The Design
and Analysis
of Algorithms

Dexter C. Kozen

With 72 lllustrations

®)” Springer

Lecture 12 Splay Trees

A splay tree is a data structure invented by Sleator and Tarjan [94, 100] for
maintaining a set of elements drawn from a totally ordered set and allowing
membership testing, insertions, and deletions (among other operations) at an
amortized cost of O(logn) per operation. The most interesting aspect of the
structure is that, unlike balanced tree schemes such as 2-3 trees or AVL trees,
it is not necessary to rebalance the tree explicitly after every operation—it
happens automatically.

Splay trees are binary trees, but they need not be balanced. The height of
a splay tree of n elements can be greater than log n; indeed, it can be as great
as n—1. Thus individual operations can take as much as linear time. However,
as operations are performed on the tree, it tends to rebalance itself, and in
the long run the amortized complexity works out to O(logn) per operation.

Data is represented at all nodes of a splay tree. The data values are
distinct and drawn from a totally ordered set. The data items will always be
maintained in inorder; that is, for any node z, the elements occupying the left
subtree of x are all less than z, and those occupying the right subtree of z are
all greater than .

Splay trees support the following operations:

e member(i, S): determine whether element ¢ is in splay tree S
e insert(s,S): insert ¢ into S if it is not already there

e delete(s, S): delete i from S if it is there

58

LECTURE 12 SpPLAY TREES 59

e join(S,S’): join S and S’ into a single splay tree, assuming that z < y
forallz € Sand y € 5’

e split(s,.5): split the splay tree S into two new splay trees S’ and S”
such that z <i<yforallz € S and y € §”.

All these operations are implemented in terms of a single basic operation,
called a splay:

e splay(i,5): reorganize the splay tree S so that element ¢ is at the root
if 1 € S, and otherwise the new root is either

max{k € S| k<i} or min{fke S|k >i}.

All of the operations mentioned above can be performed with a constant
number of splays in addition to a constant number of other low-level oper-
ations such as pointer manipulations and comparisons. For example, to do
join(S,S"), first call splay(+o0, S) to reorganize S so that its largest element
is at the root and all other elements are contained in the left subtree of the
root; then make S’ the right subtree. To do delete(:, S), call splay(i, S) to
bring i to the root if it is there; then remove ¢ and call join to merge the left
and right subtrees.

12.1 Implementation of Splay

The splay operation can be implemented in terms of the even more elementary
rotate operation. Given a binary tree S and a node x with parent y, the
operation rotate(z) moves z up and y down and changes a few pointers,
according to the following picture:

rotate(z)

—_—

rotate(y)

A very simple but important observation to make at this point is that the
rotate operation preserves inorder numbering.

To implement splay(z, S), we might rotate = up until it becomes the root.
However, in order to achieve the desired amortized complexity bounds, we
need to be a little more careful. Depending on the relationship of z to its
parent and grandparent, we distinguish three different cases:

60 LECTURE 12 SPLAY TREES

(i) if = has a parent but no grandparent, we just rotate(z);

(ii) if z has a parent y and a grandparent, and if z and y are either both
left children or both right children, we first rotate(y), then rotate(z);

(iii) if z has a parent y and a grandparent, and if one of z, y is a left child
and the other is a right child, we first rotate(z) and then rotate(z)
again.

Example 12.1 Apply splay(1, S) to the following tree S:
10

LECTURE 12 SPLAY TREES 61

Applying splay to node 2 of the resulting tree yields:

Note that the tree appears to become more balanced with each splay. O

12.2 Analysis

We will now show that the time required to perform m operations on a set
of n elements is O(mlogn). To do this, we use a credit accounting scheme
similar to the one used in our analysis of Fibonacci heaps. Each node z of the
splay tree has a savings account containing a certain number of credits. When
x is created, some number of credits are charged to the insert operation that
created z, and these credits are deposited to z’s account. These credits can
be used later to pay for restructuring operations.

For = a node of a splay tree, let S(z) denote the subtree rooted at z. Let
|S| denote the number of nodes in tree S. Define

mS) = |(log|S|)
pz) = wS(@) .

We maintain the following credit invariant:

Node z always has at least u(x) credits on deposit.

Lemma 12.2 Each operation splay(z, S) requires no more than

3(u(S) — p(z)) +1
credits to perform the operation and maintain the credit invariant.

