15-750: Graduate Algorithms April 26, 2017

Lecture 36: NP-Completeness

Lecturer: David Witmer Scribe: Dimitris Konomis

1 Introduction-Motivation

The algorithms we have studied thus far in the class are polynomial-time: on inputs of size n, their
worst-case running time complexity is O(n®) for some constant ¢ > 0. There are many problems
for which we do not know of any polynomial time algorithm. For example, Turing’s famous Halting
Problem cannot be solved by any computer, no matter how much time we allow. In general,
problems that are solvable in polynomial time are considered tractable, or easy, whereas problems
that require superpolynomial time are considered intractable, or hard.

The rest of the class will deal with the following topics:

e NP-complete problems. This is an interesting class of problems, whose status is unknown.
No polynomial-time algorithm has been discovered for an NP-complete problem, nor has
anyone proved that no polynomial-time algorithm can exist for any one of them.

e Reductions This is a widely used technique to prove that a problem is NP-complete.

e How do we deal with possibly intractable NP-Complete problems? Usually, we
either:

— Design approximation algorithms, or,

— Come up with heuristics and focus on special cases of the problem in hand.

2 Formally Defining Problems

2.1 Optimization, Decision & Search Problems
2.1.1 Optimization Problems

Most of the problems we have dealt with thus far in the class are optimization problems, in
which the goal is to find the maximum or minimum value of a quantity and maybe also find the
particular solution that achieves this maximum/minimum value. For example, in the SHORTEST-
PATH problem, we are given an undirected graph G = (V, E) and vertices s and t, and we wish
either to find the length of the shortest path from s to ¢, or to find the shortest path from s to ¢
itself.

2.1.2 Decision Problems

NP-Completeness however applies to decision problems, in which the answer is simply “yes” or
“no” (or formally 1 or 0). This is not restrictive at all: we can always cast a given optimization
problem as a related decision problem by imposing a bound on the value to be optimized. For
example, a decision problem related to SHORTEST-PATH is PATH: given a directed graph G =

(V, E), vertices s and t, and an integer k, does a path exist from s to ¢ that consists of at most k
edges?

There is an interesting relationship between a decision problem and its related optimization
problem: the decision problem is in a sense “easier”, or at least “no harder”. As a specific example,
we can solve PATH by solving SHORTEST-PATH and then comparing the number of the edges in
the shortest path found to the value of the decision-problem parameter k. Stated in a different
way, if an optimization problem is easy, its corresponding decision problem is also easy.

2.2 Encodings

An abstract problem (@ is a binary relation on a set I of problem instances and a set S of
problem solutions. The theory of NP-completeness focuses on decision problems. In this case,
an abstract decision problem can be viewed as a function that maps the instance set I to the
solution set {0,1}. For example, if i = (G = (V, E), s,t, k) is an instance of the decision problem
PATH, then PATH(i) = 1 if a shortest path from s to ¢ has at most k edges and PATH(i) = 0
otherwise.

The instances of an abstract problem have to represented in a way that a computer understands
them. An encoding of a set .S of abstract objects is a mapping e from S to the set of binary strings.
A problem whose instance set is the set of binary strings is called a concrete problem.

An algorithm solves a concrete problem in time O(T'(n)) if, when it is provided a problem
instance i of length n = |i|, the algorithm can produce the solution in O(T'(n)) time. A concrete
problem is polynomial-time solvable if there exists an algorithm to solve it in time O(n¢) for
some constant c.

For the rest of this lecture, we will suppress details of underlying encodings of problem instances.
There may be more than one natural encoding, but typically these differ in size by polynomial
factors and we can convert between them in polynomial time. The specifics of an encoding, then,
should not affect the notion of polynomial-time solvability. With this in mind, we will use (-)
to denote some natural binary encoding. For example, (G) is a binary encoding of graph G and
(G, s,t, k) is a binary encoding of an instance of the PATH problem.

2.3 Languages

An alphabet X is a finite set of symbols. A language L over ¥ is any set of strings made up of
symbols from ¥. For example, if ¥ = {0,1}, the set L = {0, 10,100, 110,...} is the language of
binary representations of even numbers. The empty string is denoted by ¢, the empty language
is denoted by () and the language of all strings over ¥ is denoted by ¥*. For example, if X = {0, 1},
then ¥* = {¢,0,1,00,01,11,000, ...} is the set of all binary strings. Every language L over ¥ is a
subset of ¥*.

A variety of operations can be performed on languages. The set-theoretic operations, such as
union and intersection follow directly from the set-theoretic definitions. The complement of a
language L is defined as L = X* — L.

The set of instances for any decision problem @ is simply the set ¥* where ¥ = {0,1}. Because
Q is entirely characterized by the problem instances that produce a 1 as an answer,) can be also
viewed as a language L over ¥ = {0,1} where L = {z € ¥* : Q(z) = 1}.

For example, the decision problem PATH has the corresponding language:

PATH = {(G, s,t,k): G is an undirected graph,
s, t eV,

k>0,
3 path p from s to ¢ in G, |p| < k}.

