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Lecture 13: Graph spanners via low diameter decomposition

Lecturer: Gary Miller Scribes: Jueheng Zhu & Tianyi Yang

1 Graph Spanners

Definition 1.1. Let G = (V,E) be an undirected, unweighted graph. Then H ⊆ G is a k-spanner
of G if

∀x, y ∈ V, distH(x, y) ≤ k · distG(x, y)

where distG(x, y) denotes the length of the shortest path between x and y on G. Here k is called
the stretch factor.

We are interested in finding the k-spanner with the least number of edges for a given stretch
factor k. We next state a known theorem on the stretch and size of a spanner..

Theorem 1.2. ∃(2k − 1)-spanner with 1/2(n1+1/k) edges.

Definition 1.3. The girth of a graph G is size of its smallest cycle.

Example 1.4. The mesh graph has girth 4. Thus for any H (Mn, the stretch ≥ 3

Figure 1: Mesh graph of size n

1.1 Erdos Girth Conjecture

Conjecture 1.5. There exists G = (V,E) such that

1. |E| = Ω(n1+1/k)

2. Girth(G) ≥ 2k + 1

Note that if the above conjecture is true, Theorem 1.2 is worst case tight.

Here we informally prove a weaker version of Theorem 1.2, which is stated as the following
Lemma.

Lemma 1.6. There exists an O(m) algorithm constructing (4k+ 1)-spanner with O(n1+1/k) edges.

We settle for expected stretch & size. In the homework we will remove the expectation and give
an efficient algorithm for finding a spanner.
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Algorithm To construct Spanner(G, k)

1. Set β = log
(
n
2k

)
2. Let {C1, ..., Ct} = ExpDelay(G, β) (The clusters generated)

3. For each Ci, add its BFS forest to H

4. For each boundary vertex v, add one edge from v to each adjacent cluster.

5. Return H

Proof of Lemma 1.6

Proof. First, since ExpDelay(G, β) is O(m), so is spanner(G, k). It remains to show that the
expected stretch is 4k + 1 and the expected size of H is O(n1+1/k) (Recall here we are only
concerned with expectation). We start with stretch. For an edge e, we define str(e) to be the
stretch for an single edge e. It then suffices to show that the expected stretch is str(e) ≤ 4k + 1
for all e in the edge set of Spanner(G, k).

• (Case 1) e is internal to a cluster

Figure 2: e is internal to a cluster

Then str(e) ≤ 2radius(C). Recall E [radius(C)] = lnn
β = 2k. Therefore

E[str(e)] ≤ 4k

• (Case 2a) e is between C and C ′ and e is added to H by boundary vertex v.

2



Figure 3: e connects v and C ′ and e ∈ EH

In this case e ∈ EH and str(e) = 1.

• (case 2b) e is between C and C ′ and e is not added to H by boundary vertex v.

Figure 4: e connects v and C ′ and e ∈ EH

Then by the procedure, there must exists e′ from v to C ′. Hence str(e) ≤ dia(C ′) + 1. Thus
E[str(e)] ≤ 4k + 1

Therefore expected stretch is no more than 4k + 1.
We now analyze the expected size of EH . There are two types of edges in EH :

1. edges internal to a cluster. There will be at most n− 1 of these since the union of all clusters
is a forest.

2. Inter-cluster edges. The expected amount of these depends on the number of boundary nodes
and the number of distinct clusters common to each boundary nodes. The former is bounded
by n and we claim that the latter in expectation is bounded by e2β. As a result

E [Number of inter-cluster edges] ≤ ne2β = ne
lnn
k = n1+1/k
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It remains to prove the claim, which we defer to the following section.

Let v ∈ V . Consider the random variable

Cv = Number of distinct clusters common to v

Then our claim can be expressed as the following theorem:

Theorem 1.7. E[Cv] ≤ e2β

Question: How many clusters will a vertex see (share an edge with)

1. It will belong to one cluster.

2. How many edges to distinct clusters

Back to horse racing. Consider early arrivals to v.

Figure 5: Arrivals to vertex v

An early arrival must arrive within 2 units to possibly own a neighbor of v

Possible Neighboring clusters to v:

Figure 6: neighboring clusters of v according to arrival times

We prove a more general theorem: Suppose B is a ball of G with center v, diameter d. Consider
random variable CB = Cluster(B) = |{cluster|cluster ∩B 6= ∅}|
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Theorem 1.8. E[CB] ≤ edβ

Let AB = number of arrivals within d time of first. Note CB ≤ AB. This is because for each
cluster not disjoint with B, its center must arrive at V within d time from the first.

Claim 1.9. Prob[AB ≥ t] = (1− e−dβ)t−1

Proof of claim 1.9

Proof. Let’s go back to the light bulb analogy. Recall in this analogy the last failure corresponds

Figure 7: Light bulb analogy: legend

Figure 8: Light bulb analogy: graph

to the first arrival. Let T̄ (k) be the random variable denoting the time at which the k bulbs have
failed.

Note the following equivalences

AB ≥ t
⇔ There are at least t failures between T̄ (n)− d and T̄ (n), excluding the last failure.

⇔ The t-th to last failure occurs after T̄ (n)− d. That is, T̄ (n− t+ 1) ≥ T̄ (n)− d.
⇔ T̄ (n− t+ 1) + d ≥ T̄ (n).
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By the memoryless property of the t − 1 light bulbs that have not yet failed that are i.i.d
exponential random variables, we have

Prob
[
T̄ (n− t+ 1) + d ≥ T̄ (n)

]
= (1− e−dβ)t−1

Effectively we are treating the t-th to last failure as the new starting time and considering only
the remaining t− 1 light bulbs. The fact that the last failures among these t− 1 light bulbs occur
before d implies all t − 1 light bulbs failure before time d. Since the failure times are i.i.d and
exponential we have

P
[
d ≥ T̄ (t)

]
= (1− e−dβ)t−1

Theorem 1.8 then follows Claim 1.9 because

E[CB] ≤ E[AB]

= Σ∞t=1Prob[AB ≥ t]
= Σ∞t=1(1− e−dβ)t−1

=
1

1− (1− e−dβ)

= edβ
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