The Design
and Analysis
of Algorithms

Dexter C. Kozen

With 72 lllustrations

&

Springer-Verlag
New York Berlin Heidelberg London Paris
Tokyo Hong Kong Barcelona Budapest

Lecture 8 Binomial Heaps

Binomial heaps were invented in 1978 by J. Vuillemin [106]. They give a
data structure for maintaining a collection of elements, each of which has a
value drawn from an ordered set, such that new elements can be added and
the element of minimum value extracted efficiently. They admit the following
operations:

makeheap(i) return a new heap containing only element i
findmin(h) return a pointer to the element of h of minimum value
insert(h, 1) add element 7 to heap h

deletemin(h) delete the element of minimum value from h

meld(h, k') combine heaps h and A’ into one heap

Efficient searching for objects is not supported.
In the next lecture we will extend binomial heaps to Fibonacci heaps [35),
which allow two additional operations:

decrement(h,i,A) decrease the value of i by A
delete(h, i) remove ¢ from heap h-

We will see that these operations have low amortized costs. This means
that any particular operation may be expensive, but the costs average out so
that over a sequence of operations, the number of steps per operation of each
type is small. The amortized cost per operation of each type is given in the
following table:

40

LECTURE 8 BINOMIAL HEAPS 41

makeheap O(1)

findmin 0(1)

insert 0(1)

deletemin Oflogn)

meld 0(1) for the lazy version

O(logn) for the eager version

decrement O(1)

delete O(logn)

where n is the number of elements in the heap.
Binomial heaps are collections of binomial trees, which are defined induc-
tively: the i*f binomial tree B; consists of a root with ¢ children By, ..., Bi-1.

By, By B Bs
L]

I/}/b\

It is easy to prove by induction that |B;| = 2°.

If data elements are arranged as vertices in a tree, that tree is said to be
heap-ordered if the minimum value among all vertices of any subtree is found
at the root of that subtree. A binomial heap is a collection of heap-ordered
binomia) trees with a pointer min to the tree whose root has minimum value.
We will assume that all children of any vertex are arranged in a circular
doubly-linked list, so that we can link and unlink subtrees in constant time.

Definition 8.1 The rank of an element z, denoted rank (z), is the number
of children of z. For instance, rank (root of B;) = i. The rank of a tree is the
rank of its root. a

A basic operation on binomial trees is linking. Given two B;’s, we can
combine them into a Bjy; by making the root of one B; a child of the root of
the other. We always make the B; with the larger root value the child so as
to preserve heap order. We never link two trees of different rank.

8.1 Operations on Binomial Heaps

In the “eager meld” version, the trees of the binomial heap are accessed
through an array of pointers, where the ith pointer either points to a B; or
is nil. The operation meld(h, #’), which creates a new heap by combining h
and #/, is reminiscent of binary addition. We start with ¢ = 0. If either h or
R’ has a B, and the other does not, we let this By be the By of meld(h, h').
If neither h nor &' have a By, then neither will meld(h,/’). If both h and b
have a By, then meld(h, #’) will not; but the two By’s are linked to form a

Jointad

O as b

42 LECTURE 8 BINOMIAL HEAPS

B, which is treated like a carry. We then move on to the B;’s. At stage ¢,
we may have 0, 1, or 2 B;’s from h and k', plus a possible B; carried from the
previous stage. If there are at least two B;’s, then two of them are linked to
give a B;,; which is carried to the next stage; the remaining B;, if it exists,
becomes the B; of meld(h, h’). The entire operation takes O(logn) time, be-
cause the size of the largest tree is exponential in the largest rank. We will
modify the algorithm below to obtain a “lazy meld” version, which will take
constant amortized time.

The operation insert(i, h) is just meld(h, makeheap(s)).

For the operation deletemin(h), we examine the min pointer to z, the
root of some Bi. Removing z creates new trees By, ..., Bi_1, the children of
z, which are formed into a new heap h'. The tree By, is removed from the old
heap h. Now h and k' are melded to form a new heap. We also scan the new
heap to determine the new min pointer. All this requires O(logn) time.

8.2 Amortization

The O(logn) bound on meld and deletemin is believable, but how on earth
can we do insert operations in constant time? Any particular insert opera-
tion can take as much as O(logn) time because of the links and carries that
must be done. However, intuition tells us that in order for a particular insert
operation to take a long time, there must be a lot of trees already in the heap
that are causing all these carries. We must have spent a lot of time in the
past to create all these trees. We will therefore charge the cost of performing
these links and carries to the past operations that created these trees. To the
operations in the past that created the trees, this will appear as a constant
extra overhead.

This type of analysis is known as amortized analysis, since the cost of a
sequence of operations is spread over the entire sequence. Although the cost
of any particular operation may be high, over the long run it averages out so
that the cost per operation is low.

For our amortized analysis of binomial heaps, we will set up a savings
account for each tree in the heap. When a tree is created, we will charge
an extra credit to the instruction that created it and deposit that credit to
the account of the tree for later use. (Another approach is to use a potential
function; see [100].) We will maintain the following credit invariant:

Each tree in the heap has one credit in its account.

Each insert instruction creates one new singleton tree, so it gets charged
one extra credit, and that credit is deposited to the account of the tree that
was created. The amount of extra time charged to the insert instruction is
O(1). The same goes for makeheap. The deletemin instruction exposes up
to logn new trees (the subtrees of the deleted root), so we charge an extra

LECTURE 8 BINOMIAL HEAPS 43

logn credits to this instruction and deposit them to the accounts of these
newly exposed trees. The total time charged to the deletemin instruction is
still O(logn).

We use these saved credits to pay for linking later on. When we link a tree
into another tree, we pay for that operation with the credit associated with
the root of the subordinate tree. The insert operation might cause a cascade
of carries, but the time to perform all these carries is already paid for. We
end up with a credit still on deposit for every exposed tree and only O(1) time
charged to the insert operation itself.

8.3 Lazy Melds

We can also perform meld operations in constant time with a slight modifica-
tion of the data structure. Rather than using an array of pointers to trees, we
use a doubly linked circular list. To meld two heaps, we just concatenate the
two lists into one and update the min pointer, certainly an O(1) operation.
Then insert(h, i) is just meld(h, makeheap(i)).

The problem now is that unlike before, we may have several trees of the
same rank. This will not bother us until we need to do a deletemin. Since in
a deletemin we will need O(logn) time anyway to find the minimum among
the deleted vertex’s children, we will take this opportunity to clean up the
heap so that there will again be at most one tree of each rank. We create an
array of empty pointers and go through the list of trees, inserting them one
by one into the list, linking and carrying if necessary so as to have at most
one tree of each rank. In the process, we search for the minimum.

We perform a constant amount of work for each tree in the list in addition
to the linking. Thus if we start with m trees and do k links, then we spend
O(m + k) time in all. To pay for this, we have k saved credits from the links,
plus an extra logn credits we can charge to the deletemin operation itself,
so we will be in good shape provided m + k is O(k + log n). But each link
decreases the number of trees by one, so we end up with m — k trees, and
these trees all have distinct ranks, so there are at most logn of them; thus

m+k = 2k+(m—k)
< 2k+logn
= O(k+logn) .

2o 1Al

