606

#% The Problem .
Consider the following scenario. We have a set S of n sites—say, n little towné

distance function that satisfies the following natural properties.

_distances, most cases of interest also satisfy the second property. O

-

Chapter 11 Approximation Algorithms

inequalities is, in fact, t; < %T*; so adding the two inequalities gives us the
bound

Ti =< ET* B
2

11.2 The Center Selection Problem

Like the problem in the previous section, the Center Selection Problem, which
we consider here, also relates to the general task of allocating work across
multiple servers. The issue at the heart of Center Selection is where best to
place the servers; in order to keep the formulation clean and simple, we will not
incorporate the notion of load balancing into the problem. The Center Selection
Problem also provides an example of a case in which the most natural greedy
algorithm can result in an arbitrarily bad solution, but a slightly different
greedy method is guaranteed to always result in a near-optimal solution.

in upstate New York. We want to select k centers for building large shopping
malls, We expect that people in each of these n towns will shop at one of the:
malls, and so we want to select the sites of the k malls to be central.

Let us start by defining the input to our problem more formally. We.
given an integer k, a set S of n sites (corresponding to the towns), .and
distance function. When we consider instances where the sites are point
in the plane, the distance function will be the standard Euclidean distarice
between points, and any point in the plane is an option for placing a ce
The algorithm we develop, however, can be applied to more general noti
distance. In applications, distance sometimes means straight-line dist
can also mean the travel time from point s to point z, or the driving
(i.e., distance along roads), or even the cost of traveling, We will all

o dist(s,s)=0forallse§
e the distance is symmetric: dist(s, z) = dist(z, s) for all sites s_,_-"
e the triangle inequality: dist(s, z) -- dist(z, h) > disi(s, h)

The first and third of these properties tend to be satisfied by ess
natural notions of distance. Although there are applications with as

gorithm will apply to any distance function that satisfies these thre
and it will depend on all three.

11.2 The Center Selection Problem

Next we have to clarify what we mean by the goal of wanting the centers
to be “central” Let C be a set of centers. We assume that the people in a given
town will shop at the closest mall. This suggests we define the distance of a
site s to the centers as dist(s, C) = mine dist(s, ¢). We say that € forms an r-
cover if each site is within distance at most r from one of the centers——that is,
if disi(s, C) <r for all sites s € S. The minimum r for which € is an r-cover will
be called the covering radius of C and will be denoted by r(C). In other words,
the covering radius of a set of centers C is the farthest that anyone needs to
travel to get to his or her nearest center, Our goal will be to select a set C of k
centers for which r(C) is as small as possible.

4% Designing and Analyzing the Algorithm _
Difficulties with a Simple Greedy Algorithm We now discuss greedy algo-
rithms for this problem. As before, the meaning of “greedy” here is necessarily
a little fuzzy; essentially, we consider algorithms that select sites one by one in

+ @ myopic fashion—that is, choosing each without explicitly considering where
the remaining sites will go.

Probably the simplest greedy algorithm would work as follows, It would
put the first center at the best possible location for a single center, then keep
adding centers so as to reduce the covering radius, each time, by as much as
possible. It turns out that this approach is a bit too simplistic to be effective:
there are cases where it can lead to very bad selutions.

To see that this simple greedy approach can be really bad, consider an
example with only two sites s and z, and k = 2. Assume that s and z are
located in the plane, with distance equal to the standard Euclidean distance
in the plane, and that any point in the plane is an option for placing a center,
Let d be the distance between s and z. Then the best location for a single
center ¢; is halfway between s and z, and the covering radius of this one
center is r({c;}) = d/2. The greedy algorithm would start with ¢, as the first
center. No matter where we add a second center, at least one of s or z will have
the center ¢, as closest, and so the covering radius of the set of two centers
will still be d/2. Note that the optimum solution with k = 2 is to select s and
z themselves as the centers. This will lead to a covering radius of 0. A more
complex example illustrating the same problem can be obtained by having two
dense “clusters” of sites, one around s and one around z. Here our proposed
greedy algorithm would start by opening a center halfway between the clusters,
while the optimum solution would open a separate center for each cluster,

Knowing the Optimal Radius Helps In searching for an improved algorithm,
we begin with a useful thought experiment. Suppose for a minute that someone
told us what the optimum radius r is. Would this information help? That is,
suppose we know that there is a set of k centers C* with radius r{C*) <r, and

607

i

608

Chapter 11 Approximation Algorithms

Center c* used in optimal solution

Circle of twice the radius at s
covers everything that ¢* covered.

