Resistive Model of a Graph & Random Walks

Motivation: Making a recommendation (NETFLIX)

Question: Should we recommend M to V? Score(V, M)

Idea 1

\[\text{Score}(V, M) = \text{graph dist from } V \text{ to } M \]

\[W_{ij} = \frac{1}{\text{rank}ij} \]

\[\text{Score}(V, M) = \min_{VPM} \text{W}(P) \]

Idea 2

\[\text{W}(P) = \min_{e \in P} (\text{rank}(e)) \]

\[\text{Score}(V, M) = \max_{VPM} \text{W}(P) \]
Problem For 1) and 2) extra paths do not improve score

Idea 3 Score(\(V, M\)) \(\equiv\) Max flow from \(V\) to \(M\).

Problem Shorter paths do not improve score

Idea 4 View edges as conductors

\[\text{Score}(V, M) = \text{effective conductance}\]

Idea 5 Consider random walk from \(V\) to \(M\)

\[\text{Score}(V, M) = \text{hit}(V, M) + \text{hit}(M, V)\]

\[\text{hit}(V, M) \equiv \text{Expect length random walk from } V, M\]

We show 4) & 5) are related.
Resistance Theory

Ohm's Law:

\[V = I \times R \]

- \(C \equiv \) conductance
- \(R \equiv \) resistance
- \(V \equiv \) voltage
- \(I \equiv \) current

\[C = \frac{1}{R}, \quad I = C \cdot V = \frac{V}{R} \]

Facts no proof

Resistors in series:

\[R = R_1 + \cdots + R_m \]

\[C = \frac{1}{(\frac{1}{C_1} + \cdots + \frac{1}{C_m})} = \theta \]

i.e. \(I = \frac{V}{R} \)
Conductors in Parallel

\[C = C_1 + \cdots + C_m \]

\[\text{ie } i = V \cdot C \]

Effective Resistance/Conductance

Let \(G \) be a network of resistors

\[V_{ab} = \text{voltage} \]

\[i_{ab} = \text{current} \]

\[R_{ab} = \frac{V_{ab}}{i_{ab}} \]

\[C_{ab} = \frac{1}{R_{ab}} \]
HW) Show that R_{ab} is a metric space

ie
1) $R_{ab} \geq 0$
2) $R_{ab} = 0$ iff $a = b$
3) $R_{ab} = R_{ba}$
4) $R_{ac} \leq R_{ab} + R_{bc}$
Computing effective resistance

Use Kirchhoff's Law: \(\text{flow in} = \text{flow out} \)

An example

\[
\begin{align*}
V_1 & \quad C_1 \quad V_2 \quad V_3 \\
V & = V_0 \\
C_2 & \quad V_2 \\
C_3 & \quad V_3
\end{align*}
\]

by Ohm's Law
\[
\begin{align*}
i_1 &= C_1 (V - V_1) \\
i_2 &= C_2 (V - V_2) \\
i_3 &= C_3 (V - V_3)
\end{align*}
\]

Residual current \(i = i_1 + i_2 + i_3 \)

by Kirchhoff
\[
i_1 + i_2 + i_3 = 0
\]

\[
C_1 (V - V_1) + C_2 (V - V_2) + C_3 (V - V_3) = 0
\]

\[
(C_1 + C_2 + C_3) V = C_1 V_1 + C_2 V_2 + C_3 V_3
\]
\[C = C_1 + C_2 + C_3 \]
\[CV = C_1 V_1 + C_2 V_2 + C_3 V_3 \]
\[V = \frac{C_1}{C} V_1 + \frac{C_2}{C} V_2 + \frac{C_3}{C} V_3 \]

V is convex combination of \(V_1, V_2, V_3 \)

residual current = \(CV - C_1 V_1 - C_2 V_2 - C_3 V_3 \)

The general case

\[G = (V, E, C) \quad C : E \rightarrow \mathbb{R}^+ \]
\[V = \{ V_1, \ldots, V_n \} \]

\[d(V_i) = \sum_{(i,j) \in E} C_{ij} \]

\[A_{ii} = \begin{cases}
C_{ii} & \text{if } (i,i) \in E \\
0 & \text{otherwise}
\end{cases} \]
Laplacian \((G) = L(G) = L \)

\[L_{ij} = \begin{cases}
 d(v_i) & \text{if } i = j \\
 -C_{ij} & \text{if } (i,j) \in E \\
 0 & \text{otherwise}
\end{cases} \]

ie \(L = D - A \) where \(D = \begin{pmatrix}
 d(v_1) & 0 & \cdots & 0 \\
 0 & \ddots & \ddots & \vdots \\
 \vdots & \ddots & \ddots & 0 \\
 0 & \cdots & 0 & d(v_n)
\end{pmatrix} \)

Let \(V \) be a voltage setting of nodes

Note \((LV)_i \) = residual current at \(V_i \)

Inverse: We inject currents and get voltages.

The net injected must be zero!
Goal: \(R_{in} \)

method 1 solve \(L \left(\begin{array}{c} 0 \\ V_1 \\ \vdots \\ V_{n-1} \\ 1 \end{array} \right) = \left(\begin{array}{c} 0 \\ c \\ 0 \\ \vdots \\ -c \end{array} \right) \) \(\star \) \(c = V/R \)

\(V = V_i \)

\(R = V_i \)

\(\star \): is called a boundary valued prob.

In our case \(V_i \) \& \(V_n \) are the bdary

\((V_1, \ldots, V_n) \) is called harmonic

because \(V_i \in \text{interior} \Rightarrow \)

\(V_i \) is convex combination of neighbors
Maximum Principle: If f is harmonic, then min & max are on bdary.

