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IPolynomialy

FFTApplications
1 Signal processing
2 Image Data compression
3 Solving Partial Differential Equations PDB's
4 Polynomial Multiplication
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Def The Discrete Fourier Transform DFT 6
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Thus step 3 is just an FFT using the root w
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Lets write this as a permutation of elements 9
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Thus a goes to the hit reversal of a

Note After Bit Reversal FFT can be done inplace



Additional notes

Alternate interpretation

The Discrete Fourier Transform on a finite sequence a of length n is

F{a}(k) =
n�1X
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Compare to the Continuous Fourier Transform on a function f which is given by

F{f}(k) =
Z 1

�1
f(t)e�i2⇡ktdt.

We derived the first formula by considering the evaluation of a polynomial with coe�cients a at the nth
roots of unity. Another interpretation is that when the input is a time-varying signal, the Fourier Transform

represents the input’s frequency spectrum. That is, if we decompose the input into a linear superposition of

sinusoidal waves, |F{a}(k)| is the amplitude of the wave of frequency k.

Convolution

To multiply two polynomials, the coe�cients of the resulting polynomial is just the convolution of the

coe�cients of the orignal polynomials. The convolution of two finite sequences a, b is given by

(a ⇤ b)[k] =
kX

j=0

a[j]b[k � j].

We solved polynomial multiplication, or convolution, in 3 steps:

1. Use FFT to compute the Discrete Fourier Transforms, F{a} and F{b}.

2. Multiply pointwise F{a} and F{b}.

3. Take the inverse DFT F�1{F{a} · F{b}}, also using FFT, to recover a ⇤ b.

Here, convolution of the original inputs corresponded to the simpler multiplication operation in the Fourier

domain. This fact also holds for the Continuous Fourier Transform: F{f(t) ⇤ g(t)} = F{f(t)} · F{g(t)}. We

call this the Convolution Theorem.
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