Proof. Let y be the parent of x and z be the parent of y, if it exists. Let p
and y’ be the values of u before and after the splay operation, respectively.
We consider three cases:

62

LECTURE 12 SpPLAY TREES

(i)

(i)

Node z does not exist. This is the last rotation in the splay; we perform
a single rotate(z). We are willing to pay no more than

31 (x) — p(z)) +1

credits for this rotation. Note that

wz) = ply)
py) < pz).

In order to maintain the invariant, we need to spend

[

#(y) — ()
< W(z) - pz)
< 3(¢(z) — p(=)

credits. We are left with at least one credit left over to pay for the
constant number of low-level operations such as pointer manipulations
and comparisons.

Node z is the left child of y and y is the left child of z (or both x and
y are Tight children). In this case we perform a rotate(y) followed by
a rotate(zr). We will show that it costs no more than 3(y/(x) — u(x))
credits to perform these two rotate operations and maintain the credit
invariant. Thus if a sequence of these are done to move x up the tree as
in the example above, we will get a telescoping sum, so that the total
amount spent will be no more than 3(u(S) — u(z)) + 1 (the +1 comes
from the last rotation as discussed in case (i)).

In order to maintain the invariant, we need

p(z) + 1 (y) — w(z) — pu(y)

w(x) +p'(y) + 1/ (2) — plz) — p(y) — w(z) (20)

extra credits. Since p'(z) = p(z), we have

H(x) + 1 (y) + 1 (2) — p(x) — puly) —)
= p'(y) + 1 (2) — u(z) — p(y)
= (1Y) — u@) + (W (2) — uy))

(' (z) — p(z)) + (W' (2) — p(z))

= 2(y'(z) — p(z)) -

We can afford to pay for this and have p'(z) — p(z) credits left over to
pay for the constant number of low-level operations needed to perform
these two rotations. Unfortunately, it may turn out that p'(z) = u(z),
in which case we have nothing left over. We show that in this case the
quantity (20) is in fact strictly negative, thus the invariant is maintained

IA

LECTURE 12 SpLAY TREES 63

for free and we can even afford to spend one of our saved credits to pay
for the low-level operations.
All we need to do is to show that the two assumptions

p(z) = p(x)
)+ @)+ (z) > p@)+ ply) + pz)

lead to a contradiction. Since p(z) = p/(z) = p(z) and p is monotone
in the subterm ordering, we have

p(z) = py) = p(2) ,

therefore

p(z) +p(y) +p'(2) > 3u(z)
3y (z)
Wy +u(z) = 2u(x) .

Il

Because ' is monotone in the subterm ordering,
(z)
(z) -

1 (y)
ul

/LI
(2 I

IN A

It follows that
W)= (y) =),
and since p(z) = 1/ (z), we have
w(@) = ply) = p(z) = w'(z) = p'(y) = W(z) . (21)

Substituting in for the definition of y and ' will quickly show that
this situation is untenable. If a is the size of the subtree rooted at x
before the operation and b is the size of the subtree rooted at z after the
operation, then (21) implies

loga] = |log(a+b+1)] = |logbd] . (22)
Assuming without loss of generality that a < b,

llog(a+b+1)] > |[log2a]
= 1+ |loga]
> |logal .

This contradicts (22).

64

LECTURE 12 SprLAY TREES

(i) Node z is a left child of y and y is a right child of z, or vice versa. Here

we do rotate(z) followed by rotate(z) again, and we are willing to pay
no more than 3(u'(z) — u(z)) credits for these two rotations. As in the
previous case, we need

w(z) + i (y) + ' (2) — p(x) — py) — u(2)

credits to maintain the invariant, and this quantity is at most 2(u/(x) —
p(z)). This leaves at least p'(z) — p(x) left over to pay for the low-level
operations, which suffices unless p'(z) = u(z). As in case (ii), we prove
by contradiction that in this case

p)+u'(y) +i(z) < ple)+ply)+uz),

thus the credit invariant is maintained for free and we have at least one
extra credit to spend on the low-level operations.

O

Theorem 12.3 A sequence of m operations involving n inserts takes time
O(mlogn).

Proof. First we note that the maximum value of y(z) is |logn]. It follows

from Lemma 12.2 that at most 3|logn]| + 1 credits are needed for each splay
operation. Since each of the operations member, insert, delete, split, and
join can be performed using a constant number of splays and a constant
number of low-level operations, each of these operations costs O(logn). In-
serting a new item requires at most O(logn) credits to be deposited to its
account for future use; we charge these credits to the insert operation. Hence
each operation requires at most O(logn) credits. It follows that the total time
required for a sequence of m such operations is O(mlogn). |

