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s, 1 South Parks Road, Oxford, UKbAlgorithm Design Group, Department of Computer S
ien
e,King's College London, London, UKTe
hni
al Report TR-04-09, July 2004Abstra
tA unifying approa
h to the Æ and (Æ; 
) mat
hing problems onstrings of integers is developed using Fourier transform methods. Forpattern lengthm and text length n, the running times for the proposedalgorithms are shown to be O(Æn logm) for both Æ and (Æ; 
) mat
hing,e�e
tively independent of the alphabet size. An O(npm logm) algo-rithm for the 
 mat
hing and total di�eren
e problems is also giventhereby 
larifying 
onje
tures in the literature.1 Introdu
tionThe re
ognition of pattern and stru
ture in large databases is a fundamentalgoal in the rapidly developing area of statisti
al data-mining. Appli
ationsin
lude the analysis of high-frequen
y �nan
ial trading data, obje
t re
og-nition in image pro
essing, the exploration of genomi
 data and the identi-�
ation of melodi
 stru
ture in musi
ology. An important 
lass of problems
an be spe
i�ed in terms of a text string t = t1 � � � tn and a pattern stringp = p1 � � � pm over an alphabet �. The 
lassi
al string-mat
hing problem isto �nd all o

urren
es of the pattern p in the text t, in other words to �nd�Corresponding author. Email: raph�d
s.k
l.a
.uk



all indi
es i su
h that p and the substring t(i) def= ti � � � ti+m�1 are identi
al.For many appli
ations it is more 
ommon to de�ne a measure of dissimi-larity between strings with the obje
t being to �nd whi
h substrings of tmat
h p approximately, in the sense that the dissimilarity between p andthe substring is below some nominal value.The fo
us of approximate string mat
hing algorithms has traditionally beenon symboli
 data. However, in many 
ases the data are more naturallyrepresented as a string of integer values. An important example is that of
omputer assisted musi
 analysis. The pit
h of ea
h note 
an be representedon the 
hromati
 s
ale or using MIDI notation as an integer 
hosen fromsome interval. A musi
al s
ore 
an then be thought of as a set of strings ofintegers, ea
h string representing a di�erent instrument or voi
e. Approxi-mate mat
hing in this 
ontext, and in general when dealing with strings ofnumeri
 values, must take into a

ount the distan
e between 
hara
ters aswell as any other 
onsiderations (see [9, 4℄ for surveys of string methods inmusi
 analysis). In this paper we present new algorithms for approximatemat
hing on strings over an alphabet of integers. We fo
us on problems that
an be des
ribed in the generalised linear produ
t formalism of Fis
her andPaterson [10℄. Problems involving deletions, insertions and the asso
iatededit distan
es that are important in bioinformati
 appli
ations (see e.g. [11℄)are spe
i�
ally ex
luded.There is only one way in whi
h two strings p1 � � � pm and t1 � � � tm 
an bethe same but there are many ways of measuring their dissimilarity. TheHamming distan
e, for example, 
ounts the number of mismat
hes, i.e. thenumber of lo
ations where pj 6= tj. More generally, a numeri
al s
ore s(a; b)
an be de�ned for a spe
i�
 mismat
h between symbols a and b and thetotal s
ore 
al
ulated, i.e. Pmj=1 s(pj; tj): When the alphabet is a subsetof the real line, natural measures of dissimilarity are the total di�eren
e,Pmj=1 jpj � tjj; the total squared di�eren
e, Pmj=1(pj � tj)2; and the max-imum di�eren
e, maxmj=1 jpj � tjj: These are respe
tively, the L1 distan
e,the square of the L2 distan
e and the L1 distan
e between the ve
tors(p1; : : : ; pm) and (t1; : : : ; tm):The fast Fourier transform (FFT) is the basis of several fast algorithms forapproximate string-mat
hing. The most important property of the FFT isthat, for numeri
al strings, all the inner-produ
ts,p � t(i) def= mXj=1 pjti+j�1; 1 � i � n�m+ 1;2