The language framework allows us to express concisely the relation between decision problems
and the algorithms that solve them. An algorithm A accepts a string = € {0, 1}* if, given input z,
the algorithm’s output is A(z) = 1.

The language accepted by an algorithm A is the set of strings that the algorithm accepts.
L=xz¢€{0,1}*: A(z) = 1}. An algorithm A rejects a string x if A(z) = 0.

If a language L is accepted by an algorithm A, this does not necessarily imply that the algorithm
A will reject a string x ¢ L provided as input to it. It might be the case that the algorithm may
loop forever.

A language L is decided by an algorithm A if every binary string in L is accepted by A and
every binary string not in L is rejected by A.

A language L is accepted in polynomial time by an algorithm A if it is accepted by A and
in addition there exists a constant ¢ such that for any length-n string x € L, algorithm A accepts
r in time O(n*).

A language L is decided in polynomial time by an algorithm A if there exists a constant
¢ such that for any length-n string = € {0,1}*, the algorithm correctly decides whether x € L in
time O(nk).

Pay attention to the subtle technicality: to accept a language, an algorithm need only produce
an answer when provided a string in L, but to decide a language it must correctly accept or reject
every string in {0, 1}*.

We can informally define a complexity class as a set of languages, membership in which
is determined by a complexity measure such as running time or space, of an algorithm that
determines whether a given string x belongs in L.

Under the languages framework, the complexity class P can be defined as follows:

P={L C{0,1}" : there exists an algorithm A that decides L in polynomial time.}
Theorem 2.1. P={L : L is accepted by a polynomial-time algorithm}.

Proof. Since the class of languages decided by polynomial-time algorithms is a subset of the class
of languages accepted by polynomial-time algorithms, we need only show that if L is accepted by
a polynomial-time algorithm, it is decided by a polynomial-time algorithm.

Let L be any language accepted by some polynomial-time algorithm A. We will construct
another polynomial-time algorithm A’ that decides L by using a “simulation argument”. Because
A accepts L in time O(n*) for some constant c, there also exists a constant k such that A accepts
L in at most kn¢ steps. For any input string z, the algorithm A’ simulates kn¢ steps of A. After
simulating these kn® steps, A’ inspects the behavior of A. If A has accepted x, then A’ accepts x
by outputting a 1. If A has not accepted x, then A’ rejects x by outputting a 0. The overhead of
A’ simulating A does not increase the running time by more than a polynomial factor, and hence
A’ is a polynomial-time algorithm that decides L. O

2.4 Examples of languages in P

Some examples of languages in P are:
[J

PRIMES = {10,11,101,111,1011, 1101, 10001, ...}

PATH = {(G,s,t,k): G is an undirected graph,
s,tevV,
k>0,
d path p from s to ¢ in G, |p| < k}.

EULER-CYCLE = {(G) : G contains an Euler cycle}
We also note that notion of polynomial-time computation is equivalent for the models:

e RAM
e Turing Machine
e PRAM with polynomial number of processors

e)-calculus

The class of algorithms that run in polynomial time has among others, the following nice
closure property: if an algorithm makes at most a constant number of calls to polynomial-time
subroutines and performs an additional amount of work that also takes polynomial-time, then it
runs in polynomial time. It is a fairly straightforward homework exercise to prove this statement.

3 Polynomial-time Verification and NP

This section studies algorithms that verify membership in languages. Before diving into the for-
mal definitions, let us consider two decision problems that look slightly different but belong to
fundamentally different complexity classes.

Definition 3.1. A hamiltonian cycle of an undirected graph G = (V, E) is a simple cycle that
contains each vertex v € V. A graph that contains a hamiltonian cycle is said to be hamiltonian;
otherwise it is non-hamiltonian.

Definition 3.2. A eulerian cycle of an undirected graph G = (V, E) is a cycle that contains every
edge e € F exactly once. A graph that contains an Euler cycle is said to be eulerian; otherwise it
is non-eulerian.

Formally, the problems of deciding whether an undirected graph G = (V, F) is hamiltonian or
eulerian are defined by the languages:

HAM-CYCLE = {(G) : G contains a Hamilton cycle}

EULER-CYCLE = {(G) : G contains an Euler cycle}
Lemma 3.3. EULER-CYCLE € P.

Proof. Euler’s theorem states that an undirected graph G = (V, E) contains an Euler cycle if and
only if it is connected and every vertex has an even degree. O

As of today, we do not know of a polynomial-time algorithm that decides HAM-CYCLE. Let us
consider an easier problem. Suppose that someone claims they have found a hamilton cycle in an
undirected graph G = (V, E). As proof, they provide the hamilton cycle: permutation that dictates
the order in which the vertices are visited. We can then easily enough verify the proof, by checking
that the given cycle is indeed a hamilton cycle. We do the latter by checking that it is indeed a
permutation of the vertices in V' and whether each of the consecutive edges along the cycle actually
exist in the graph. The verification can be executed in time O(n?), where n = [(G)|.

