Fast Fourier Transform (FFT)

15-730 4/3/19

& Polynomials

FFT Applications

- 1) Signal processing
- 2) Image & Data Compression
- 3) Solving Partial Differential Equations (PDE's)
- 4) Polynomial Multiplication

We start with mult Polynomials

Recall If f(x) = 90+9,x+--+9n-1 xh->

S(1)=b+b,1+...+bn, xn)

Then h(h) = f(x)·Sb) it

h(x) = Co+C, x+C, x2+--+ C2n-2 x2n-2

Where $C_k = \sum_{i+j=k} C_i b_i$

As an algorithm this is O(n2) operations.

Signal hob, haba ---- b ...

Write in matrix form

Making the Impossible Work!

Idea:

3) Interpolate:

$$\begin{pmatrix}
1 & 0 & 0 & -1 & -1 & 0 \\
1 & 1 & 1 & -1 & -1 & 0 & 0 \\
1 & 2 & 2^{2} & -1 & -1 & 0 & 0 \\
1 & 2 & 2^{2} & -1 & -1 & 0 & 0 \\
1 & 2 & 2^{2} & -1 & -1 & 0 & 0 \\
1 & 2 & 2^{2} & -1 & -1 & 0 & 0 \\
1 & 2 & 2^{2} & -1 & -1 & 0 & 0 \\
1 & 2 & 2^{2} & -1 & -1 & 0 & 0 \\
1 & 2 & 2^{2} & -1 & -1 & 0 & 0 \\
1 & 2 & 2^{2} & -1 & -1 & 0 & 0 \\
1 & 2 & 2^{2} & -1 & -1 & 0 & 0 \\
1 & 2 & 2^{2} & -1 & -1 & 0 & 0 \\
1 & 2 & 2^{2} & -1 & -1 & 0 & 0 \\
1 & 2 & 2^{2} & -1 & -1 & 0 & 0 \\
1 & 2 & 2^{2} & -1 & -1 & 0 & 0 \\
1 & 2 & 2^{2} & -1 & -1 & 0 & 0 \\
1 & 2 & 2^{2} & -1 & -1 & 0 & 0 \\
1 & 2 & 2^{2} & -1 & -1 & 0 & 0 \\
1 & 2 & 2^{2} & -1 & -1 & 0 & 0 \\
1 & 2 & 2^{2} & -1 & -1 & 0 & 0 \\
1 & 2 & 2^{2} & -1 & -1 & 0 & 0 \\
1 & 2 & 2^{2} & -1 & -1 & 0 & 0 \\
1 & 2 & 2^{2} & -1 & -1 & 0 & 0 \\
1 & 2 & 2^{2} & -1 & 0 & 0 & 0 \\
1 & 2 & 2^{2} & -1 & 0 & 0 & 0 \\
1 & 2 & 2^{2} & -1 & 0 & 0 & 0 \\
1 & 2 & 2^{2} & -1 & 0 & 0 & 0 \\
1 & 2 & 2^{2} & -1 & 0 & 0 & 0 \\
1 & 2 & 2^{2} & -1 & 0 & 0 & 0 \\
1 & 2 & 2^{2} & -1 & 0 & 0 & 0 \\
1 & 2 & 2^{2} & -1 & 0 & 0 & 0 \\
1 & 2 & 2^{2} & -1 & 0 & 0 & 0 \\
1 & 2 & 2^{2} & -1 & 0 & 0 & 0 \\
1 & 2 & 2^{2} & -1 & 0 & 0 & 0 \\
1 & 2 & 2^{2} & -1 & 0 & 0 & 0 \\
1 & 2 & 2^{2} & -1 & 0 & 0 & 0 \\
1 & 2 & 2^{2} & -1 & 0 & 0 & 0 \\
1 & 2 & 2^{2} & -1 & 0 & 0 & 0 \\
1 & 2 & 2^{2} & -1 & 0 & 0 & 0 \\
1 & 2 & 2^{2} & -1 & 0 & 0 & 0 \\
1 & 2 & 2^{2} & -1 & 0 & 0 & 0 \\
1 & 2 & 2^{2} & -1 & 0 & 0 & 0 \\
1 & 2 & 2^{2} & -1 & 0 & 0 & 0 \\
1 & 2 & 2^{2} & -1 & 0 & 0 & 0 \\
1 & 2 & 2^{2} & -1 & 0 & 0 & 0 \\
1 & 2 & 2^{2} & -1 & 0 & 0 & 0 \\
1 & 2 & 2^{2} & -1 & 0 & 0 & 0 \\
1 & 2 & 2^{2} & -1 & 0 & 0 & 0 \\
1 & 2 & 2^{2} & -1 & 0 & 0 & 0 \\
1 & 2 & 2^{2} & -1 & 0 & 0 & 0 \\
1 & 2 & 2^{2} & -1 & 0 & 0 & 0 \\
1 & 2 & 2^{2} & -1 & 0 & 0 & 0 \\
1 & 2 & 2^{2} & -1 & 0 & 0 & 0 \\
1 & 2 & 2^{2} & -1 & 0 & 0 & 0 \\
1 & 2 & 2^{2} & -1 & 0 & 0 & 0 \\
1 & 2 & 2^{2} & -1 & 0 & 0 & 0 \\
1 & 2 & 2^{2} & -1 & 0 & 0 & 0 \\
1 & 2 & 2^{2} & -1 & 0 & 0 & 0 \\
1 & 2 & 2^{2} & -1 & 0 & 0 & 0 \\
1 & 2 & 2^{2} & -1 & 0 & 0 & 0 \\
1 & 2 & 2^{2} & -1 & 0 & 0 & 0 \\
1 & 2 & 2^{2} & -$$

ix solve I

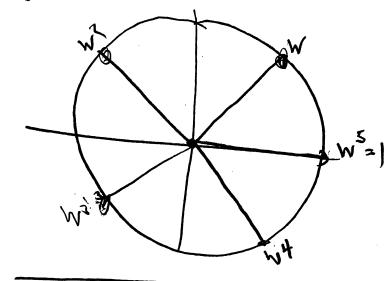
Steps 1) & 3) look at best $O(n^2)$ h=2m-1 Only a) is O(n)