an be 
al
ulated a

urately and eÆ
iently in O(n logm) time (see e.g. [8℄,Chapter 32).The basi
 idea when using FFTs to ta
kle approximate mat
hing problemsis to express the dissimilarity measure in terms of an inner-produ
t. Forexample, sin
e (x � y)2 = x2 � 2xy + y2, we 
an express the total squareddi�eren
e between p and t(i) asmXj=1 (pj � ti+j�1)2 = mXj=1 p2j � 2p � t(i) + mXj=1 t2i+j�1:The �rst and last terms 
an be 
al
ulated in O(n +m) time and the mid-dle terms 
an be 
al
ulated in O(n logm) time using the FFT. The exa
tmat
hing problem is then solved immediately sin
e there is an exa
t mat
hat all values of i where the total squared di�eren
e is zero. Of 
ourse a sim-ilar argument 
an be made for any dissimilarity measure whi
h is zero whenthere is an exa
t mat
h and bounded away from zero otherwise. By usinga s
ore of x=y + y=x � 2 = (x � y)2=xy, Cole and Hariharan [5℄ show thatFFT methods 
an also solve the exa
t mat
hing problem with wild 
ards inO(n logm) time, e�e
tively independent of j�j:In the Æ, 
 and (Æ; 
) mat
hing problems, the alphabet is assumed to be aninterval of integers. The problems are de�ned as follows.Problem 1 (Æ mat
hing) Determine IÆ whereIÆ = fi : maxj=1::m ��pj � ti+j�1�� � Æg:In other words, the problem is to �nd all indi
es i su
h that the maximumdi�eren
e between p and t(i) is no larger than Æ. For 
 mat
hing the problemis to �nd all indi
es i su
h that the total di�eren
e between p and t(i) is nolarger than 
.Problem 2 (
 mat
hing) Determine J
 whereJ
 = fi : mXj=1 ��pj � ti+j�1�� � 
g:For (Æ; 
) mat
hing, we require both that the maximum di�eren
e is boundedby Æ and that the total di�eren
e is no larger than 
. The problem is de�nedas follows. 3



Problem 3 ((Æ; 
) mat
hing) Determine IÆ \ J
.An o(nm) solution for Æ mat
hing 
an be derived by a redu
tion to theless-than mat
hing problem [3℄. In less-than mat
hing the task is to �ndall i su
h that every value in p is less than or equal to its 
orrespondingvalue in t(i). Æ mat
hing 
an be solved using two instan
es of less-thanmat
hing giving an overall time 
omplexity of O(npm logm) using FFTs[2℄. An alternative approa
h is given in [7℄ where an instan
e of Æ mat
hingis redu
ed to at most 2Æ + 1 instan
es of exa
t mat
hing with wild 
ards.Using FFTs again, the total time required is therefore O(Æn logm). Formany appli
ations, in
luding musi
al ones, Æ does not depend on the size ofthe input and 
an be regarded as a 
onstant. We present here a di�erent anddire
t O(Æn logm) solution to Æ mat
hing. This method is asymptoti
allyfaster than a redu
tion to less-than mat
hing when Æ is o(pm= logm). For(Æ; 
) mat
hing we give a similar O(Æn logm) solution whi
h is faster thanthe 
urrent known O(nm) bound if Æ is o(m= logm).An o(nm) solution for 
 mat
hing, for arbitrary 
, 
an be derived from thetotal di�eren
e problem.Problem 4 (Total di�eren
e) Determine the total di�eren
esMi = mXj=1 ��pj � ti+j�1��; for 1 � i � n�m+ 1:We will show that the total di�eren
e problem 
an be solved inO(npm logm)running time. Our method is based on the divide and 
onquer approa
h in-trodu
ed by Abrahamson and developed by Amir [1, 3℄. We believe this tobe the �rst o(nm) solution for this total problem.The plan of the paper is as follows. In Se
tion 2 we give a simple illustrationof our approa
h to Æ mat
hing. In Se
tion 3 we solve the Æ and (Æ; 
)problems in O(Æn logm) time. In Se
tion 4 we show that Abrahamson'smethod 
an be used to 
al
ulate 
 mat
hes for arbitrary values of 
 inO(npm logm) time. Finally in Se
tion 5 we 
onsider general approximatemat
hing problems and dis
uss why some are inherently more diÆ
ult thanothers.
4



