Mark de Berg Marc van Kreveld
Mark Overmars Otfried Schwarzkopf

Computational Geometry
Algorithms and Applications

| Second, Revised Edition

With 370 Illustrations

€); Springer

2 Line Segment Intersection
Thematic Map Overlay

When you are visiting a country, maps are an invaluable source of information.
They tell you where tourist attractions are located, they indicate the roads and
railway lines to get there, they show small lakes, and so on. Unfortunately,
they can also be a source of frustration, as it is often difficult to find the right
information: even when you know the approximate position of a small town,

/ ® Diwson TN {"k

y ® bcho
\\Jm\'hnr.-.u y

s 4

¥

¥

Fr. Simpson
. \.ulluu-LniI'x.'

Fiamivum
it/ ince City »
[BRupent Drawson

q : Laan

i é
i | atke
.
Talnwmton
L)
.) Saskatenan
Victoria @ T .

~p

. -
Calgary .

Hegina

/

/. 1 i L
WAL \L__,—/__
L
LIRS
“ll'llllhﬂl'!-l.‘ Hli,:."

Fi Simpsin e
. Yeliamehnif

P
Ulranium
iy e

Figure 2.1
Cities, rivers, railroads. and their
overlay in western Canada

it can still be difficult to spot it on the map. To make maps more readable,
geographic information systems split them into several layers. Each layer is a
thematic map, that is, it stores only one type of information. Thus there will
be a layer storing the roads, a layer storing the cities, a layer storing the rivers, 19

ETSEE

A T B T A e

Chapter 2
LINE SEGMENT INTERSECTION

: ‘I‘(?ﬁf {

i

B grizzly bear

20

and so on. The theme of a layer can also be more abstract. For instan.ce, there
could be a layer for the population density, for average precipitation, habitat of

_the grizzly bear, or for vegetation. The type of geometric information stored

in a layer can be very different: the layer for a road map could store the roads
as collections of line segments (or curves, perhaps), the layer for cities could
contain points labeled with city names, and the layer for vegetation could store
a subdivision of the map into regions labeled with the type of vegetation.

Users of a geographic information system can select one of the thematic
maps for display. To find a small town you would select the layer storing cities,
and you would not be distracted by information such as the names of rivers
and lakes. After you have spotted the town, you probably want to know how to
get there. To this end geographic information systems allow users to view an
overlay of several maps—see Figure 2.1. Using an overlay of the road map and
the map storing cities you can now figure out how to get to the town. When two
or more thematic map layers are shown together, intersections in the overlay
are positions of special interest. For example, when viewing the overlay of
the layer for the roads and the layer for the rivers, it would be useful if the
intersections were clearly marked. In this example the two maps are basically
networks, and the intersections are points. In other cases one is interested in
the intersection of complete regions. For instance, geographers studying the
climate could be interested in finding regions where there is pine forest and the
annual precipitation is between 1000 mm and 1500 mm. These regions are the
intersections of the regions labeled “pine forest” in the vegetation map and the
regions labeled “1000-1500" in the precipitation map.

2.1 Line Segment Intersection

We first study the simplest form of the map overlay problem, where the two
map layers are networks represented as collections of line segments. For ex-
ample, a map layer storing roads, railroads, or rivers at a small scale. Note
that curves can be approximated by a number of small segments. At first we
won'’t be interested in the regions induced by these line segments. Later we
shall look at the more complex situation where the maps are not just networks,
but subdivisions of the plane into regions that have an explicit meaning. To
solve the network overlay problem we first have to state it in a geometric set-
ting. For the overlay of two networks the geometric situation is the following:
given two sets of line segments, compute all intersections between a segment
from one set and a segment from the other. This problem specification is not
quite precise enough yet, as we didn’t define when two segments intersect. In
particular, do two segments intersect when an endpoint of one of them lies on
the other? In other words, we have to specify whether the input segments are
open or closed. To make this decision we should go back to the application,
the network overlay problem. Roads in a road map and rivers in a river map
are represented by chains of segments, so a crossing of a road and a river cor-
responds to the interior of one chain intersecting the interior of another chain.

This does not mean that there is an intersection between the interior of two Section 2.1

segments: the intersection point could happen to coincide with an endpoint ol LiNE SEGMENT INTERSECTION
a seement of a chain. In fact, this situation is not uncommon because windy

rivers are represented by many small segments and coordinates of endpoints

may have been rounded when maps are digitized. We conclude that we should

define the segments to be closed, so that an endpoint of one segment lying on

another scgment counts as an intersection.

