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Abstract

A unifying approach to the ¢ and (d,7) matching problems on
strings of integers is developed using Fourier transform methods. For
pattern length m and text length n, the running times for the proposed
algorithms are shown to be O(dnlogm) for both § and (¢, y) matching,
effectively independent of the alphabet size. An O(ny/mlogm) algo-
rithm for the v matching and total difference problems is also given
thereby clarifying conjectures in the literature.

1 Introduction

The recognition of pattern and structure in large databases is a fundamental
goal in the rapidly developing area of statistical data-mining. Applications
include the analysis of high-frequency financial trading data, object recog-
nition in image processing, the exploration of genomic data and the identi-
fication of melodic structure in musicology. An important class of problems
can be specified in terms of a text string ¢ = £, ---¢,, and a pattern string
p = p1---pm over an alphabet 3. The classical string-matching problem is
to find all occurrences of the pattern p in the text ¢, in other words to find
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all indices ¢ such that p and the substring #(0) def ti---tiym—1 are identical.
For many applications it is more common to define a measure of dissimi-
larity between strings with the object being to find which substrings of ¢
match p approximately, in the sense that the dissimilarity between p and
the substring is below some nominal value.

The focus of approximate string matching algorithms has traditionally been
on symbolic data. However, in many cases the data are more naturally
represented as a string of integer values. An important example is that of
computer assisted music analysis. The pitch of each note can be represented
on the chromatic scale or using MIDI notation as an integer chosen from
some interval. A musical score can then be thought of as a set of strings of
integers, each string representing a different instrument or voice. Approxi-
mate matching in this context, and in general when dealing with strings of
numeric values, must take into account the distance between characters as
well as any other considerations (see [9, 4] for surveys of string methods in
music analysis). In this paper we present new algorithms for approximate
matching on strings over an alphabet of integers. We focus on problems that
can be described in the generalised linear product formalism of Fischer and
Paterson [10]. Problems involving deletions, insertions and the associated
edit distances that are important in bioinformatic applications (see e.g. [11])
are specifically excluded.

There is only one way in which two strings p;---pn, and 1 --- ¢, can be
the same but there are many ways of measuring their dissimilarity. The
Hamming distance, for example, counts the number of mismatches, i.e. the
number of locations where p; # t;. More generally, a numerical score s(a, b)
can be defined for a specific mismatch between symbols ¢ and b and the
total score calculated, i.e. ZT:15(pjatj)- When the alphabet is a subset
of the real line, natural measures of dissimilarity are the total difference,
ZT:1 Ipj — t;|; the total squared difference, Z;":l(pj — t;)%; and the maz-
imum difference, max’" Ipj — tj|. These are respectively, the L; distance,
the square of the Lo distance and the L., distance between the vectors

(P1y---,pm) and (t1,. .., tm)-
The fast Fourier transform (FFT) is the basis of several fast algorithms for

approximate string-matching. The most important property of the FFT is
that, for numerical strings, all the inner-products,

m
p-t® S pitia, 1<i<n—m+1,
j=1



can be calculated accurately and efficiently in O(nlogm) time (see e.g. [8],
Chapter 32).

The basic idea when using FFTs to tackle approximate matching problems
is to express the dissimilarity measure in terms of an inner-product. For
example, since (z — y)? = 22 — 2zy + y?, we can express the total squared
difference between p and t() as

m m m
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j j=1 j=1
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The first and last terms can be calculated in O(n 4+ m) time and the mid-
dle terms can be calculated in O(nlogm) time using the FFT. The exact
matching problem is then solved immediately since there is an exact match
at all values of ¢ where the total squared difference is zero. Of course a sim-
ilar argument can be made for any dissimilarity measure which is zero when
there is an exact match and bounded away from zero otherwise. By using
a score of z/y +y/z — 2 = (z — y)?/xy, Cole and Hariharan [5] show that
FFT methods can also solve the exact matching problem with wild cards in
O(nlogm) time, effectively independent of |3|.

In the §, v and (d,7) matching problems, the alphabet is assumed to be an
interval of integers. The problems are defined as follows.