If v_i interior, then \exists v_i & v_j s.t. $v_i \leq v \leq v_j$.

Uniqueness Principle: If f & g are harmonic with same bdary values, then $f = g$.

If $f - g$ is harmonic with zero on bdary,

$\Rightarrow f - g = 0 \Rightarrow f = g$.

method 2 solve $kV = \begin{pmatrix} 1 \\ 0 \\ 0 \\ -1 \end{pmatrix}$ Does V exist?

$R_{\text{in}} = V_1 - V_n$

Another way to view the laplacian

Edge-vertex Matrix

$$\Gamma = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Orient each edge

$\Gamma = \begin{pmatrix} e_1 & e_2 & e_3 & e_4 \end{pmatrix}$
Let c_i, \ldots, c_m = conductance of e_i, \ldots, e_m

$$C = \begin{pmatrix} c_1 & 0 \\ 0 & \vdots \\ 0 & c_m \end{pmatrix}$$

Note: ΓV = voltage drop across each edge

$C \Gamma V$ = current flow

$\Gamma^T C \Gamma^T V$ = residual current at each vertex

Thus

$L = \Gamma^T C \Gamma$
Current & Energy/Power Dissipation

\[\frac{C}{R} \]

\[V \]

Newton

Energy = Force \times Distance

\[\equiv \text{Volt} \times \text{Current} \]

\[\equiv V \times i \]

\[\equiv CV^2 \]

\[\equiv i^2R \]

Network

\[E = \frac{1}{2} \sum_{x,y} i_{xy} (V_x - V_y) \]

\[\nabla^T L \nabla = \nabla^T \Gamma^T C \Gamma \nabla = (\Gamma \nabla)^T C (\Gamma \nabla) \]

\[= \sum_{\text{oriented}} C_{xy} (V_x - V_y)^2 = E \]

\[(x,y) \in \mathcal{E} \]
Define \(j_x = \sum_y j_{xy} \) (residual flow at \(x \))

Let \(W \) = any voltage settings

\(j \) = any flow from \(a \) to \(b \)

Conservation of Energy

\[
(W_a - W_b) j_a = \frac{1}{2} \sum_{x,y} (W_x - W_y) j_{xy}
\]

\[
\text{LHS} = \sum_{x,y} (W_x - W_y) j_{xy} = \sum_x W_x \sum_y j_{xy} - \sum_y W_y \sum_x j_{xy}
\]

\[
= W_a \sum_y j_{y} + W_b \sum_y j_{y} - (W_a \sum_x j_{x} + W_b \sum_x j_{x})
\]

\[
= W_a j_a + W_b j_b - W_a (-j_a) - W_b (-j_b)
\]

\[
= W_a j_a - W_b j_a + W_a j_a - W_b j_a = 2(W_a - W_b) j_a
\]
Suppose $a, b \in V$ effective resistance R_{ab}

Effective energy $\frac{1}{2} R_{ab} = R_{ab}$ if $c_{ab} = 1$

Real energy using Kirchhoff's Law

Solve $HV = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ \hspace{1cm} $V_a = V_i$ \hspace{1cm} $V_b = V_n$

Energy $\equiv V^T L V = V^T \begin{pmatrix} 1 \\ 0 \end{pmatrix} = V_a - V_b$

Thm. Real Kirchhoff energy \equiv effective energy

Minimum Energy Flow

Def. (OR type flow)

$j : E \rightarrow \mathbb{R}$ is a flow from $a \rightarrow b$ if:

1) $j_{xy} = -j_{yx}$

2) $\sum_j j_{xy} = 0$ if $x \neq a, b$

3) $j_{xy} = 0$ \hspace{1cm} $(x, y) \in E$
Thomson's Principle

\[i \text{ is a unit Kirchhoff flow from } a \text{ to } b \]
\[j \text{ is any unit flow from } a \text{ to } b \]

then \[\sum i_{xy}^2 R_{xy} \leq \sum i_{xy}^2 R_{xy} \]

So let \(d = j - i \) then \(d \) is a zero flow if \(d_a = 0 \)

\[\sum j_{xy}^2 R_{xy} = \sum (i_{xy} + d_{xy})^2 R_{xy} \]
\[= \sum i_{xy}^2 R_{xy} + 2 \sum i_{xy} R_{xy} d_{xy} + \sum d_{xy}^2 R_{xy} \]
\[+ 2 \sum (V_x - V_y) d_{xy} \text{ (*)} \]

Set \(W = V \) & \(j = d \) then by conservation of energy

\((*) = 4 (V_a - V_b) d_a = 0 \) thus

\[\sum j_{xy}^2 R_{xy} = \sum i_{xy}^2 R_{xy} + \sum d_{xy}^2 R_{xy} \]
\[\geq \sum i_{xy}^2 R_{xy} \]
Rayleigh's Monotonicity Law

If \(\forall x, y \quad R_{xy} \geq R_{xy} \) then \(\bar{E} R_{ab} \geq E R_{ab} \)

Let \(j \) = unit flow from \(a \) to \(b \) in \(\bar{R}_{x} \)
\(i = "R" \)

\[
\bar{E} R_{ab} = \int \bar{E} R_{ab} = \frac{1}{2} \Sigma j_{xy}^{2} \bar{R}_{xy} \\
\geq \frac{1}{2} \Sigma j_{xy}^{2} R_{xy} \\
\geq \frac{1}{2} \Sigma i_{xy}^{2} R_{xy} \quad (Thomson) \\
= E R_{ab}
\]