To simplify the description somewhat we shall put the scgments from the two
sets into one set, and compute all intersections among the segments in that set.
This way we certainly find all the intersections we want. We may also find
interseetions between segments from the same set. Actually, we certainly will,
because in our application the segments from one set form a nu mber of chains,
and we count coinciding endpoints as intersections. These other intersections
can be filtered out afterwards by simply checking for each reported intersection
whether the two segments involved belong to the same sel. So our problem
specification is as follows: given a set S of n closed segments in the plane,
report all intersection points among the segments inJS.

This doesn’t seem like a challenging problem: we can simply take each

pair of scgments, compute whether they intersect, and, if so. report their in- LN
- . P b - . . a2 .

tersection point. This brute-force algorithm clearly requires O(n~) time. In a

sense this is optimal: when cach pair of segments intersects any algorithm must °

take Q(n*) time, because it has to report all intersections. A similar example

can be given when the overlay of two networks is considered. In practical sit-

nations. however. most segments intersect no or only a few other segments, so %
(he total number of intersection points is much smaller than quadratic. It would *
be nice to have an algorithm that is faster in such situations. In other words.

we want an algorithm whose running time depends not only on the number of

segments in the input, but also on the number of intersection points. Such an

algorithm is called an ouiput-sensitive algorithn: the running time of the algo-

Fithm is sensitive to the size of the output. We could also call such an algorithm

size of the output.

How can we avoid testing all pairs of segments for intersection? Here we ¥
must make use of the geometry of the situation: segments that are close to-
cether are candidates for intersection, unlike segments that are far apart. Be-
low we shall see how we can use this observation to obtain an output-sensitive
algorithm for the line segment intersection problem.

B Y e M s, } be the set of segments for which we want o compute
all intersections. We want (o avoid testing pairs of segments that are far apart.
But how can we do this? Let’s first try to rule out an easy case. Define the X
v-interval of a segment to be its orthogonal projection onto the v-axis. When

the y-intervals of a pair of segments do not overlap—we could say that they are
far apart in the y-direction—then they cannot intersect. Hence, we only need to
test pairs of segments whose y-intervals overlap. that is. pairs for which there
exists o horizontal line that intersects both segments. To find these pairs we 21

Chapter 2 imagine sweeping a line £ downwards over the plane, starting from a position
LINE SEGMENT INTERSECTION above all segments. While we sweep the imaginary line, we keep track of all
segments intersecting it—the details of this will be explained later—so that we

can find the pairs we need.

This type of algorithm is called a plane sweep algorithm and the line ¢ is called
the sweep line. The status of the sweep line is the set of segments intersecting
it. The status changes while the sweep line moves downwards, but not contin-
uously. Only at particular points is an update of the status required. We call
these points the event points of the plane sweep algorithm. In this algorithm
the event points are the endpoints of the segments.

The moments at which the sweep line reaches an event point are the only
moments when the algorithm actually does something: it updates the status of
the sweep line and performs some intersection tests. In particular, if the event
point is the upper endpoint of a segment, then a new segment starts intersecting
the sweep line and must be added to the status. This segment is tested for
intersection against the ones already intersecting the sweep line. If the event
point is a lower endpoint, a segment stops intersecting the sweep line and must
be deleted from the status. This way we only test pairs of segments for which
there is a horizontal line that intersects both segments. Unfortunately, this is
not enough: there are still situations where we test a quadratic number of pairs,
whereas there is only a small number of intersection points. A simple example
is a set of vertical segments that all intersect the x-axis. So the algorithm is
not output-sensitive. The problem is that two segments that intersect the sweep
line can still be far apart in the horizontal direction.

Let’s order the segments from left to right as they intersect the sweep line,
to include the idea of being close in the horizontal direction. We shall only
test segments when they are adjacent in the horizontal ordering. This means
that we only test any new segment against two segments, namely, the ones
immediately left and right of the upper endpoint. Later, when the sweep line
has moved downwards to another position, a segment can become adjacent
to other segments against which it will be tested. Our new strategy should
be reflected in the status of our algorithm: the status now corresponds to the
ordered sequence of segments intersecting the sweep line. The new status not

event Poinl

H
- -,

only changes at endpoints of segments; it also changes at intersection points,

f x ! where the order of the intersected segments changes. When this happens we

P A b 7&" aa must test the two segments that change position against their new neighbors.
5 5 This is a new type of event point.