2 Our te
hniquesOur algorithms for Æ and (Æ; 
) mat
hing build on the ideas in [5℄. We
onstru
t a fun
tion that is zero when there is a mat
h between two symbolsand larger than some �xed positive value otherwise. We then show how thefun
tion 
an be 
omputed eÆ
iently using FFTs. The main innovation isin the use of even periodi
 fun
tions and their dis
rete 
osine expansions toa
hieve this goal.As a simple illustration, 
onsider the Æ mat
hing problem with Æ = 1. Firstnoti
e that the periodi
 fun
tion 12 � 12(�1)x takes the value 0 when x iseven and 1 when it is odd. If we de�ne g(x) = x2 + 12(�1)x � 12 , it followsthat g(x� y) = 0 when jx� yj � 1 and g(x� y) � 4 otherwise. But we 
anwrite g(x � y) = x2 � 2xy + y2 + 12(�1)x(�1)y � 12 ;sin
e x+y has the same parity as x�y. This is the key result. We now de�nenew strings �(t) and �(p) where the jth element of �(t) is 1 if tj is even and�1otherwise and similarly for �(p). It follows that Pmj=1 g(pj � ti+j�1) 
an beexpressed in terms of two inner-produ
ts p�t(i) and �(p)��(t)(i); both of whi
h
an be 
al
ulated in O(n logm) time, plus other terms that are 
al
ulablein O(n +m) time. The Æ mat
hing problem is then solved sin
e, providedthat the FFT is 
arried out to suÆ
ient pre
ision, we 
an identify indi
eswherePmj=1 g(pj � ti+j�1) = 0. In this 
ase and the ones to follow, we needonly enough pre
ision to be able to distinguish 0 from any number greaterthan or equal to 1. The relative error of the Cooley-Tukey FFT method,for example, is � log n where � is the ma
hine 
oating-point pre
ision (thesmallest positive number su
h that 1+ � is distinguishable from unity in the
oating point representation employed). Therefore, for any realisti
 size ofinput, non integer values resulting from the FFT 
al
ulation 
an simply berounded to the nearest whole number without fear of mistake. See [12℄ for amore in depth dis
ussion of FFT a

ura
y under di�erent measures of error.3 Algorithms for Æ and (Æ; 
) mat
hingWe start by generalising the arguments that were used in Se
tion 2 to ta
klethe Æ mat
hing problem for the spe
ial 
ase Æ = 1. The idea is the same,namely to modify the squared di�eren
e by subtra
ting a periodi
 fun
tion5



thereby obtaining a fun
tion that is zero over a range of di�eren
es. Westart with a few de�nitions and basi
 results about ve
tor spa
es.A real-valued fun
tion f(x) de�ned on Z, the set of integers, is even andperiodi
 with period 2Æ, iff(x) = f(�x) and f(x) = f(x+ k2Æ) for all x; k 2 ZUsing standard properties of the dis
rete 
osine transform [8℄ a 
onvenientbasis for the spa
e of these fun
tions is the set of fun
tionshk(x) = r(k) 
os(xk�=Æ); k = 0; : : : ; Æ;where r(k) = 1=p2Æ if k mod Æ = 0 and r(k) = 1=pÆ otherwise. Thesefun
tions are orthonormal in the sense that PÆx=1�Æ hj(x)hk(x) = 0 whenj 6= k and PÆx=1�Æ h2k(x) = 1: Consequently, any even fun
tion f(x) withperiod 2Æ 
an be written asf(x) = ÆXk=0�khk(x);where the 
oeÆ
ients are given by�k = ÆXx=1�Æ f(x)hk(x):We will be interested in two spe
ial 
ases of su
h fun
tions, f [1℄ and f [2℄,where f [1℄(x) = jxj and f [2℄(x) = x2 for jxj � Æ:Both f [1℄(x) and f [2℄(x) are even and periodi
 and so de�ned over the wholeof Z. We denote the 
oeÆ
ients of these fun
tions by f�[1℄k g and f�[2℄k g,respe
tively.To ta
kle the Æ mat
hing problem, 
onsider the fun
tiong(x) = x2 � f [2℄(x):By 
onstru
tion, this is an even fun
tion with the property that g(x) = 0for jxj � Æ and g(x) � 1; otherwise. Figure 1 shows the fun
tions x2 andf [2℄ and the result after subtra
tion. The important point is that6
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xFigure 1: The fun
tions x2, f [2℄(x) and g(x) = x2 � f [2℄(x): Æ = 2g(x� y) = x2 + y2 � 2xy � �[2℄0 r(0)� ÆXk=1�[2℄k r(k)
k(x)
k(y)� Æ�1Xk=1�[2℄k r(k)sk(x)sk(y)where 
k(x) = 
os(xk�=Æ)sk(x) = sin(xk�=Æ);and we have used the fa
t that s0(x) = sÆ(x) = 0 and 
0(x) = 1. In otherwords, g(x � y) involves a total of 2Æ produ
t terms, so the dissimilaritymeasure based on g 
an be expressed in terms of 2Æ inner-produ
ts.To perform Æ mat
hing we 
ompute �mj=1g(pj�ti+j�1) for 1 � i � n�m+1.Any value that is 0 indi
ates a mat
h. We 
an also set any non-zero valuesto 1 to indi
ate a mismat
h. The main steps of the algorithm are therefore:1. Cal
ulate the �[2℄k 
oeÆ
ients using the equation �[2℄k =PÆx=1�Æ x2hk(x)2. Compute A =Pmj=1 p2j and Bi =Pmj=1 t2i+j�1 for 1 � i � n�m+ 13. Compute Ci = p � t(i) for 1 � i � n�m+ 14. For ea
h k 2 f1; : : : ; Æg, 
onstru
t a pair of arrays p0 and t0 su
h thatp0j = �[2℄k r(k)
k(pj) and t0j = 
k(tj) and 
ompute Di(k) = p0 � t0(i) for1 � i � n�m+ 1 7



