15-750: Graduate Algorithms

January 29, 2017

Lecture 6: Dynamic Optimality Conjecture

Lecturer: Gary Miller Scribe: Ilai Deutel, Maria Khutoretsky

1 Dynamic Optimality Conjecture

Suppose we have keys $k_1, k_2, ..., k_n$ that we store in a BST and we get a sequence of requests. We want to find an algorithm that minimizes the total search time.

Definition 1.1. A Dynamic Binary Search Tree Algorithm:

- 1. Is based on a Binary Search Tree.
- 2. This Binary Search Tree is updated with rotations between searches.
- 3. We may look into future requests to determine rotations.

For instance, if I know that a certain user is going to use my algorithm soon, I can reorganize the whole tree in order to make it more efficient for this particular user.

Conjecture 1.2. A Splay Tree [Sleator and Tarjan, 1985] does at most a constant factor more work than any Dynamic Binary Search Tree.

Remark 1.3. This conjecture is still open.

In this lecture, we are going to consider special cases of this conjecture.

2 Review and Balance Theorem

Definition 2.1 (Potential function and unit cost). Let T be a splay tree.

- 1. The weight w(x) of a node $x \in T$ is 1.
- 2. For each node x of T, $S(x) = \sum_{y \in subtree(x)} w(y)$
- 3. For each node x of T, $rank(x) = \lfloor \log_2(S(x)) \rfloor$
- 4. The potential of the tree is $\Phi(T) = \sum_{x \in T} rank(x)$
- 5. unitCost = # rules applied

Our goal in this lecture is to modify this set of conditions in order to prove useful theorems.

Theorem 2.2 (Balance Theorem). The number of rotations when we perform m splays on a n-node tree is $\mathcal{O}(m \log n + n \log n)$.

Proof. 1. According to the Corollary 4.8. to the Access Lemma (lecture 5), the amortized cost to do a splay has an upper bound: $AC \le 3 \log n + 1$

2.
$$\Phi_{end} \geq 0$$

3.

$$\begin{split} \Phi_{begin} &= \sum_{x \in T_{begin}} rank(x) \\ &= \sum_{x \in T_{begin}} \left\lfloor \log_2(S(x)) \right\rfloor \\ &= \sum_{x \in T_{begin}} \left\lfloor \log_2(|subtree(x)|) \right\rfloor \\ &\leq \sum_{x \in T_{begin}} \left\lfloor \log_2(n) \right\rfloor \\ &\leq n \left\lfloor \log_2(n) \right\rfloor \\ &\leq n \log_2(n) \end{split}$$

Therefore,

#rotations
$$\leq \mathcal{O}(m(3\log n + 1) + \Phi_{begin} - \Phi_{end})$$

= $\mathcal{O}(m\log n + n\log(n))$

3 Known Special Cases of Dynamic Optimality

Assumptions until the end of the lecture

- 1. The Binary Search Tree contains n keys $\{k_1, \dots, k_n\}$.
- 2. We only perform searches on the Binary Search Tree.
- 3. We only search for keys that are in the Binary Search Tree (no miss).

Theorem 3.1 (Static Optimality Theorem: Version 1). If we perform m searches among the keys such that $\forall i \in \{1, ..., n\}$, k_i is searched q_i times, then:

Total Cost of Splay =
$$\mathcal{O}\left(m + \sum_{\substack{i \in \{1,\dots,n\}\\q_i>0}} q_i \log\left(\frac{m}{q_i}\right)\right)$$

Note:
$$m = \sum_{i=1}^{n} q_i$$

Remark 3.2. $\sum_{\substack{i \in \{1,\dots,n\}\\q_i>0}} q_i \log\left(\frac{m}{q_i}\right) = m\hat{H}_m, \text{ where } \hat{H}_m = -\sum_{\substack{i \in \{1,\dots,n\}\\q_i>0}} \frac{q_i}{m} \log\left(\frac{q_i}{m}\right) \text{ is the empirical }$

entropy of the observations [Shannon, 1948]. This is a fundamental lower bound of the total cost.

Theorem 3.3 (Static Optimality Theorem: Version 2). Let T be a fixed Binary Search Tree and $\ell_i = depth(k_i)$. If we perform m searches among the keys such that $\forall i \in \{1, ..., n\}$, k_i is searched q_i times, then:

Total Cost of Splay =
$$\mathcal{O}\left(\sum_{i \in \{1,...,n\}} \ell_i q_i\right)$$

Remark 3.4. The version 2 of the Static Optimality Theorem is weaker (it only applies to fixed Binary Search Trees).