s Sm ; " . : ,
k Before trying to turn these ideas into an efficient algorithm, we should con-

{ new neighbors vince ourselves that the approach is correct. We have reduced the number of
""" pairs to be tested, but do we still find all intersections? In other words, if
two segments s; and s; intersect, is there always a position of the sweep line ¢
where s; and s; are adjacent along £? Let’s first ignore some nasty cases: as-
sume that no segment is horizontal, that any two segments intersect in at most
one point—they do not overlap—, and that no three segments meet in a com-
mon point. Later we shall see that these cases are easy to handle, but for now
22 it is convenient to forget about them. The intersections where an endpoint of

a segment lies on another segment can easily be detected when the sweep line Section 2.1
reaches the endpoint. So the only question is whether intersections between LINE SEGMENT INTERSECTION
the interiors of segments are always detected.

Lemma 2.1 Lets; and sj be two non-horizontal segments whose interiors in-
tersect in a single point p, and assume there is no third segment passing through
p. Then there is an event point above p where s; and s; become adjacent and
are tested for intersection.

Proof. Let { be a horizontal line slightly above p. If £is close enough to p then
s; and s; must be adjacent along (. (To be precise, we should take £ such that
there is no event point on {, nor in between ¢ and the horizontal line through
p.) In other words, there is a position of the sweep line where s; and s; are L
adjacent. On the other hand, s; and s; are not yet adjacent when the algorithm
starts, because the sweep line starts above all line segments and the status is
empty. Hence, there must be an event point ¢ where s; and s; become adjacent
and are tested for intersection.

So our approach is correct, at least when we forget about the nasty cases men-
tioned earlier. Now we can proceed with the development of the plane sweep
algorithm. Let’s briefly recap the overall approach. We imagine moving a hor-
izontal sweep line £ downwards over the plane. The sweep line halts at certain
event points: in our case these are the endpoints of the segments, which we
know beforehand, and the intersection points, which are computed on the fly.
While the sweep line moves we maintain the ordered sequence of segments
intersected by it. When the sweep line halts at an event point the sequence of
segments changes and, depending on the type of event point, we have to take
several actions to update the status and detect intersections.

When the event point is the upper endpoint of a segment, there is a new seg-
ment intersecting the sweep line. This segment must be tested for intersection
against its two neighbors along the sweep line. Only intersection points below v\
the sweep line are important; the ones above the sweep line have been detected
already. For example, if segments s; and s; are adjacent on the sweep line, and
a new upper endpoint of a segment s; appears in between, then we have to test
s; for intersection with s; and s;. If we find an intersection below the sweep ~ = intersection
line, we have found a new event point. After the upper endpoint is handled we detected
continue to the next event point.

When the event point is an intersection, the two segments that intersect
change their order. Each of them gets (at most) one new neighbor against
which it is tested for intersection. Again, only intersections below the sweep
line are still interesting. Suppose that four segments s, s, 7, and s, appear in
this order on the sweep line when the intersection point of s; and s, is reached. NG
Then sz and s; switch position and we must test s; and s; for intersection below
the sweep line, and also s; and s,,. The new intersections that we find are, of
course, also event points for the algorithm. Note, however, that it is possible
that these events have already been detected earlier, namely if a pair becoming
adjacent has been adjacent before. 23

Chapter 2 When the event point is the lower endpoint of a segment, its two neighbors
LINE SEGMENT INTERSECTION now become adjacent and must be tested for intersection. If they intersect
below the sweep line, then their intersection point is an event point. (Again,
this event could have been detected already.) Assume three segments sy, sy,
and s, appear in this order on the sweep line when the lower endpoint of s;
is encountered. Then s; and s, will become adjacent and we test them for
intersection.

After we have swept the whole plane—more precisely, after we have treated
the last event point—we have computed all intersection points. This is guar-
anteed by the following invariant, which holds at any time during the plane
sweep: all intersection points above the sweep line have been computed cor-
rectly.

I After this sketch of the algorithm, it’s time to go into more detail. It’s also time
to look at the degenerate cases that can arise, like three or more segments meet-
ing in a point. We should first specify what we expect from the algorithm in
i these cases. We could require the algorithm to simply report each intersection
point once, but it seems more useful if it reports for each intersection point a
list of segments that pass through it or have it as an endpoint. There is another
special case for which we should define the required output more carefully,
namely that of two partially overlapping segments, but for simplicity we shall
ignore this case in the rest of this section.

We start by describing the data structures the algorithm uses.

