Parallel Expression Evaluation

Example Input:

```
+    
/   
+   +
/ 
X  X
/ 
1 4 5 3
```

Output! Value, all subvalues

Goal! Parallel Alg

Simple Alg

1) Assign a processor to each node.
2) While tree non empty do
 2a) if leaf send value to parent
 delete node [RAKE]
 2b) if node has 2 values then evaluate
Worst Case for Simple Alg

Recall: Horner's Rule

Input: polynomial $a_0 + a_1x + a_2x^2 + \ldots + a_nx^n$

Alg: $a_0 + x(a_1 + x(\ldots + x(a_{n-1} + x(a_n))\ldots))$

As a tree

```
    +
   / |
  +  |
  /   |
  x   +
   /   |
   x   |
    /   |
   a_n |
```

Simple Alg

$O(n)$ Time

$O(n^2)$ Work
Keeping nodes with only one value busy!

Here we view the tree edges as transformers.

Init: The edge are the identity.

\[a(y+b) = ay + ab \]
The general case.

\[f(y) = ay + b \quad g(y) = cy + d \]

\[f(g(y)) = a(cy + d) + b = acy + (ad + b) \]

Note: fons \(ay + b \) are closed under compositions

We can also remove an independent set of 1-child nodes (degree 2 nodes)

Very similar to pivoting in Gaussian Elim!
Def \(V_0 \ldots V_K \) is a chain if:

1) \(V_{i+1} \) is only child of \(V_i \) \(0 \leq i < K \).
2) \(V_K \) has only one child & it is not a leaf

Eg:

![Diagram showing a chain](image)

The Independent Set

1) All leaves
2) Max independent set from each maximal chain
Parallel Tree Contraction

RAKE \equiv remove all leaves

COMPRESS \equiv replace each maximal chain of length K with one of length $\sqrt[3]{2}$.

\[\text{CONTRACT} = \{ \text{RAKE}, \text{COMPRESS} \} \]

Thm $\mid \text{CONTRACT}(T) \mid \leq \frac{2}{3} \mid T \mid$

pf

Def $V_0 = \text{leaves of } T$

$V_1 \subseteq V$ with 1 child

$V_2 \subseteq V$ with $2 \leq \# \text{ children}$

$C \subseteq V_1$ with child in V_0
Claim: $|V_0| > |V_a|$

Proof: Induct on size of T.

Claim: $|V_0| > |C|$.

Def $R_a = V_0 \cup V_2 \cup C$

$C_{om} = V_1 - R_a$

$|\text{RAKE}(R_a)| \leq |V_2 \cup C|$ $\Rightarrow |\text{RAKE}(R_a)| \leq \frac{2}{3}|R_a|$

Note: $C_{om} = \text{union of maximal chains}$

$|\text{COMPRESS}(C_{om})| \leq \frac{1}{2}|C_{om}|$

Cor: After $\log_{3\cdot 2} n$ CONTRACTS Two empty
Work and Time Efficient Tree Contraction

Idea 1: Do regular RAKE.
Use Random-Mate to COMPRESS chains.

Using Chernoff Bounds

Thm: Randomized Tree Contraction runs in $O(\log n)$ with high prob.

Thus $W = O(n \log n)$, $\text{Time} = O(\log n)$.

Idea 2: 1) Break tree in $n/\log n$ pieces each of size $\log n$.
2) Contract pieces to constant size.
3) Run Rand Tree Contraction on tree of size $O(n/\log n)$.
A Tree into Bridges

Let T be a rooted tree $T = (V, E)$

Def A subtree B is a bridge if at most 2 attachments: a root, leaf.

Ex 1) Single edge
2) Induced subtree
3)

Thm $\forall m \in \text{decomp of } T \text{ into } O(n/m)$ bridges of size m.
\[T = (V, E) \quad W(v) = \text{number of nodes in subtree rooted at } V \]

Def \(V \) is \(m \)-critical if

1. \(V \) not a leaf.
2. \(\frac{rw(v)}{m} > \frac{rw(v')}{m} \) \(V' \) child of \(V \).

e.g. 5-critical

5-bridges

Claim (see chap 3) \((m-1) \)-bridges proves thm.
Thin Tree Contraction can be done in \(O(n) \) work \(O(\log n) \) time with high prob.

Known Det in same bounds.

Alg

1) Compute \(\log n \)-critical nodes using Euler tour
2) Contract bridges
3) Contract \(\frac{1}{\log n} \) tree using random mate
4) Expand.