Problem 1 (6 matching) Determine Zs where

Is = {i: max |pj — tiy; 1| < 0}
j=1l..m

In other words, the problem is to find all indices 7 such that the maximum
difference between p and (%) is no larger than 6. For o matching the problem
is to find all indices i such that the total difference between p and t*) is no
larger than +.

Problem 2 (y matching) Determine J, where

m
Ty =i |pj = tivia| <7}

i=1

For (4, ) matching, we require both that the maximum difference is bounded
by 0 and that the total difference is no larger than . The problem is defined
as follows.



Problem 3 ((d,y) matching) Determine Zs N J,.

An o(nm) solution for § matching can be derived by a reduction to the
less-than matching problem [3]. In less-than matching the task is to find
all 7 such that every value in p is less than or equal to its corresponding
value in t(). § matching can be solved using two instances of less-than
matching giving an overall time complexity of O(n\/mlogm) using FFTs
[2]. An alternative approach is given in [7] where an instance of § matching
is reduced to at most 2§ + 1 instances of exact matching with wild cards.
Using FFTs again, the total time required is therefore O(énlogm). For
many applications, including musical ones, é does not depend on the size of
the input and can be regarded as a constant. We present here a different and
direct O(dnlogm) solution to ¢ matching. This method is asymptotically
faster than a reduction to less-than matching when 6 is o(y/m/logm). For
(6,7) matching we give a similar O(dnlogm) solution which is faster than
the current known O(nm) bound if ¢ is o(m/logm).

An o(nm) solution for v matching, for arbitrary -y, can be derived from the
total difference problem.

Problem 4 (Total difference) Determine the total differences

, for 1<i<mn—m+1.

m
M; = Z \pj —titj—1
j=1

We will show that the total difference problem can be solved in O(n+/m logm)
running time. Our method is based on the divide and conquer approach in-
troduced by Abrahamson and developed by Amir [1, 3]. We believe this to
be the first o(nm) solution for this total problem.

The plan of the paper is as follows. In Section 2 we give a simple illustration
of our approach to § matching. In Section 3 we solve the ¢ and (d,7)
problems in O(dnlogm) time. In Section 4 we show that Abrahamson’s
method can be used to calculate v matches for arbitrary values of ~ in
O(ny/mlogm) time. Finally in Section 5 we consider general approximate
matching problems and discuss why some are inherently more difficult than
others.



2  Our techniques

Our algorithms for ¢ and (d,7) matching build on the ideas in [5]. We
construct a function that is zero when there is a match between two symbols
and larger than some fixed positive value otherwise. We then show how the
function can be computed efficiently using FFTs. The main innovation is
in the use of even periodic functions and their discrete cosine expansions to
achieve this goal.

As a simple illustration, consider the § matching problem with § = 1. First

notice that the periodic function § — £(—1)" takes the value 0 when z is
even and 1 when it is odd. If we define g(z) = 2 + $(—1)® — 3. it follows

that g(z —y) = 0 when |z —y| < 1 and g(z — y) > 4 otherwise. But we can
write
gz —y) =2° = 2zy +y° + $(-1)"(-1)Y - 3,

since £ +vy has the same parity as £ —y. This is the key result. We now define
new strings e(t) and €(p) where the jth element of €(£) is 1 if £; is even and —1
otherwise and similarly for €(p). It follows that Z;’;l g(pj — tiyj—1) can be

expressed in terms of two inner-products p-t() and e(p)-€(#)(, both of which
can be calculated in O(nlogm) time, plus other terms that are calculable
in O(n 4+ m) time. The § matching problem is then solved since, provided
that the FFT is carried out to sufficient precision, we can identify indices
where 327 g(pj — ti+j—1) = 0. In this case and the ones to follow, we need
only enough precision to be able to distinguish 0 from any number greater
than or equal to 1. The relative error of the Cooley-Tukey FFT method,
for example, is elogn where € is the machine floating-point precision (the
smallest positive number such that 1+ € is distinguishable from unity in the
floating point representation employed). Therefore, for any realistic size of
input, non integer values resulting from the FFT calculation can simply be
rounded to the nearest whole number without fear of mistake. See [12] for a
more in depth discussion of FFT accuracy under different measures of error.