Idea: Pick nth-roots of unity to evaluate polynomials

The n-th roots of unity

Complex plane atib a, ber 12=-1

$$C_n = Cos\left(\frac{2\pi}{n}\right)$$
 $b = sin\left(\frac{2\pi}{n}\right)$ $W = a + ib$



Claim! W = COS O + i sin O then

$$W^2 = \cos a\theta + i \sin a\theta$$

of Let Ry = CCW rotation of plane by & degreeso

17th roots of unity Definition

Wis on noth root if

3)
$$\sum_{j=0}^{n-1} w^{j} = 0$$
 $X = \sum_{j=0}^{n-1} w^{j}$

$$WX = \sum_{i=0}^{n-1} w^i = X \Rightarrow X = 0$$

(4)
$$\sum_{j=0}^{N-1} w^{j} = 0$$
 for $1 \le P \le N$

Note vow & column numering start at zero.

ie
$$(F_n)_{ij} = W^{ij}$$
 for $0 \le i, j \le n-1$ $F_2 = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$

$$= \begin{pmatrix} F_2 & C \\ F_2 & -C \end{pmatrix} = \begin{pmatrix} F_2 & \begin{pmatrix} 0 & 0 \\ 0 & \iota \end{pmatrix} F_2 \\ F_2 & -\begin{pmatrix} 0 & 0 \\ 0 & \iota \end{pmatrix} F_2 \end{pmatrix}$$

$$\overline{F}_{n} = \left(\begin{array}{c|c} F_{n/2} & D_{n/2} F_{n/2} \\ \hline F_{n/2} & -D_{n/2} F_{n/2} \end{array} \right) \text{ where } D_{n/2} = \left(\begin{array}{c|c} I & w^{2} & O \\ \hline O & w^{2} & O \\ \hline \end{array} \right)$$

no proof. thus $F_{an}(a) = \left(F_n D_n F_n\right) \left(\frac{a_{even}}{a_{odd}}\right)$

A recurence for number of ops

Thus T(n) = O(nlyn)

Back to Paly Multi we will use n-th roots of unity

Trick: Fn is just an FFT

$$\frac{\text{Claim}}{\text{Claim}} \left(\overline{F_n}^{-1} \right) = \left(\frac{1}{n} \right) W^{-ij} = \frac{1}{n} \overline{F_n} (W^{-1})$$

$$=\left(\frac{n}{n}\right)\left(w'\right)^{ij}$$

FFT inverse

$$\sum_{j=0}^{n-1} w_{ij} w_{-jk} = \begin{cases} n & \text{if } i=k \\ 0 & \text{o.w} \end{cases}$$

if
$$i=k$$
 then LHS = $\sum_{j=0}^{n-1} 1=n$

if
$$i \neq K$$
 then LHS: $\sum_{i=0}^{n-1} w^{ip} = 0$ prop 4)

Lets write this as a permutation of elements ٩ aooo **₽**α_{00δ} G 00). XC 00) 610DG Cross. G011 710011 & C100 G100 aio) -(or DE 8 C110 9110 an -> Q₁₂₁ Thus ax goes to the hit reversal of ax. Note After Bit Reversel FFT can be done in place.

Additional notes

Alternate interpretation

The Discrete Fourier Transform on a finite sequence a of length n is

$$F\{a\}(k) = \sum_{j=0}^{n-1} a_j e^{\frac{i2\pi jk}{n}}.$$

Compare to the Continuous Fourier Transform on a function f which is given by

$$\mathcal{F}{f}(k) = \int_{-\infty}^{\infty} f(t)e^{-i2\pi kt}dt.$$

We derived the first formula by considering the evaluation of a polynomial with coefficients a at the nth roots of unity. Another interpretation is that when the input is a time-varying signal, the Fourier Transform represents the input's frequency spectrum. That is, if we decompose the input into a linear superposition of sinusoidal waves, $|F\{a\}(k)|$ is the amplitude of the wave of frequency k.

Convolution

To multiply two polynomials, the coefficients of the resulting polynomial is just the convolution of the coefficients of the original polynomials. The convolution of two finite sequences a, b is given by

$$(a*b)[k] = \sum_{j=0}^{k} a[j]b[k-j].$$

We solved polynomial multiplication, or convolution, in 3 steps:

- 1. Use FFT to compute the Discrete Fourier Transforms, $F\{a\}$ and $F\{b\}$.
- 2. Multiply pointwise $F\{a\}$ and $F\{b\}$.
- 3. Take the inverse DFT $F^{-1}{F\{a\} \cdot F\{b\}}$, also using FFT, to recover a * b.

Here, convolution of the original inputs corresponded to the simpler multiplication operation in the Fourier domain. This fact also holds for the Continuous Fourier Transform: $\mathcal{F}\{f(t)*g(t)\}=\mathcal{F}\{f(t)\}\cdot\mathcal{F}\{g(t)\}$. We call this the *Convolution Theorem*.