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1 Dynamic Optimality Conjecture

Suppose we have keys k1, k2, ..., kn that we store in a BST and we get a sequence of requests. We
want to find an algorithm that minimizes the total search time.

Definition 1.1. A Dynamic Binary Search Tree Algorithm:

1. Is based on a Binary Search Tree.

2. This Binary Search Tree is updated with rotations between searches.

3. We may look into future requests to determine rotations.

For instance, if I know that a certain user is going to use my algorithm soon, I can reorganize
the whole tree in order to make it more e�cient for this particular user.

Conjecture 1.2. A Splay Tree [Sleator and Tarjan, 1985] does at most a constant factor more

work than any Dynamic Binary Search Tree.

Remark 1.3. This conjecture is still open.

In this lecture, we are going to consider special cases of this conjecture.

2 Review and Balance Theorem

Definition 2.1 (Potential function and unit cost). Let T be a splay tree.

1. The weight w(x) of a node x 2 T is 1.

2. For each node x of T , S(x) =
P

y2subtree(x)
w(y)

3. For each node x of T , rank(x) = blog2(S(x))c
4. The potential of the tree is �(T ) =

P
x2T

rank(x)

5. unitCost = # rules applied

Our goal in this lecture is to modify this set of conditions in order to prove useful theorems.

Theorem 2.2 (Balance Theorem). The number of rotations when we perform m splays on a n-node
tree is O(m log n+ n log n).

Proof. 1. According to the Corollary 4.8. to the Access Lemma (lecture 5), the amortized cost
to do a splay has an upper bound: AC  3 log n+ 1

1



2. �
end

� 0

3.

�
begin

=
X

x2Tbegin

rank(x)

=
X

x2Tbegin

blog2(S(x))c

=
X

x2Tbegin

blog2(|subtree(x)|)c


X

x2Tbegin

blog2(n)c

 n blog2(n)c
 n log2(n)

Therefore,

#rotations  O(m(3 log n+ 1) + �
begin

� �
end

)

= O(m log n+ n log(n))

3 Known Special Cases of Dynamic Optimality

Assumptions until the end of the lecture

1. The Binary Search Tree contains n keys {k1, · · · , kn}.
2. We only perform searches on the Binary Search Tree.

3. We only search for keys that are in the Binary Search Tree (no miss).

Theorem 3.1 (Static Optimality Theorem: Version 1). If we perform m searches among the keys

such that 8i 2 {1, ..., n}, k
i

is searched q
i

times, then:

Total Cost of Splay = O

0

BB@m+
X

i2{1,...,n}
qi>0

q
i

log

✓
m

q
i

◆
1

CCA

Note: m =
nP

i=1
q
i

Remark 3.2.

P
i2{1,...,n}

qi>0

q
i

log
⇣
m

qi

⌘
= mĤ

m

, where Ĥ
m

= � P
i2{1,...,n}

qi>0

qi
m

log
�
qi
m

�
is the empirical

entropy of the observations [Shannon, 1948]. This is a fundamental lower bound of the total cost.
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Theorem 3.3 (Static Optimality Theorem: Version 2). Let T be a fixed Binary Search Tree and

`
i

= depth(k
i

). If we perform m searches among the keys such that 8i 2 {1, ..., n}, k
i

is searched q
i

times, then:

Total Cost of Splay = O
0

@
X

i2{1,...,n}

`
i

q
i

1

A

Remark 3.4. The version 2 of the Static Optimality Theorem is weaker (it only applies to fixed
Binary Search Trees).

In order to prove the Static Optimality Theorem, we will need a stronger version of the Access
Lemma with the following properties:

1. Each node x of T has a weight w(x) such that w(x) > 0

2. For each node x of T , S(x) =
P

y2subtree(x)
w(y)

3. For each node x of T , rank(x) = log2(S(x))

4. The potential of the tree is �(T ) =
P
x2T

rank(x)

5. unitCost = # rotations

Theorem 3.5 (Access Lemma (stronger version)).

AC(splay(x))  3(rank(root)� rank(x)) + 1

The proof is similar to that of the regular Access Lemma

Remark 3.6. 1. This Access Lemma is independent of the weights.

2. rank(x) � rank(y) = log2(
S(x)
S(y) ), thus it is independent of the scaling of w as long as 0 <

S(x) < 1.

3. Must ensure that �
begin

� �
end

is small.

Proof. Version 2 of the Static Optimality Theorem (for fixed tree)
Let `(x) = depth of x in T , with `(root) = 1. Let w(x) = 3�l(x).
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Note: S(root)  1
3 + 2(13)

2 + 22(13)
3 + · · · = 1

3(1 +
2
3 + (23)

2 + . . . ) = 1
3(

1
1�2/3) = 1

AC(splay(x)) = O(1 + log2(
S(root)

S(x)
))

= O(1 + log2(
1

3�l(x)
))

= O(1 + log2(3
l(x)))

= O(1 + `(x))

Total-AC = O(m+
X

x2T
`(x)q(x))

= O(
X

x2T
`(x)q(x))

Now we can use the amortized cost to find the actual cost: Cost = AC + �
begin

� �
end

.
For any x 2 T , we have

rank
begin

(x) = log2(S(x))  log2(S(root))  log2(1) = 0

rank
end

(x) = log2(S(x)) � log2(w(x)) = log2(3
�`(x)) = �`(x) log2(3)

�
begin

� �
end

=
X

x2T
rank

begin

(x)�
X

x2T
rank

end

(x)


X

x2T
`(x) log2(3)

= O(
X

x2T
`(x))

Total Cost = O(
X

x2T
`(x)q(x) +

X

x2T
`(x))

= O(
X

x2T
`(x)q(x)) since q(x) � 1

4 Known Theorems on Splay Trees

4.1 Splays nearby in space

Theorem 4.1 (Scanning Theorem). Splaying all nodes in any tree T in order (i.e. splay(k1), ..., splay(kn))
is O(n) rotations.

Definition 4.2 (Distance between keys). Let k1, ..., kn be our keys. Let i, j 2 {1, ..., n} such that
j � i.

dist(k
j

, k
i

) = j � i+ 1

Theorem 4.3 (Static Finger Theorem). Let f be a fixed key.

AC(splay(x)) = O(log(dist(f, x)))
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Theorem 4.4 (Dynamic Finger Theorem). Suppose we have request x1, ..., xm.

AC(splay(x
i+1)) = O(log(dist(x

i+1, xi)))

4.2 Splays nearby in time

Theorem 4.5 (Working Set Theorem). Let T (x
i

) = time since x
i

was last accessed.

AC(splay(x
i

)) = O(log T (x
i

))
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