The Design
and Analysis
of Algorithms

Dexter C. Kozen

With 72 lllustrations

Springer-Verlag
New York Berlin Heidelberg London Paris
Tokyo Hong Kong Barcelona Budapest




Lecture 1 Algorithms and Their

Complexity

2
This is a course on the design and analysis of algorithms intended for first-
year graduate students in computer science. Its purposes are mixed: on the
one hand, we wish to cover some fairly advanced topics in order to provide
a glimpse of current research for the benefit of those who might wish to spe-
cialize in this area; on the other, we wish to introduce some core results and
techniques which will undoubtedly prove useful to those planning to specialize

in other areas.
We will assume that the student is familiar with the classical material nor-

mally taught in upper-level undergraduate courses in the design and analysis
of algorithms. In particular, we will assume familiarity with:

sequential machine models, including Turing machines and random ac-
cess machines (RAMs)

discrete mathematical structures, including graphs, trees, and dags, and
their common representations (adjacency lists and matrices)
fundamental data structures, including lists, stacks, queues, arrays, bal-
anced trees

fundamentals of asymptotic analysis, including O(:), o(-), and Q(-) no-
tation, and techniques for the solution of recurrences

fundamental programming techniques, such as recursion, divide-and-
conquer, dynamic programming '

e basic sorting and searching algorithms.
These notions are covered in the early chapters of [3, 39, 100].

3

- e & 0O



4 LECTURE 1 ALGORITHMS AND THEIR COMPLEXITY

Familiarity with elementary algebra, number theory, and discrete proba-
bility theory will be helpful. In particular, we will be making occasional use of
the following concepts: linear independence, basis, determinant, eigenvalue,
polynomial, prime, modulus, Euclidean algorithm, greatest common divisor,
group, ring, field, random variable, expectation, conditional probability, con-
ditional expectation. Some excellent classical references are [69, 49, 33).

The main emphasis will be on asymptotic worst-case complezity. This
measures how the worst-case time or space complexity of a problem grows .
with the size of the input. We will also spend some time on probabilistic
algorithms and analysis. :

1.1 Asymptotic Complexity

Let f and g be functions N' — N, where N denotes the natural numbers
{0,1,...}. Formally,

e fis O(g) if
dceN ;/onf(n)s c-g(n) .

The notation 0\7? means “for almost all” or “for all but finitely many”.
Intuitively, f grows no faster asymptotically than g to within a constant
multiple.

e fiso(g) if
1
Vee N Vn f(n) < zg(n) .
This is a stronger statement. Intuitively, f grows strictly more slowly

than any arbitrarily small positive constant multiple of g. For example,
n347 ig o(2008™)?),

o fis Q(g) if g is O(f). In other words, f is Q(g) if

dece N ?nf(n)Z%-g(n).

o fis ©(g) if f is both O(g) and Q(g).

There is one cardinal rule:

Always use O and o for upper bounds and 2 for lower bounds. Never
use O for lower bounds.




LECTURE 1 ALGORITHMS AND THEIR COMPLEXITY 5

There is some disagreement about the definition of Q. Some authors (such
as [43]) prefer the definition as given above. Others (such as [108]) prefer: f
is Q(g) if g is not o(f); in other words, f is Q(g) if

Jee N oﬁnf(n)>—i—-g(n).

(The notation S means “there exist infinitely many”.) The latter is weaker and
presumably easier to establish, but the former gives sharper results. We won’t
get into the fray here, but just comment that neither definition precludes
algorithms from taking less than the stated bound on certain inputs. For
example, the assertion, “The running time of mergesort is Q(nlogn)” says
that there is a ¢ such that for all but finitely many n, there is some input
sequence of length n on which mergesort makes at least %n log n comparisons.
There is nothing to prevent mergesort from taking less time on some other
input of length n.

The exact interpretation of statements involving 0, o, and ) depends on
assumptions about the underlying model of computation, how the input is
presented, how the size of the input is determined, and what constitutes a
single step of the computation. In practice, authors often do not bother to
write these down. For example, “The running time of mergesort is O(nlogn)”
means that there is a fixed constant ¢ such that for any n elements drawn from
a totally ordered set, at most cnlogn comparisons are needed to produce a
sorted array. Here nothing is counted in the running time except the number
of comparisons between individual elements, and each comparison is assumed
to take one step; other operations are ignored. Similarly, nothing is counted
in the input size except the number of elements; the size of each element
(whatever that may mean) is ignored.

It is important to be aware of these unstated assumptions and understand
how to make them explicit and formal when reading papers in the field. When
making such statements yourself, always have your underlying assumptions in
mind. Although many authors don’t bother, it is a good habit to state any
assumptions about the model of computation explicitly in any papers you
write.

The question of what assumptions are reasonable is more often than not a
matter of esthetics. You will become familiar with the standard models and
assumptions from reading the literature; beyond that, you must depend on
your own conscience.

1.2 Models of Computation

Our principal model of computation will be the unit-cost random access ma-
chine (RAM). Other models, such as uniform circuits and PRAMs, will be
introduced when needed. The RAM model allows random access and the use

yemmy,, o - ® @



6 LECTURE 1 ALGORITHMS AND THEIR COMPLEXITY

of arrays, as well as unit-cost arithmetic and bit-vector operations on arbi-
trarily large integers; see [3].

For graph algorithms, arithmetic is often unnecessary. Of the two main
representations of graphs, namely adjacency matrices and adjacency lists, the
former requires random access and {2(n?) array storage; the latter, only linq‘é.r
storage and no random access. (For graphs, linear means O(n + m), where
n is the number of vertices of the graph and m is the number of edges.) The
most esthetically pure graph algorithms are those that use the adjacency list
representation and only manipulate pointers. To express such algorithms one
can formulate a very weak model of computation with primitive operators
equivalent to car, cdr, cons, eq, and nil of pure LISP; see also [99).