3 Algorithms for § and (4,7y) matching

We start by generalising the arguments that were used in Section 2 to tackle
the § matching problem for the special case § = 1. The idea is the same,
namely to modify the squared difference by subtracting a periodic function



thereby obtaining a function that is zero over a range of differences. We
start with a few definitions and basic results about vector spaces.

A real-valued function f(z) defined on Z, the set of integers, is even and
periodic with period 24, if

f(z)=f(—z)and f(x) = f(z + k2J) for all 2,k €Z

Using standard properties of the discrete cosine transform [8] a convenient
basis for the space of these functions is the set of functions

hi(x) = r(k) cos(zkm/d), k=0,...,0,

where r(k) = 1/v/20 if k mod § = 0 and r(k) = 1/v/0 otherwise. These
functions are orthonormal in the sense that 22:17(5 hj(xz)hi(xz) = 0 when

j # k and 22:17(5 h2(z) = 1. Consequently, any even function f(z) with
period 2§ can be written as

)
F@) =S axhi(a).
k=0

where the coefficients are given by

1)

ar =3 F@)hy(a).

z=1-§

We will be interested in two special cases of such functions, fm and fm,
where

() = |z and fP(z) = 2? for |z| < 4.
Both fl'/(z) and f1*(z) are even and periodic and so defined over the whole

of Z. We denote the coefficients of these functions by {ag]} and {(sz]},
respectively.

To tackle the § matching problem, consider the function

g(w) = 2* - [P(x).

By construction, this is an even function with the property that g(z) = 0
for |z| < & and g(z) > 1, otherwise. Figure 1 shows the functions z? and
fm and the result after subtraction. The important point is that



gz —y) =2* +y* — 2zy — a%ﬂr(ﬂ)
1)

=N e (k) er () erly)

k=1

where
ck(x) = cos(zkm/d)
sk(z) = sin(zkm/d),
and we have used the fact that so(z) = s5(x) = 0 and ¢o(z) = 1. In other

words, g(z — y) involves a total of 20 product terms, so the dissimilarity
measure based on g can be expressed in terms of 20 inner-products.

To perform ¢ matching we compute X7, g(p;j —ti1j—1) for 1 <1 <mn—-m+1.
Any value that is 0 indicates a match. We can also set any non-zero values
to 1 to indicate a mismatch. The main steps of the algorithm are therefore:

1. Calculate the af} coefficients using the equation af} = Zi:l s 7?hi ()
2. Compute A = Z;”‘:] p_? and B; = Z;"‘:] t?ﬂ-f] forl1<i<n-m+1
3. Compute C; :p-t(i) for1<i<n-m+1

4. For each k € {1,...,d}, construct a pair of arrays p’ and t' such that
P = af}r(k)ck (pj) and ¢; = cx(t;) and compute D;(k) = p' - ') for
1<i1<n—m+1



5. For each k € {1,...,0 — 1}, construct a pair of arrays p’ and ¢’ such
that p; = af}r(k)sk(pj) and #; = sy (t;) and compute E;(k) =p’- #'()
for1<i<n—-m-+1

6. 371 9(pj—tivj—1) = A+B;—2C;—agr(0)m—Y"0_; Di(k)— >3-} Ei(k)

The (J(L} need only be computed once for the particular value of § that is
of interest since they do not depend on the input pattern or text. Each
coefficient takes requires O(d) multiplications and additions to compute and

so the total time to compute all af} for a given 4 is O(62). The arrays A
and B can be calculated simply in linear time. C can be calculated with a
single inner-product calculation in O(nlogm) time using FFTs. The arrays
D and F require § and § — 1 inner-product calculations respectively taking
a total of O(dnlogm) time to compute. It follows that § matching can be
carried out with 20 inner product calculations in O(dn logm) time.