5. For ea
h k 2 f1; : : : ; Æ � 1g, 
onstru
t a pair of arrays p0 and t0 su
hthat p0j = �[2℄k r(k)sk(pj) and t0j = sk(tj) and 
ompute Ei(k) = p0 � t0(i)for 1 � i � n�m+ 16. Pmj=1 g(pj�ti+j�1) = A+Bi�2Ci��0r(0)m�PÆk=1Di(k)�PÆ�1k=1Ei(k)The �[2℄k need only be 
omputed on
e for the parti
ular value of Æ that isof interest sin
e they do not depend on the input pattern or text. Ea
h
oeÆ
ient takes requires O(Æ) multipli
ations and additions to 
ompute andso the total time to 
ompute all �[2℄k for a given Æ is O(Æ2). The arrays Aand B 
an be 
al
ulated simply in linear time. C 
an be 
al
ulated with asingle inner-produ
t 
al
ulation in O(n logm) time using FFTs. The arraysD and E require Æ and Æ � 1 inner-produ
t 
al
ulations respe
tively takinga total of O(Æn logm) time to 
ompute. It follows that Æ mat
hing 
an be
arried out with 2Æ inner produ
t 
al
ulations in O(Æn logm) time.(Æ; 
) mat
hingFor (Æ; 
) mat
hing, we make use of the set of lo
ations IÆ where the Æmat
hes o

ur, i.e. IÆ = �i : maxj=1;:::;m ��pj � ti+j�1�� � Æ	:Now 
onsider the even periodi
 fun
tion f [1℄(x). Re
all that this is the sameas jxj when jxj � Æ. We de�ne the periodi
 total di�eren
e between p andt(i) to be �i = mXj=1 f [1℄�pj � ti+j�1�;for i = 1; : : : ; n�m+ 1.Sin
e f [1℄(x � y) 
an expressed as a linear 
ombination of 2Æ � 1 produ
tterms, i.e. f [1℄(x� y) = �[1℄0 r(0)+ ÆXk=1�[1℄k r(k)
k(x)
k(y)+ Æ�1Xk=1�[1℄k r(x)sk(y)sk(y);8



it follows that all the periodi
 di�eren
es 
an be 
al
ulated in (2Æ�1)O(n logm)time using FFTs. In parti
ular, we 
an identifyJ �
 = fi : �i � 
g;the set of lo
ations where the periodi
 total di�eren
e is no larger than 
.The (Æ; 
) mat
hing problem is now solved. Lo
ations that are in the inter-se
tion IÆ \J �
 will meet both the Æ mat
hing and 
 mat
hing 
riteria sin
etotal di�eren
es are 
orre
tly 
al
ulated for all lo
ations in IÆ. The �nalalgorithm requires 4Æ � 1 inner-produ
t 
al
ulations and takes O(Æn logm)time overall.4 Total-di�eren
e algorithmA naive algorithm for the total di�eren
e problem involves O(n) su

essive
al
ulations ea
h of length O(m) and therefore runs in O(nm) time. For the
anoni
al 
ase, n = 2m, this implies that the running time is quadrati
 inm.In [6℄ the question of whether the problem 
an be solved in subquadrati
 timeis raised. We will give a subquadrati
 algorithm, running in O(mpm logm)time for the 
anoni
al problem and hen
e by the usual argument in timeO(npm logm) for text of length n. A solution to the total di�eren
e problemimmediately gives a solution to the 
 mat
hing problem,The essen
e of the method is �rstly to solve an in
omplete version of theproblem using FFTs and then tidy up loose ends afterwards by straightfor-ward 
al
ulations.We start by observing that the di�eren
e between two numbers x and y 
anbe 
al
ulated as the sum of four produ
tsjx� yj = xIxJy � IxyJy + JxyIy � xJxIy;where Ia = 1 if a > � and Ia = 0 otherwise and Ja = 1�Ia, provided x and yare on opposite sides of some arbitrary value �:When this is not the 
ase theright hand side is 0. This observation forms the basis of the algorithm. Inother words 
ontributions to Mi from pairs of values (pj ; ti+j�1) on oppositesides of spe
i�
 thresholds are a

umulated �rst. The remaining terms are
olle
ted in the se
ond stage of the algorithm.The algorithm 9