1.3 A Grain of Salt

No mathematical model can reflect reality with perfect accuracy. Mathemat-
ical models are abstractions; as such, they are necessarily flawed.

For example, it is well known that it is possible to abuse the power of
unit-cost RAMs by encoding horrendously complicated computations in large
integers and solving intractible problems in polynomial time [50]. However,
this violates the unwritten rules of good taste. One possible preventative
measure is to use the log-cost model; but when used as intended, the unit-cost
model reflects experimental observation more accurately for data of moderate
size (since multiplication really does take one unit of time), besides making
the mathematical analysis a lot simpler.

Some theoreticians consider asymptotically optimal results as a kind of
Holy Grail, and pursue them with a relentless frenzy (present company not
necessarily excluded). This often leads to contrived and arcane solutions that
may be superior by the measure of asymptotic complexity, but whose con-
stants are so large or whose implementation would be so cumbersome that
no improvement in technology would ever make them feasible. What is the
value of such results? Sometimes they give rise to new data structures or
new techniques of analysis that are useful over a range of problems, but more
often than not they are of strictly mathematical interest. Some practitioners
take this activity as an indictment of asymptotic complexity itself and refuse
to admit that asymptotics have anything at all to say of interest in practical
software engineering. .

Nowhere is the argument more vociferous than in the theory of parallel
computation. There are those who argue that many of the models of compu-
tation in common use, such as uniform circuits and PRAMs, are so inaccurate
as to render theoretical results useless. We will return to this controversy later
on when we talk about parallel machine models.

Such extreme attitudes on either side are unfortunate and counterproduc-
tive. By now asymptotic complexity occupies an unshakable position in our
computer science consciousness, and has probably done more to guide us in



LECTURE 1 ALGORITHMS AND THEIR COMPLEXITY 7

improving technology in the design and analysis of algorithms than any other
mathematical abstraction. On the other hand, one should be aware of its lim-
itations and realize that an asymptotically optimal solution is not necessarily
the best one. -

A good rule of thumb in the design and analysis of algorithms, as in life, is
to use common sense, exercise good taste, and always listen to your conscience.

1.4 Strassen’s Matrix Multiplication Algorithm

Probably the single most important technique in the design of asymptotically
fast algorithms is divide-and-congquer. Just to refresh our understanding of this
technique and the use of recurrences in the analysis of algorithms, let’s take a
look at Strassen’s classical algorithm for matrix multiplication and some of its
progeny. Some of these examples will also illustrate the questionable lengths
to which asymptotic analysis can sometimes be taken.

The usual method of matrix multiplication takes 8 multiplications and 4
additions to multiply two 2 X 2 matrices, or in general O(n®) arithmetic oper-
ations to multiply two n x n matrices. However, the number of multiplications
can be reduced. Strassen [97] published one such algorithm for multiplying
2 x 2 matrices using only 7 multiplications and 18 additions:

[a bHe f} _ [sl+32—s4+36 54+ 5

c d g h Sg + St 82-—33+S5—37
where

si = (b—d)-(g+h)
82 (a+d)-(e+h)
ss = (a—c)-(e+f)
S4 = }( (Gf+b)‘)'\_
ss = a-(f—h)
s = d-(g—¢€)
s7 = ¥ (c+d)C
Assume for simplicity that n is a power of 2. (This is not the last time you will

hear that.) Apply the 2 x 2 algorithm recursively on a pair of n X n matrices
by breaking each of them up into four square submatrices of size § X 5

I

A B ) FE F _ 51+SQ—S4+SG Si+ S5
C D G H| = Se + S7 Sy — 83+ S5 — S7

where

S, = (B-D)-(G+H)

ey, & & ® S



SR

8 LECTURE 1 ALGORITHMS AND THEIR COMPLEXITY

S, = (A+D)-(E+H)
S = (A-C)-(E+F)
Si = H(A+B)f|
S = A-(F—H)

Ss = D-(G-E)

S, = B(C+D)vE

Everything is the same as in the 2 X 2 case, except now we are manipulat-
ing § x § matrices instead of scalars. (We have to be slightly cautious, since
matrix multiplication is not commutative.) Ultimately, how many scalar oper-
ations (+, —, ) does this recursive algorithm perform in multiplying two n x n
matrices? We get the recurrence

T(n) = 7T(f2‘-)+aln2
with solution

T(n) = (‘1+§d)nl°g27+0(n2)

O(nlog2 7)
O(n2.81...)

which is o(n®). Here d is a fixed constant, and dn? represents the time for the
matrix additions and subtractions.

This is already a significant asymptotic improvement over the naive algo-
rithm, but can we do even better? In general, an algorithm that uses ¢ multi-
plications to multiply two d x d matrices, used as the basis of such a recursive
algorithm, will yield an O(n!°#¢) algorithm. To beat Strassen’s algorithm, we
must have ¢ < d'°827. For a 3 X 3 matrix, we need ¢ < 387 = 21.8..., but
the best known algorithm uses 23 multiplications.

In 1978, Victor Pan [83, 84] showed how to multiply 70 x 70 matrices using
143640 multiplications. This gives an algorithm of approximately O(n?7%).
The asymptotically best algorithm known to date, which is achieved by en-
tirely different methods, is O(n?376-) [25]. Every algorithm must be Q(n?),
since it has to look at all the entries of the matrices; no better lower bound is
known.



