The Convex Hull Prob 15-750 2/27/19 (The sorting prob of CG)

Def ASRd is convex if

Defl X, YEA segment(x, y) SA

Defl A is closed under convex

Combinations.

Det Convex Closure (A) = CC(A) = small convex set 2A.

2 defs of Convex Hull

Defl CH(A) = OCC(A) (Boundry)

Def2 CH(A) = CC(A)

we will use Defl

For rest of lecture A is a finite set.

Thus in 2D

CH(A) = a simple closed

polygon of a subset of A.

(sey CCW order)

We will return the only the corners.

Claim [a,b] is a side of CH(A) iff

1) a,be A, a \did b

2) Va'e A either a' left of [a,b]

or a' \estimate [a,b]

Lower Bound

Claim: Sorting is reducible to CH.

Input: X,, ..., Xn ∈ R

Return $C H ((\chi_1, \chi_1^2), \dots (\chi_n, \chi_n^2))$

Note the points $P_2 = (X_i, X_i^2)$ will be in sorted order a

This construction works in higher Dim

Let P., ..., Pn e R2

Let Pi=(Px, Py, Pi) E IR3

Then the lower (17(Pi, ..., Pn) is a triangulated surface.

Called the Delannay Triangulation

Consider two sorting alg

1) Merge Sort

2) Quick Sort = Treaps

We make these into CH algs.

 $A = \{P_1, \dots, P_n\}$ $P_i = (\chi_i, \chi_i)$

Preprocess: Sort A by X-coordinate

Proc: Merge Hull (A)

if IA]=1 return P,

else CAL= Mergelaun (P., ~, Pn/2)

CHR = Merseldull (Progn) - , Pn)

STITCH (CH2, CHR)

Proc. STITCH(L,R)

Lowerbridge (L,R)

G = right most (L)

b = left most (R)

Repeat *) **) while possible

**) If a is right(a,b) set a e a

*** If b is right(a,b) set b e b

Upper bridge (L,R)

Correctness

at termination we have

Note Points in the Left are in cone

g -> a -> a

Points in Right are in cone b >> b

Thus LlR are right of (a,b).

Random Incremental CH

Proc: Random Incremental (H(P)

- 0) Make $\Delta = (P_1, P_2, P_3)$; pick CEINTerior (D)
 - 1) Contruct a ray from C to each Pi.
- 2) Paritition Pi's by edge of \ vay crosses.
- 3) Randomly Permute Py, -. , Pn.

For i=4 ton.

Let e be edge crossed by ray (->)?.
Build Tent (Pine)

Proc: Build Tent (P,e)

- 1) Find edges of (H"visible" to P by searching out from e.
- 2) Replace visible edge with 2 new edges.
- 3) Ossign rays to the new edges.

An Example of n-points on a Circle

Worst Case: Incremental Order
Pin---, In

Correctness?

Timing

Claim: O(n) work other than Build Tent.

Case 1 Steps 122 over life of alg

- 1) At most 2M edges generated.
- 2) Charging rule for "visiblity" test.
 - a) at most 2 "not visible" charge Pi.
 - b) each "visible" charge the visible edge.

Total 2n+2n=4n tests.

Charge to points charge to edges.

Consider step 3 in Build Tent

i.e. Cost to move point to new tent-edge.

Claim: Step 3 work = #ray-edge intersection

pf. Backwards Analysis

ie, We remove Py, ..., Pr is random order.

Claim Pr [Vi=1] 5 3/2

a) If Ray, does not intersect any bery edge then $V_i^j = 0$

b) Let (v,w)=e be below edge that Ray, intersects In this case $v_i=1$ iff Vorw

Thus Pr [Vi = 1 | Ray, nBdis] = 2/2

 $\frac{Del}{Del} V_i = \sum_{j=1}^{N} V_i^j$

is removed.

 $E(V_i) = \sum E(V) = \sum P_r [V_i = 1]$ $\leq \lambda N_i$

Total Expected work 2nHn.