First of all we need a data structure—called the event queue—that stores
the events. We denote the event queue by Q. We need an operation that re-
| moves the next event that will occur from Q, and returns it so that it can be
| treated. This event is the highest event below the sweep line. If two event
points have the same y-coordinate, then the one with smaller x-coordinate will
' be returned. In other words, event points on the same horizontal line are treated

from left to right. This implies that we should consider the left endpoint of a

horizontal segment to be its upper endpoint, and its right endpoint to be its

lower endpoint. You can also think about our convention as follows: instead of

having a horizontal sweep line, imagine it is sloping just a tiny bit upward. As

¢ aresult the sweep line reaches the left endpoint of a horizontal segment just be-

............................. fore reaching the right endpoint. The event queue should allow for insertions,

because new events will be computed on the fly. Notice that two event points

can coincide. For example, the upper endpoints of two distinct segments may

coincide. It is convenient to treat this as one event point. Hence, an insertion
must be able to check whether an event is already present in Q,

We implement the event queue as follows. Define an order < on the event
points that represents the order in which they will be handled. Hence, if p
and g are two event points then we have p < ¢ if and only if p, > gy holds
or py = gy and py < g, holds. We store the event points in a balanced binary

search tree, ordered according to <. With each event point p in Q we will store
the segments starting at p, that is, the segments whose upper endpoint is p. This
24 information will be needed to handle the event. Both operations—fetching the

next event and inserting an event—take O(logm) time, where m is the number Section 2.1
of events in Q, (We do not use a heap to implement the event queue, because LINE SEGMENT INTERSECTION
we have to be able to test whether a given event is already presentin Q.)

Second, we need to maintain the status of the algorithm. This is the or-
dered sequence of segments intersecting the sweep line. The status structure,
denoted by T, is used to access the neighbors of a given segment s, s0 that they ;
can be tested for intersection with s. The status structure must be dynamic: as ‘T :
segments start or stop to intersect the sweep line, they must be inserted into or
deleted from the structure. Because there is a well-defined order on the seg-
ments in the status structure we can use a balanced binary scarch tree as status
structure. When you are only used to binary search trees that store numbers,
this may be surprising. But binary search trees can store any set of elements,
as long as there is an order on the elements.

In more detail, we store the segments intersecting the sweep line ordered
in the leaves of a balanced binary search tree 7. The left-to-right order of
the segments along the sweep line corresponds (o the left-to-right order of the
leaves in ‘7. We must also store information in the internal nodes to guide the
search down the tree to the leaves. At each internal node, we store the segment
from the rightmost leal in its left subtree. (Alternatively, we could store the
segments only in interior nodes. This will save some storage. However, it is
conceptually simpler to think about the segments in interior nodes as values
to guide the search, not as data items. Storing the segments in the leaves also
makes some algorithms simpler to describe.) Suppose we search in 7 for the
segment immediately to the left of some point p which lies on the sweep line.
At each internal node v we simply test whether p lies left or right of the segment
stored at v. Depending on the outcome we descend to the left or right subtree
of v. eventually ending up in a leaf. Either this leaf, or the leaf immediately to
the left of it, stores the segment we are searching for. In a similar way we can
find the segment immediately to the right of p, or the segments containing p.
It follows that each update and neighbor search operation takes O(logn) time.

The event queue Q and the status structure 7" are the only two data struc-
tures we need. The global algorithm can now be described as follows.

Algorithm FINDINTERSECTIONS(S)
Input. A set S of line segments in the plane.
Output. The set of intersection points among the segments in S, with for each
intersection point the segments that contain it.
I. Initialize an empty event queue Q. Next, insert the segment endpoints
into Q; when an upper endpoint is inserted, the corresponding segment
should be stored with it.

2. Initialize an empty status structure 7.

3. while Q. is not empty

4. do Determine the next event point p in Q and delete it.
3 HANDLEEVENTPOINT(p)

We have already seen how events are handled: at endpoints of segments we
have to insert or delete segments from the status structure 7', and at intersection
points we have to change the order of two segments. In both cases we also 25

Chapter 2
LINE SEGMENT INTERSECTION

Figure 2.2
An event point and the changes in the
status structure

26

have to do intersection tests between segments that become neighbors after the
event. In degenerate cases—where several segments are involved in one event
point—the details are a little bit more tricky. The next procedure describes how
to handle event points correctly; it is illustrated in Figure 2.2.

HANDLEEVENTPOINT(p)

L

Phith B

2
8.
9.