Assume n = 2m.1) PartitionSort the values in the set fp1; p2; : : : ; pmg in in
reasing order and let A be theasso
iated array of indi
es of the sorted p-values. Now partition A from leftto right into b su

essive arrays ea
h of length m=b. Denote the kth of thesearrays by Ak and let �k be its largest element. For notational 
onvenien
ede�ne �0 = �1:Next 
onsider the set ft1; t2; : : : ; t2mg. By sorting this set in in
reasing order,obtain a 
orresponding 
olle
tion of arrays fBk : k = 1; 2; : : : ; bg, where Bb
ontains all the indi
es j su
h that tj > �b�1 and Bk 
ontains all the indi
esj su
h that �k�1 < tj � �k for k < b. The end result is that we 
an asso
iateea
h entry tj in the text withm=b entries in the pattern, sin
e j must belongto one of the arrays Bk and there are m=b members of of the array Ak.2) FFTFor k = 1; : : : ; b and x a real number de�ne two fun
tions:Ik(x) = (1 if x > �k0 otherwise, and Jk(x) = (1 if �k�1 < x � �k0 otherwise.For ea
h k 
reate four new text strings �k1(t); �k2(t); �k3(t) and �k4(t) withjth elements that are respe
tively tjIk(tj); Ik(tj); Jk(tj) and tjJk(tj): Cor-respondingly, 
reate four new pattern strings �k1(p); �k2(p); �k3(p) and �k4(p)with jth elements that are respe
tively Jk(pj);�pjJk(pj); pjIk(pj) and�Ik(pj).With this 
onstru
tionmXj=1 jpj � ti+j�1j = bXk=1 4X̀=1 �k`(p) � �k`(t)(i) + remainder;where the remainder 
ontains terms from pairs of values (pj ; ti+j�1) wherepj 2 Ak and ti+j�1 2 Bk for some k.3) The remainderNow deal with the omitted 
ases, i.e. pairs of text and pattern elements thatlie in asso
iated arrays (Ak; Bk) for some k. Working through ea
h of thearrays Bk, for ea
h element of the text the number of asso
iated elementsin the pattern is m=b. The total number of su
h pairs 
onsidered is then2m�m=b. For these 
ases, the 
ontributions to the total di�eren
es 
an be
al
ulated in the straightforward manner in O(m2=b) time.10



4) The Running timeThe running time for 1) isO(m logm). The running time for 2) is 4bO(m logm),sin
e 4b FFTs have to be 
al
ulated. The running time from 3) is O(m2=b),so the total time is O(m2=b+ 4bm logm). Taking b =pm= logm, the run-ning time is thenO(mpm logm) for the 
ase n = 2m and hen
eO(npm logm)in general.5 Dis
ussionWe have given new faster solutions to approximate mat
hing problems onstrings of integers. In parti
ular, we have presented an algorithm for 
om-puting L1 distan
es in O(npm logm) time (the total di�eren
e problem)and an O(Æn logm) for Æ and (Æ; 
) mat
hing. A number of important ques-tions remain unresolved. For example, is it possible to 
al
ulate all L1distan
es in o(nm) time? Can Abrahamson's method be extended to thegeneral Lp 
lass of ve
tor norms?Other important problems for numeri
 string data arise when the values inthe pattern 
an be shifted up or down by some 
onstant when looking for amat
h. In the musi
al setting, for example, this 
orresponds to looking fora musi
al pattern in a database while allowing the key to 
hange. For theL2 norm we de�ne the shift-mat
hing problem as follows.Problem 5 (L2 shift mat
hing) Determine LÆ whereLÆ = fi : minli2Zf mXj=1(pj � ti+j�1 + li)2g � Æg:Optimal values for li that minimises the sum of squares di�eren
e at ea
h i
an be found by expanding the squared term and di�erentiating with respe
tto li. Therefore li = avg(t(i)) � avg(p) minimises the sum at any givenposition, where the average over a string is de�ned as the mean value of its
hara
ters. This 
an 
learly be 
al
ulated in linear time for 1 � i � n�m+1.The li values 
an be used to 
al
ulate LÆ in O(n logm) time using the FFTmethods des
ribed earlier. It is an open question if shift-mat
hing using theL1 or L1 norms 
an be solved in o(nm) time. An interesting subproblemthat arises is how to 
ompute the median of the values in ea
h substring t(i)in o(nm) time for 1 � i � n�m+ 1.11
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