In order to prove the Static Optimality Theorem, we will need a stronger version of the Access Lemma with the following properties:

- 1. Each node x of T has a weight w(x) such that w(x) > 0
- 2. For each node x of T, $S(x) = \sum_{y \in subtree(x)} w(y)$
- 3. For each node x of T, $rank(x) = log_2(S(x))$
- 4. The potential of the tree is $\Phi(T) = \sum_{x \in T} rank(x)$
- 5. unitCost = # rotations

Theorem 3.5 (Access Lemma (stronger version)).

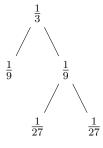
$$AC(splay(x)) \le 3(rank(root) - rank(x)) + 1$$

The proof is similar to that of the regular Access Lemma

Remark 3.6. 1. This Access Lemma is independent of the weights.

- 2. $rank(x) rank(y) = \log_2(\frac{S(x)}{S(y)})$, thus it is independent of the scaling of w as long as $0 < S(x) < \infty$.
- 3. Must ensure that $\Phi_{begin} \Phi_{end}$ is small.

Proof. Version 2 of the Static Optimality Theorem (for fixed tree) Let $\ell(x) = \text{depth of } x \text{ in } T$, with $\ell(root) = 1$. Let $w(x) = 3^{-l(x)}$.



Note:
$$S(root) \le \frac{1}{3} + 2(\frac{1}{3})^2 + 2^2(\frac{1}{3})^3 + \dots = \frac{1}{3}(1 + \frac{2}{3} + (\frac{2}{3})^2 + \dots) = \frac{1}{3}(\frac{1}{1 - 2/3}) = 1$$

$$AC(splay(x)) = \mathcal{O}(1 + \log_2(\frac{S(root)}{S(x)}))$$

$$= \mathcal{O}(1 + \log_2(\frac{1}{3^{-l(x)}}))$$

$$= \mathcal{O}(1 + \log_2(3^{l(x)}))$$

$$= \mathcal{O}(1 + \ell(x))$$

Total-AC =
$$\mathcal{O}(m + \sum_{x \in T} \ell(x)q(x))$$

= $\mathcal{O}(\sum_{x \in T} \ell(x)q(x))$

Now we can use the amortized cost to find the actual cost: $Cost = AC + \Phi_{begin} - \Phi_{end}$. For any $x \in T$, we have

$$\begin{split} rank_{begin}(x) &= \log_2(S(x)) \leq \log_2(S(root)) \leq \log_2(1) = 0 \\ rank_{end}(x) &= \log_2(S(x)) \geq \log_2(w(x)) = \log_2(3^{-\ell(x)}) = -\ell(x) \log_2(3) \\ \Phi_{begin} - \Phi_{end} &= \sum_{x \in T} rank_{begin}(x) - \sum_{x \in T} rank_{end}(x) \\ &\leq \sum_{x \in T} \ell(x) \log_2(3) \\ &= \mathcal{O}(\sum_{x \in T} \ell(x)) \end{split}$$
 Total Cost $= \mathcal{O}(\sum_{x \in T} \ell(x)q(x) + \sum_{x \in T} \ell(x))$ since $q(x) \geq 1$

4 Known Theorems on Splay Trees

4.1 Splays nearby in space

Theorem 4.1 (Scanning Theorem). Splaying all nodes in any tree T in order (i.e. $splay(k_1), ..., splay(k_n)$) is $\mathcal{O}(n)$ rotations.

Definition 4.2 (Distance between keys). Let $k_1, ..., k_n$ be our keys. Let $i, j \in \{1, ..., n\}$ such that $j \ge i$.

$$dist(k_j, k_i) = j - i + 1$$

Theorem 4.3 (Static Finger Theorem). Let f be a fixed key.

$$AC(splay(x)) = \mathcal{O}(\log(dist(f, x)))$$

Theorem 4.4 (Dynamic Finger Theorem). Suppose we have request $x_1, ..., x_m$.

$$AC(splay(x_{i+1})) = \mathcal{O}(\log(dist(x_{i+1}, x_i)))$$

4.2 Splays nearby in time

Theorem 4.5 (Working Set Theorem). Let $T(x_i) = time \ since \ x_i \ was \ last \ accessed$.

$$AC(splay(x_i)) = \mathcal{O}(\log T(x_i))$$

References

[Shannon, 1948] Shannon, C. E. (1948). A mathematical theory of communication. *Bell System Technical Journal*, 27(3):379–423. 3.2

[Sleator and Tarjan, 1985] Sleator, D. D. and Tarjan, R. E. (1985). Self-adjusting binary search trees. *Journal of the ACM (JACM)*, 32(3):652–686. 1.2