Site s covered by ¢*

Figure 11.4 Bverything covered at radius r by ¢* is also covered at radius 2r by s.

our job is to find some set of k centers C whose covering radius is not much
more than r. It turns out that finding a set of k centers with covering radius at
most 2r can be done relatively easily.

Here is the idea: We can use the existence of this solution C* in our
algorithm even though we do not know what C* is. Consider any site s € S,
There must be a center ¢* ¢ C* that covers site 5, and this center c¢* is at
distance at most r from s. Now our idea would be to take this site 5 as a
center in our solution instead of c*, as we have no idea what ¢* is. We would
like to make s cover all the sites that ¢* covers in the unknown solution C*.
This is accomplished by expanding the radius from r to 2r. All the sites that
were at distance at most r from center ¢* are at distance at most 2r from s

(by the triangle inequality). See Figure 11.4 for a simple illustration of this
argument,

§" will represent the sites that still need to be covered
Initialize §'=35§
Let C=0
While &£
Select any site s¢& and add 5 to C

belete all sites from § that are at distance at most 2r from s
EndWhile

If |C] <k then
Return C as the selected set of sites
Else

11.2 The Center Selection Problem

Claim (correctly) that there is no set of k centers with
covering radius at most r
EndTf ‘

© Clearly, if this algorithm returns a set of at most k centers, then we have
what we wanted.

Nexl we argue that if the algorithm fails to return a set of centers, then its
conclusion that no set can have covering radius at most r is indeed correct.

Proof. Assume the opposite, that there is a set C* of at most k centers with
covering radius r(C*) < r. Each center ¢ € C selected by the greedy algorithm
is one of the original sites in S, and the set C* has covering radius at most r,
so there must be a center ¢* € C* that is at most a distance of r from c—that
is, dist{c,c*) < r. Let us say that such a center ¢* is close to c. We want to
claim that no center ¢* in the optimal solution C* can be close to two different
centers in the greedy solution C. If we can do this, we are done: each center
¢ € Chas a close optimal center ¢* € C*, and each of these close optimal centers
is distinct. This will imply that |C*| = |C}, and since |C| > k, this will contradict
our assumption that C* contains at most k centers.

So we just need to show that no optimal center ¢* € C can be close to each
of two centers ¢, ¢’ e C. The reason for this is pictured in Figure 11.5. Each pair
of centers ¢, ¢’ e C is separated by a distance of more than 2r, so if ¢* were
within a distance of at most r from each, then this would violate the triangle
inequality, since dist{c, c*) -+ dist(c*, ¢') = dist(c,c’)y > 2r. =

Eliminating the Assumption That We Know the Optimal Radins Now we
return to the original question: How do we select a good set of k centers without
knowing what the optimal covering radius might be?

It is worth discussing two different answers to this question. First, there are
many cases in the design of approximation algorithms where it is conceptually
useful to assume that you know the value achieved by an optimal solution.
In such situations, you can often start with an algorithm designed under this
assumption and convert it into one that achieves a comparable performance
guarantee by simply trying out a range of “guesses” as to what the optimal

609

610

Chapter 11 Approximation Algorithms

!:I = Centers used by optimal solution

Figure 11.5 The crucial step in the analysis of the greedy algorithm that knows the

optimal radius r. No center used by the optimal solution can lie in two different circles,
so there must be at least as many optimal centers as there are centers chosen by the
greedy algorithm,

vatue might be. Over the course of the algorithm, this sequence of guesses gels
more and more accurate, until an approximate solution is reached.

For the Center Selection Problem, this could work as follows. We can start
with some very weak initial guesses about the radius of the optimal solution;
We know it is greater than 0, and it is at most the maximum distance Trax
between any two sites. So we could begin by splitting the difference hetween
these two and running the greedy algorithm we developed above with this
value of 7 = r4,,/2. One of two things will happen, according to the design of
the algorithm: Either we find a set of k centers with covering radius at most
2r, or we conclude that there is no solution with covering radius at most 7. In
the first case, we can afford to lower our guess on the radius of the optimal
solution; in the second case, we need to raise it. This gives us the ability to
perform a kind of binary search on the radius: in general, we will iteratively
maintain values ry < ry so that we know the optimal radius js greater than ry,
but we have a solution of radius at most 2ry. From these values, we can run
the above algorithm with radius r = (7 -}- ry)/2; we will either conclude that
the optimal solution has radius greater than r = rp, or obtain a solution with
radius at most 2r = (ry -+ 1) < 2ry. Either way, we will have sharpened our
estimates on one side or the other, just as binary search is supposed to do.
We can stop when we have estimates ry and ry that are close to each other;
at this point, our solution of radius 2r; is close to being a 2-approximation to

the optimal radius, since we know the optimal radius is greater than 1y (and
hence close to ;).