We formally define a verification algorithm as a two-argument algorithm A, where one
argument is an ordinary input string x and the other is a binary string y called a certificate.
A two-argument algorithm A verifies an input string x if there exists a certificate y such that
A(z,y) = 1. The language verified by a verification algorithm is:

L={ze{0,1}:3ye {01} : Az,y) = 1}.

Intuitively, an algorithm A verifies a language L if for any string x € L, there exists a certificate
y that A can use to prove that x € L. Moreover, for any string x ¢ L, there must be no certificate
proving that = € L.

The complexity class NP is the class of languages that can be verified by a polynomial-time
algorithm. Formally,

Definition 3.4. A language L belongs to NV P if and only if there exist a two-input polynomial-time
algorithm A and a constant ¢ such that:

L={ze{0,1}": 3y € {0,1}", |yl = O(|z[*) : A(=z,y) = 1}.

The complexity class co — NP is the class of languages whose complementary languages can
be verified by a polynomial-time algorithm. Formally,

Definition 3.5. A language L belongs to co— N P if and only if there exist a two-input polynomial-
time algorithm A and a constant ¢ such that:

L= f{ee{0,1)": 3y € {0,1)",]yl = O(lz[") : Al y) = 0}.
Lemma 3.6. The following are true:
e PCNP
e PCco— NP

Proof. We prove the first statement. If L € P, then L € NP, since if there is a polynomial-
time algorithm to decide L, the algorithm can be easily converted to a two-argument verification
algorithm that simply ignores any certificate and accepts exactly the input strings of L.

The proof of the second statement is similar. O

The big question in complexity theory and theoretical computer science in general is whether
NP C P, which would imply that P = NP. It is not known, as of today, if P = NP. Intuitively,
the class P consists of problems that can be solved quickly, whereas the class NP consists of
problems for which a candidate solution can be verified quickly.

There are other fundamental questions that remain unsolved. We do not even know whether
the class NP is closed under complement, i.e. whether NP = co — NP.

The 4 possibilities for the relationships between the complexity classes P, NP,co — NP are
illustrated in the following picture (from CLRS, chapter 34):

NP = co-NP
P =NP = co-NP

NP n co-NP

&

(©) (@

P = NP n co-NP

Figure 1: (a) P = NP = co— NP. This is considered as the most unlikely case. (b) If NP is closed
under complement, NP = co— N P but not necessarily P = N P in this case. (¢) P = NPNco— NP
but NP is not closed under complement. (d) NP # co— NP and P # NPNco— NP. This is
considered the most likely case.

4 Reducibility & NP-completeness

Definition 4.1. Language L; is polynomial-time reducible to language Lo, which we denote
by L1 <p Ly if there exists a polynomial-time computable function f : {0,1}* — {0,1}* such that

r el < f(z)e Ly,Vx € {0,1}" (1)

Lemma 4.2. If Ly,Ly C {0,1}* are languages such that Ly <p Lo, then Ly € P implies that
L, eP.

Proof. Let As be a polynomial-time algorithm that decides Lo, and let F' be a polynomial-time
reduction algorithm that computes the reduction function f. We will construct a polynomial-time
algorithm A; that decides L.

For a given input = € {0, 1}* algorithm A; uses F to transform z into f(z) and then it uses As
to test whether f(z) € Lo. Algorithm A; takes the output from algorithm A, and produces that
answer as its own output. The correctness of Ay follows from the definition of the polynomial-time
reducibility. A; runs in polynomial time, since both F and Ao run in polynomial time. O

Definition 4.3. A language L C {0,1}* is NP-hard if L' <p L,VL' € NP.
Definition 4.4. A language is NP-complete if:

1. Le NP

2. L is NP-hard

We define N PC' to be the set of N P-complete languages.

Theorem 4.5. If any N P-complete problem is polynomial-time solvable, then P = NP. Equiv-
alently, if any problem in NP is not polynomial-time solvable, then mo N P-complete problem is
polynomial-time solvable.

Proof. Suppose that L € P and also that L € NPC. For any L' € NP, we have that L' <p L
by the second property of the definition of N P-completeness. Hence, by Lemma 4.2, we also have
that L' € P, which proves the first statement of the theorem.

To prove the second statement, notice that is is just the contrapositive of the first statement. [J

5 An NP-Complete Problem

A boolean formula is built from variables, z1,z2,--- € {0, 1}, operators AND (conjuction,
denoted by A), OR (disjunction, denoted by V), NOT (negation, denoted by —) and parentheses.
A literal is either a variable, (x;, also called positive literal) or a negated variable (—x;, also
called negative literal). A clause is disjunction of one or more literals.

A formula ¢ is in conjunctive normal form, or CNF, if it is a conjuction of one or more
clauses. For example, ¢ = (x1 V x2 V —x3) A (22 V 3 V 24) A (021 V 22 V T5).

A formula ¢ is satisfiable if and only if there is an assigment of values from {0,1} to its
variables such that it evaluates to 1; otherwise it is unsatisfiable.

The CNF-SAT problem is formally defined as follows:

CNF-SAT = {(¢) : ¢ is CNF and satisfiable}

Theorem 5.1 (Cook, Levin). CNF-SAT is NP-complete.