(0,7) matching

For (4,7) matching, we make use of the set of locations Zs where the ¢
matches occur, i.e.

{7 max ‘ -—t,;+j,1‘§5}.

Now consider the even periodic function f['l(x). Recall that this is the same
as |z| when |z| < d. We define the periodic total difference between p and
t® to be

A; = Z FW(pj —tivi ),
j=1

fori=1,....,.n—m+1.

Since fl!(z —y) can expressed as a linear combination of 25 — 1 product
terms, i.e.

@ —y) = a%”r(O)

—I—Z(Jzkr ek () ek (y)

Z oy () si(y) sk (1),



it follows that all the periodic differences can be calculated in (26—1)O(n log m)
time using FFTs. In particular, we can identify

\.7;:{7A1§7}a
the set of locations where the periodic total difference is no larger than ~.

The (4, ) matching problem is now solved. Locations that are in the inter-
section Z5 N J; will meet both the § matching and v matching criteria since
total differences are correctly calculated for all locations in Z5. The final
algorithm requires 40 — 1 inner-product calculations and takes O(dn logm)
time overall.

4 Total-difference algorithm

A naive algorithm for the total difference problem involves O(n) successive
calculations each of length O(m) and therefore runs in O(nm) time. For the
canonical case, n = 2m, this implies that the running time is quadratic in m.
In [6] the question of whether the problem can be solved in subquadratic time
is raised. We will give a subquadratic algorithm, running in O(m+/m logm)
time for the canonical problem and hence by the usual argument in time
O(nv/mlog m) for text of length n. A solution to the total difference problem
immediately gives a solution to the v matching problem,

The essence of the method is firstly to solve an incomplete version of the
problem using FFTs and then tidy up loose ends afterwards by straightfor-
ward calculations.

We start by observing that the difference between two numbers = and y can
be calculated as the sum of four products

‘.’I? - U‘ = TITJy - IT"/Jy + Jfr,ny - .’I?Jme,

where I, = 1if a > 0 and I, = 0 otherwise and J, = 1— I, provided = and y
are on opposite sides of some arbitrary value 8. When this is not the case the
right hand side is 0. This observation forms the basis of the algorithm. In
other words contributions to M; from pairs of values (p;,t;4;_1) on opposite
sides of specific thresholds are accumulated first. The remaining terms are
collected in the second stage of the algorithm.

The algorithm



Assume n = 2m.

1) Partition

Sort the values in the set {p1,p2,...,pm} in increasing order and let A be the
associated array of indices of the sorted p-values. Now partition A from left
to right into b successive arrays each of length m/b. Denote the kth of these
arrays by Ag and let 0y be its largest element. For notational convenience
define 0y = —o0.

Next consider the set {t1, to, ..., tom }. By sorting this set in increasing order,
obtain a corresponding collection of arrays {By : k = 1,2,...,b}, where By
contains all the indices j such that #; > 6,_; and By, contains all the indices
J such that 6, _; < t; <0 for K < b. The end result is that we can associate
each entry #; in the text with m /b entries in the pattern, since j must belong
to one of the arrays By and there are m/b members of of the array Ay.

2) FFT
For k =1,...,b and z a real number define two functions:
1 ifz>80 1 iff 1 <x<0
L@ =4 "T T and )= DTS TR
0 otherwise, 0 otherwise.

For each k create four new text strings ex(t), €xa(t), €x3(t) and egq(t) with
jth elements that are respectively ;11 (t;), I (t;), Ji(t;) and t;Ji(t;). Cor-
respondingly, create four new pattern strings vg1(p), Vg2 (p), vk3(p) and vg4(p)
with jth elements that are respectively Ji(p;), —p;Jk(pj), pjlx(p;) and —I;(p;).
With this construction

m b 4
> i —tivjal = D> vke(p) - exe(t)) +  remainder,
=1 (=1

k=1

where the remainder contains terms from pairs of values (p;,t;4;_1) where
pj € Ap and t;1 ;1 € By, for some k.