10.
11;
12,
13
14.
15
16.

Let U(p) be the set of segments whose upper endpoint is p; these seg-
ments are stored with the event point p. (For horizontal segments, the
upper endpoint is by definition the left endpoint.)
Find all segments stored in T that contain p; they are adjacent in 7. Let
L(p) denote the subset of segments found whose lower endpoint is p,
and let C(p) denote the subset of segments found that contain p in their
interior.
if L(p) UU(p) UC(p) contains more than one segment
then Report p as an intersection, together with L(p), U(p), and C(p).
Delete the segments in L(p) UC(p) from 7T
Insert the segments in U (p) UC(p) into T. The order of the segments in
T should correspond to the order in which they are intersected by a sweep
line just below p. If there is a horizontal segment, it comes last among all
segments containing p.
(x Deleting and re-inserting the segments of C(p) reverses their order. *)
if U(p) UC(p) = 0
then Let s; and s, be the left and right neighbors of p in 7.
FINDNEWEVENT(s;, s,, p)
else Let s’ be the leftmost segment of U (p) UC(p) in T.
Let 5; be the left neighbor of s’ in 7.
FINDNEWEVENT(s,s', p)
Let s” be the rightmost segment of U (p) UC(p) in 7.
Let s, be the right neighbor of s” in 7.
FINDNEWEVENT(s", s-, p)

Note that in lines 8—16 we assume that s; and s, actually exist. If they do not
exist the corresponding steps should obviously not be performed.

The procedures for finding the new intersections are easy: they simply test two
segments for intersection. The only thing we need to be careful about is, when
we find an intersection, whether this intersection has already been handled ear-
lier or not. When there are no horizontal segments, then the intersection has
* not been handled yet when the intersection point lies below the sweep line.
But how should we deal with horizontal segments? Recall our convention that
events with the same y-coordinate are treated from left to right. This implies
that we are still interested in intersection points lying to the right of the current
event point. Hence, the procedure FINDNEWEVENT is defined as follows.

FINDNEWEVENT(sy,8,,)

I. if 5; and s, intersect below the sweep line, or on it and to the right of the
current event point p, and the intersection is not yet present as an
eventin Q,

2 then Insert the intersection point as an event into Q.

What about the correctness of our algorithm? It is clear that FINDINTERSEC-
TIONS only reports true intersection points, but does it find all of them? The
next lemma states that this is indeed the case.

Lemma 2.2 Algorithm FINDINTERSECTIONS computes all intersection points
and the segments that contain it correctly.

Proof. Recall that the priority of an event is given by its y-coordinate. and that
when two events have the same y-coordinate the one with smaller x-coordinate
is given higher priority. We shall prove the lemma by induction on the priority
of the event points.

Let p be an intersection point and assume that all intersection points ¢ with
a higher priority have been computed correctly. We shall prove that p and
the segments that contain p are computed correctly. Let U(p) be the set of
segments that have p as their upper endpoint (or, for horizontal segments, their
left endpoint), let L(p) be the set of segments having p as their lower endpoint
(or, for horizontal segments, their right endpoint), and let C(p) be the set of
segments having p in their interior.

First, assume that p is an endpoint of one or more of the segments. In
that case p is stored in the event queue Q at the start of the algorithm. The
segments from U (p) are stored with p, so they will be found. The segments
from L(p) and C(p) are stored in 7 when p is handled, so they will be found in
line 2 of HANDLEEVENTPOINT. Hence, p and all the segments involved are
determined correctly when p is an endpoint of one or more of the segments.

Now assume that p is not an endpoint of a segment. All we need to show is
that p will be inserted into Q at some moment. Note that all segments that are
involved have p in their interior. Order these segments by angle around p, and
let 5; and s; be two neighboring segments. Following the proof of Lemma 2.1

Section 2.1
LINE SEGMENT INTERSECTION

27

Chapter 2
LINE SEGMENT INTERSECTION

28

we see that there is an event point with a higher priority than p such that s; and
sj become adjacent when q is passed. In Lemma 2.1 we assumed for simplicity
that s; and s; are non-horizontal, but it is straightforward to adapt the proof for
horizontal segments. By induction, the event point g was handled correctly,
which means that p is detected and stored into Q,

So we have a correct algorithm. But did we succeed in developing an output-
sensitive algorithm? The answer is yes: the running time of the algorithm is
O((n+ k)logn), where k is the size of the output. The following lemma states
an even stronger result: the running time is O((n + I')logn), where I is the
number of intersections. This is stronger, because for one intersection point
the output can consist of a large number of segments, namely in the case where
many segments intersect in a common point.