T
11.2 The Center Selection Problem 611 . [

i

1

; A Greedy Algorithin That Works For the specific case of the Center Selection

’ ~ problem, thereis a surprising way to get around the assumption of knowing the
radius, without resorting to the general technique described earlier. It turns out
we can run essentially the same greedy algorithm developed earlier without
knowing anything about the value of r.

The earlier greedy algorithm, armed with knowledge of 7, repeatedly
selects one of the original sites s as the next center, making sure that it is
at least 2r away from all previously selected sites. To achieve essentially the
same effect without knowing r, we can simply select the site s that is farthest
away from all previously selected centers: 1f there is any site at least 2r away
¢rom all previously chosen centers, then this farthest site s must be one of ‘
them. Here is the resulting algorithm. |

Assume k=15| (else define C=S5)

P Select any site s and let C={s} “l[ﬁ%
While [C] <k |
i Select a site sc§ that maximizes dist(s, C) ‘:15 I
hdd site s o C L :ﬁ-‘i
E Endvhile ' 5
‘tr ¥ :m

Return C as the selected set of sites \
i

gy

i '_(1_'1.__8] - “This greedy algorithm returns a set C of k poinis such that 7(C) = ‘
2r(C*), where C*is an optimal set of kpoints. | |

Proof. Letr =r(C*) denote the minimum possible radius of a set of k centers. |
For the proof, we assume that we obtain a set of k centers C with r(C) = 2r, |
and from this we derive a contradiction.

So let s be a site that is more than 2r away from every center in C. Consider
some intermediate iteration in the execution of the algorithm, where we have
thus far selected a set of centers C'. Suppose we are adding the center ¢’ in this
iteration. We claim that ¢’ is at least 2r away from all sites in C'. This follows as ,
site s is more than 2r away from all sites in the larger set C, and we select a site f
¢ that is the farthest site from all previously selected centers. More formallty,
we have the following chain of inequalities: 'l‘

dist(c’, C") = dist(s, C') = dist(s, C) > 2r. , ¥

first k iterations of the while loop of the previous algorithm, which knew the
optimal radius 7: In each iteration, we are adding a center at distance more
than 2r from all previously selected centers. But the previous algorithm would

i

It follows that our greedy algorithm is a correct implemeniation of the \ ¥
.
|

612

Chapter 11 Approximation Algorithms

have S’ # # after selecting k centers, as it would have s € &, and so it Would
go on and select more than k centers and eventually conciude that Centerg
cannot have covering radius at most r. This contradicts our choice of r, apq
the contradiction proves that r(C) <2r. =

Note the surprising fact that our final greedy 2-approximation algorithy
is a very simple modification of the first greedy algorithm that did not work,
Perhaps the most important change is simply that our algorithm always selectg
sites as centers (i.e., every mall will be built in one of the littte towns and net
halfway between two of them).

11.3 Set Cover: A General Greedy Heuristic

In this section we will consider a very general problem that we also encoun-
tered in Chapter 8, the Set Cover Problem. A number of important algorithmic
problems can be formulated as special cases of Set Cover, and hence an ap-
proximation algorithm for this problem will be widely applicable. We will see
that it is possible to design a greedy algorithm here that produces solutions
with a guaranteed approximation factor relative to the optimum, although this
factar will be weaker than what we saw for the problems in Sections 11.1 and
1.2,

While the greedy algorithm we design for Set Cover will be very simpie,
the analysis will be more complex than what we encountered in the previous
two sections. There we were able to get by with very simple bounds on
the {unknown) optimum solution, while here the task of comparing to the
optimum is more difficult, and we will need to use more sophisticated bounds.
This aspect of the method can be viewed as our first example of the pricing
method, which we will explore more fully in the next two sections.

#¥ The Problem

Recall from our discussion of NP-completeness that the Set Cover Problem is
based on a set U of n elements and a list Sy, ..., S, of subsets of UJ; we say
that a set cover is a collection of these sets whose union is equal to all of U.

In the version of the problem we consider here, each set $; has an
assoclated weight w; > 0. The goal is to find a set cover € so that the total
weight

> w

SieC

is minimized. Note that this problem is at least as hard as the decision version
of Set Cover we encountered earlier; if we set all w; = 1, then the minimum