3) The remainder

Now deal with the omitted cases, i.e. pairs of text and pattern elements that
lie in associated arrays (Ag, Bg) for some k. Working through each of the
arrays By, for each element of the text the number of associated elements
in the pattern is m/b. The total number of such pairs considered is then
2m x m/b. For these cases, the contributions to the total differences can be
calculated in the straightforward manner in O(m?/b) time.

10



4) The Running time

The running time for 1) is O(m log m). The running time for 2) is 4bO(m log m),
since 4b FFTs have to be calculated. The running time from 3) is O(m?/b),

so the total time is O(m? /b + 4bm log m). Taking b = y/m/logm, the run-
ning time is then O(m+/mlogm) for the case n = 2m and hence O(n+/mlogm)

in general.

5 Discussion

We have given new faster solutions to approximate matching problems on
strings of integers. In particular, we have presented an algorithm for com-
puting L; distances in O(ny/mlogm) time (the total difference problem)
and an O(dn logm) for 6 and (0,7) matching. A number of important ques-
tions remain unresolved. For example, is it possible to calculate all L
distances in o(nm) time? Can Abrahamson’s method be extended to the
general L, class of vector norms?

Other important problems for numeric string data arise when the values in
the pattern can be shifted up or down by some constant when looking for a
match. In the musical setting, for example, this corresponds to looking for
a musical pattern in a database while allowing the key to change. For the
Ly norm we define the shift-matching problem as follows.

Problem 5 (L shift matching) Determine L5 where

— e m b 321 < 51
Ls={i {?;2{;(177 tivj—1 +1:)7) < 0}

Optimal values for I; that minimises the sum of squares difference at each ¢
can be found by expanding the squared term and differentiating with respect
to l;. Therefore I; = avg(t()) — avg(p) minimises the sum at any given
position, where the average over a string is defined as the mean value of its
characters. This can clearly be calculated in linear time for 1 < i < n—m+1.
The I; values can be used to calculate L5 in O(nlogm) time using the FFT
methods described earlier. It is an open question if shift-matching using the
Ly or Ly norms can be solved in o(nm) time. An interesting subproblem
that arises is how to compute the median of the values in each substring ¢(*)
in o(nm) time for 1 <7 <n-—m+ 1.

11



References

1]

LN

[11]

[12]

K. Abrahamson. Generalized string matching. SIAM journal on Com-
puting, 16(6):1039-1051, 1987.

A. Amir. Private communication. 2004.

A. Amir and M. Farach. Efficient 2-dimensional approximate matching
of half-rectangular figures. Information and Computation, 118(1):1-11,
1995.

R. Clifford, T. Crawford, C. Iliopoulos, and D. Meredith. String match-
ing techniques for music analysis. In String Algorithmics, NATO book
series. KCL Press, 2004.

R. Cole and R. Hariharan. Verifying candidate matches in sparse and
wildcard matching. In Proceedings of the Annual ACM Symposium on
Theory of Computing, pages 592 601, 2002.

R. Cole, R. Hariharan, and P. Indyk. Fast algorithms for subset match-
ing and tree pattern matching. Preprint.

R. Cole, C. Iliopoulos, T. Lecroq, W. Plandowski, and W. Rytter. On
special families of morphisms related to d-matching and don’t care sym-
bols. Information Processing Letters, 85(5):227 233, 2003.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Al-
gorithms. MIT Press, 1990.

T. Crawford, C. S. Iliopoulos, and R. Raman. String-matching tech-
niques for musical similarity and melodic recognition. In Melodic Sim-
ilarity: Concepts, Procedures, and Applications, volume 11, pages 73—
100. MIT-Press, 1998.

M. Fischer and M. Paterson. String matching and other products.
In R. Karp, editor, Proceedings of the 7th SIAM-AMS Complezity of
Computation, pages 113-125, 1974.

D. Gusfield. Algorithms on strings, trees and sequences. Computer Sci-
ence and Computational Biology. Cambridge University Press, 1997.

J. C. Schatzman. Accuracy of the discrete fourier transform and the fast
fourier transform. SIAM Journal of Scientific Computing, 17(5):1150
1166, 1996.

12