Lemma 2.3 The running time of Algorithm FINDINTERSECTIONS for a set S
of n line segments in the plane is O(nlogn +Ilogn), where I is the number of
intersection points of segments in S.

Proof. The algorithm starts by constructing the event queue on the segment
endpoints. Because we implemented the event queue as a balanced binary
search tree, this takes O(nlogn) time. Initializing the status structure takes
constant time. Then the plane sweep starts and all the events are handled. To
handle an event we perform three operations on the event queue Q: the event
itself is deleted from Q in line 4 of FINDINTERSECTIONS, and there can be one
or two calls to FINDNEWEVENT, which may cause at most two new events to
be inserted into Q. Deletions and insertions on Q take O(logn) time each. We
also perform operations—insertions, deletions, and neighbor finding—on the
status structure 7, which take O(logn) time each. The number of operations
is linear in the number m(p) := card(L(p) UU (p) UC(p)) of segments that are
involved in the event. If we denote the sum of all m(p), over all event pomts Ds
by m, the running time of the algorithm is O(mlogn).

It is clear that m = O(n + k), where k is the size of the output; after all,
whenever m(p) > 1 we report all segments involved in the event, and the only
events involving one segment are the endpoints of segments. But we want
to prove that m = O(n + I), where [is the number of intersection points. To
show this, we will interpret the set of segments as a planar graph embedded in
the plane. (If you are not familiar with planar graph terminology, you should
read the first paragraphs of Section 2.2 first.) Its vertices are the endpoints of
segments and intersection points of segments, and its edges are the pieces of
the segments connecting vertices. Consider an event point p. It is a vertex of
the graph, and m(p) is bounded by the degree of the vertex. Consequently, m is
bounded by the sum of the degrees of all vertices of our graph. Every edge of
the graph contributes one to the degree of exactly two vertices (its endpoints),
so m is bounded by 2n,., where n, is the number of edges of the graph. Let’s
bound n, in terms of n and /. By definition, n,, the number of vertices, is at
most 2n + 1. It is well known that in planar graphs n, = O(n,), which proves
our claim. But, for completeness, let us give the argument here. Every face

of the planar graph is bounded by at least three edges—provided that there are Section 2.2

at least three segments—and an edge can bound at most two different faces. THE DOUBLY-CONNECTED EDGE
Therefore 1y, the number of faces, is at most 2n./3. We now use Euler's LIST

formula, which states that for any planar graph with n, vertices, n, edges, and

n faces, the following relation holds:

ny—ne+ny 2 2.

Equality holds if and only if the graph is connected. Plugging the bounds on
ny and 1y into this formula, we get

2n,
2 (2l —ne+ % = (2n+1)—n./3.

So n, < 6n+3/—06,and m < 12n+ 6/ — 12, and the bound on the running time
follows.

We still have to analyze the other complexity aspect, the amount of storage
used by the algorithm. The tree 7 stores a segment at most once, so it uses
O(n) storage. The size of Q can be larger, however. The algorithm inserts
intersection points in Q when they are detected and it removes them when they
are handled. When it takes a long time before intersections are handled, it
could happen that Q gets very large. Of course its size is always bounded by
O(n+ 1), but it would be better if the working storage were always linear.
There is a relatively simple way to achieve this: only store intersection
points of pairs of segments that are currently adjacent on the sweep line. The
algorithm given above also stores intersection points of segments that have
been horizontally adjacent, but aren’t anymore. By storing only intersections
among adjacent segments, the number of event points in Q is never more than
linear. The modification required in the algorithm is that the intersection point
of two segments must be deleted when they stop being adjacent. These seg-
ments must become adjacent again before the intersection point is reached, so
the intersection point will still be reported correctly. The total time taken by
the algorithm remains O(nlogn + I'logn). We obtain the following theorem:

Theorem 2.4 Let S be a set of n line segments in the plane. All intersection
points in S, with for each intersection point the segments involved in it, can be
reported in O(nlogn + [logn) time and O(n) space, where I is the number of
intersection points.

2.2 The Doubly-Connected Edge List

We have solved the easiest case of the map overlay problem, where the two
maps are networks represented as collections of line segments. In general,
maps have a more complicated structure: they are subdivisions of the plane into
labeled regions. A thematic map of forests in Canada, for instance, would be 29

.

