a random $x \in S^{n-1}$ onto first $\log n$ Coordinants we get concentration.
Def $f(x)=\sqrt{x_{1}^{2}+\cdots+x_{k}^{2}}$ for $x \in S^{n-1}$
Lemma for $x \in S^{n-1}$ picked uniformly then

$$
\begin{aligned}
& \exists m=(n, k) s t . \\
& \text { 1) } P_{r}[f(x) \geq m+t], P[f(x) \leq m-t] \leq 2 e^{-\frac{t^{2} n}{2}} \quad 0<t<1
\end{aligned}
$$

2) If $k \geqslant 10 \ln n$ then $m \geqslant \frac{1}{2} \sqrt{k / n}$

Note f is the projection of X onto first k coord. \& projections are 1 -hipschitz.
eg
Thus by Levy $m=\operatorname{med}(f)$ prove 1). To show 2).
Let $X=\left(x_{1}, \cdots, x_{n}\right)$ random point on S^{n-1}
Consider random variables $x^{2}, x_{1}^{2}, \cdots, x_{n}^{2}$.
Now $X^{2}=\sum X_{i}^{2}$ \& $1=\mathbb{E}\left(X^{2}\right)=\sum \mathbb{E}\left(X_{i}^{2}\right)$

$$
=\frac{1}{n} \mathbb{E}\left(x_{j}^{2}\right) \Rightarrow \mathbb{E}\left(x_{j}^{2}\right)=1 / n \forall j
$$

For $f(x)=\sqrt{x_{1}^{2}+\cdots+x_{k}^{2}}$

$$
\mathbb{E}\left(f^{2}(x)\right)=\mathbb{E}\left[\sum_{i=1}^{k} x_{i}^{2}\right]=\sum E\left(x_{i}^{2}\right)=k / n
$$

To show $\operatorname{med}(f) \geqslant \frac{1}{2} \sqrt{k / n}$ for $k \geqslant 10 \ln n \quad 3$
C) aim

We get

$$
2 e^{-t^{2} n / 2}=2 e^{-\frac{k n}{5 n \cdot 2}} \leqslant 2 e^{-\frac{10 \ln n}{10}}=3 / n
$$

thus $k / n \leqslant(m+\sqrt{k / 5 n})^{2}+(2 / n)$
Chealk that $\Rightarrow m \geqslant \frac{1}{2} \sqrt{k / n}$
Lemma says random $x \in S^{n-1}$ projects onto b^{k} with we get concentration.
We now flip this around: Fix $x \in S^{h-1}$ and
pick random k-dim subspace.
Case $k=1$ we need to generate random direction Use use mult-din normal

$$
\begin{aligned}
\operatorname{Pdf}\left(N^{n}(0,1)\right) & =(2 \pi)^{-n / 2} e^{-x_{1}^{2}-\cdots-x_{n}^{2}} \\
& =(2 \pi)^{-n / 2} e^{-r^{2}}
\end{aligned}
$$

Thm (Johnson-Lindenstrauss)
Let $X \subseteq \mathbb{R}^{m},|x|=n, 0<\varepsilon \leq 1, \exists(1+\varepsilon)$-embedding of X into \mathbb{R}^{d} for $d=O\left(\varepsilon^{-2} \log n\right)$.
pf
Claim with prob $\geqslant 1-1 / n^{2}$
$(1-\Sigma / 3)$ med $\|x-y\| \leq\left\|P_{f}(x)-P_{f}(y)\right\| \leq(1+\varepsilon / 3)$ med $\|x-y\|$
Claim \Rightarrow Th
Since $|x|=n \quad \exists\binom{n}{2}$ pairs to satisfy. Thus by union bd Prob failure $\leq 1 / n^{2} \Rightarrow$
prob failure for some pair $s 1 / 2$.
Let $u=x-y$ then $(*)$ is

$$
m(1-\varepsilon / 3)\|u\| \leq\left\|P_{f}(u)\right\| \leq m(1+\varepsilon / 3)\|u\|
$$

w $20 G \quad\|u\|=1$
to show $\left|\left\|P_{f}(u)\right\|-m\right| \leqslant \frac{\varepsilon}{3} m$
Now $\left\|P_{f}(u)\right\|=f(u)$ from Le mama
Thus prob of (**) failure is

$$
\operatorname{Pr}\left[|f(n)-m| \geqslant \frac{\varepsilon}{3} m\right]
$$

By Lemma we get $\operatorname{Pr}[|f(n)-m| \geq t] \leq 4 e^{-t^{2} n / 2}$ for $0<t 21$ We pick $t=\varepsilon \mathrm{m} / \mathrm{3}$

$$
\operatorname{Pr}\left[|f(n)-m| \geqslant \frac{\varepsilon}{3} m\right] \leq 4 e^{-\frac{\varepsilon^{2} m n}{18}} \quad(x * *)
$$

Since $m \geqslant 1 / 2 \sqrt{c / n}$ for $k=200 \varepsilon^{-2} \ln n$

$$
(x * * x) \leq 4 e^{-\varepsilon^{2} 1 k / 72} \leq 4 e^{-200 / 72 \ln n} \leq 1 / n^{2}
$$

Stronger versions of JL.
Recall Our Alg:
Input $X \subseteq \mathbb{R}^{m}|X|=n$ viewed at matrix $X^{m \times n}$ columns We constructed random orthonormal matrix $M^{k \times m}$ by 1) Constructing a $M^{k \times m}$ matrix of Lie Gaussian's
2) Apply Gram-Schmit to M making it orthonormal.

Output $M X$ (Possibly scaling the vectors)

Simpler constructions also work! (Give Th)

1) Step 2) not necessary (Matrix of lid Gaussians)

Intuition: $M^{k \times m}$ is very close to orthonomal
2) A matrix M of lid $t l$'s also works.
3) Many other dist also work (SubGaussians)

