15-750: Graduate Algorithms January 29, 2017

Lecture 6: Dynamic Optimality Conjecture

Lecturer: Gary Miller Scribe: Ilai Deutel, Maria Khutoretsky

1 Dynamic Optimality Conjecture

Suppose we have keys ki, ko, ..., k, that we store in a BST and we get a sequence of requests. We
want to find an algorithm that minimizes the total search time.

Definition 1.1. A Dynamic Binary Search Tree Algorithm:

1. Is based on a Binary Search Tree.
2. This Binary Search Tree is updated with rotations between searches.

3. We may look into future requests to determine rotations.

For instance, if I know that a certain user is going to use my algorithm soon, I can reorganize
the whole tree in order to make it more efficient for this particular user.

Conjecture 1.2. A Splay Tree [Sleator and Tarjan, 1985] does at most a constant factor more
work than any Dynamic Binary Search Tree.

Remark 1.3. This conjecture is still open.

In this lecture, we are going to consider special cases of this conjecture.

2 Review and Balance Theorem

Definition 2.1 (Potential function and unit cost). Let T be a splay tree.
1. The weight w(z) of a node z € T is 1.
2. For each node z of T', S(z) = oo w(y)

yEsubtree(x)

3. For each node x of T, rank(x) = |logs(S(z))]

4. The potential of the tree is ®(T') = > rank(x)
zeT

5. unitCost = # rules applied
Our goal in this lecture is to modify this set of conditions in order to prove useful theorems.

Theorem 2.2 (Balance Theorem). The number of rotations when we perform m splays on a n-node
tree is O(mlogn + nlogn).

Proof. 1. According to the Corollary 4.8. to the Access Lemma (lecture 5), the amortized cost
to do a splay has an upper bound: AC' < 3logn + 1



2. (Pend >0

q)begin = Z Tank($)

xETbegin

= > llogy(S())]

ze,I‘begin

— Z |logs (|subtree(x)|)]

xETbegin

< Y [logy(n)]

xETbegin

< n [logy(n)]
< nlogy(n)

Therefore,

#rotations < O(m(3logn + 1) + Ppegin — Pend)
= O(mlogn + nlog(n))

3 Known Special Cases of Dynamic Optimality
Assumptions until the end of the lecture

1. The Binary Search Tree contains n keys {ki,--- ,kn}.

2. We only perform searches on the Binary Search Tree.

3. We only search for keys that are in the Binary Search Tree (no miss).

Theorem 3.1 (Static Optimality Theorem: Version 1). If we perform m searches among the keys
such that Vi € {1,...,n}, k; is searched q; times, then:

Total Cost of Splay= O | m + Z qi log (m)

)

ie{l,...,n}
q;>0
n
Note: m=>_ g
i=1
Remark 3.2. ) glog (q—"}) = mH,,, where H,, = — 3 4ilog (L) is the empirical
ie{l,...,n} i€{1,...,n}
q;:>0 q:>0

entropy of the observations [Shannon, 1948]. This is a fundamental lower bound of the total cost.



Theorem 3.3 (Static Optimality Theorem: Version 2). Let T' be a fixed Binary Search Tree and
¢; = depth(k;). If we perform m searches among the keys such that Vi € {1,...,n}, k; is searched ¢;
times, then:

Total Cost of Splay = O Z liq;
i€{1,....,n}

Remark 3.4. The version 2 of the Static Optimality Theorem is weaker (it only applies to fixed
Binary Search Trees).

In order to prove the Static Optimality Theorem, we will need a stronger version of the Access
Lemma with the following properties:

1. Each node = of T' has a weight w(z) such that w(z) >0

2. For each node z of T', S(z) = oo w(y)

yEsubtree(x)
3. For each node = of T, rank(z) = logy(S(x))

4. The potential of the tree is ®(T') = > rank(x)
ze€T

5. unitCost = # rotations
Theorem 3.5 (Access Lemma (stronger version)).
AC(splay(x)) < 3(rank(root) — rank(x)) + 1
The proof is similar to that of the regular Access Lemma

Remark 3.6. 1. This Access Lemma is independent of the weights.

2. rank(x) — rank(y) = 10g2(%), thus it is independent of the scaling of w as long as 0 <
S(x) < oo.

3. Must ensure that ®pcgip — Peng is small.

Proof. Version 2 of the Static Optimality Theorem (for fixed tree)
Let £(z) = depth of z in T, with £(root) = 1. Let w(z) = 37!,
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AC (splay(x))

TotalAC = O(m+ Y {(x)q(x))

zeT

00 Ux)q(=))

zeT

Now we can use the amortized cost to find the actual cost: Cost = AC + Ppegin —

For any z € T', we have

rankyegin ()
rankenq(x)

q)begin - (I)end

Total Cost

logy(S(2)) < logy(S(root)) <logy(1) =0
= logy(S(x)) > logy(w(x)) = logy(3™1*)) = —£(x) log,(3)
= Z rankyegin(x) — Z rankenq(x)
zeT zeT
< 3 Ua)logy(3)
zeT
= 0> ()
zeT
= 0> Ua)a(z) + Y Ux))
zeT zeT
= (’)(Z l(x)q(x)) since g(x) > 1
zeT

4 Known Theorems on Splay Trees

4.1 Splays nearby in space

Theorem 4.1 (Scanning Theorem). Splaying all nodes in any tree T in order (i.e. splay(k1),

is O(n) rotations.

(I)end-

ooy splay(ky) )

Definition 4.2 (Distance between keys). Let ki, ..., k, be our keys. Let i,5 € {1,...,n} such that

J =t

dist(kj, ki)=7—i+1

Theorem 4.3 (Static Finger Theorem). Let f be a fized key.

AC (splay(x)) = O(log(dist(f,x)))



Theorem 4.4 (Dynamic Finger Theorem). Suppose we have request x1, ..., Tp,.
AC(splay(xiy1)) = O(log(dist(zit1,xi)))

4.2 Splays nearby in time

Theorem 4.5 (Working Set Theorem). Let T'(x;) = time since x; was last accessed.

AC (splay(x;)) = O(log T'(x;))
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