Goal: Modify Binomial Heaps so that O(i) Amortized decrease Key

Back to Binomial Heaps

Lazy Meld = Only link during deletemm o

Claim AC is still O(logn)

wain P(A) = # of trees

Idea decreose Key (K,A) 1) disconnect K from its tree.

2) add subtree to trees of A.

Prob: Trees will become unbalanced.

## Solution A nonroot node can have at most one missing child.

Det Mark(K) if k has a missing child & K is not a root.

Det rank (T) = # children of root

Cut(x)

- 1) return if Kio a root
- 2) Let P= Parent (K)
- 3) Remove subtree of k & move it to list of trees (unmark k & decrement rank of P)
- 4) If Pis marked then Cut (P).

øðà Input. 12 Operation: Cut (19) 10 15 13

Output:

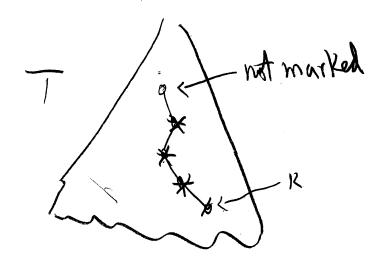
## AC of decrease key

Potential Methol: D(A) = #trees + 2 (# marks)

Token Methol: 1) token on each root a) 2 tokens on each marked node

Claim Amortized Cost of Cut 64

onsider cut(x)



9/init-cost = # new trees formed eg +

=# nodes unmarked +1

DE = # new trees + 2 (1-# unmarked)
Thew mark

Tix

= #newtrees + 2(1-(#newtrees -1)) <- #newtrees +4

AC = #newtrees - # newtrees +4 =4

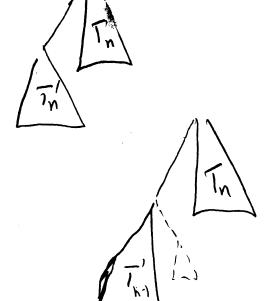
Heed bd for AC deletemin!

Suffice F<sub>n+2</sub> = / Fibtree of rank n/ F<sub>0</sub>=0; F<sub>1</sub>=1; F<sub>n+1</sub>= F<sub>n</sub>+F<sub>n-1</sub> Dh Let Th = min size rank n Fits tree.

How to get Trition?

Idea ) trak (Tn) Tn) =

2) Cut child of In



$$=$$
  $\lim_{n\to\infty} \left( T_{n-1}, T_n \right)$ 

Recarence (Tn+1) < |Tn| + |Tn-1) N31.

Size Lower Bounds for Fibonacci Trees

There are many different proofs the the size is bound below by the Fibonacci numbers. Here is yet another one.

Claim: All Fibonacci trees can be generated by the following set of rules.

- 1) The singleton tree is a Fib-tree
- 2) The link of 2 Fib-trees is a Fib-tree.

  The two tree must have the same rank and the rank of the new tree is one more than the children.
- 3) The removal of any child from the root generates a Fib-tree. The new rank is one less.
- 4) The removal of a child from an unmarked non-root parent is a Fib-tree. The parent is now marked.

Define the Fibonacci numbers to be

$$F_0 = 0$$
  $F_1 = 1$   $F_{n+1} = F_n + F_{n-1}$ 

Claim:  $F_{(n+2)} \leftarrow F_{(n+2)}$ 

Proof:

The proof is by induction on the rank of a tree T.

If the rank is 0 or 1 we are done by inspection. Let T be a minimal size tree of rank n+1 generated by the rules above.

Consider a sequence S of operation generating T. Let  $T' = Link(T_1,T_2)$  be the last Link in the sequence,  $T_2$  being linked to  $T_1$ . Assume that the rank of T' is of minimum size over all sequences generating T. In this case we claim that there will be no rule-3's after T'.

Proof of subclaim:

The proof is by contradiction.

Suppose there was a rule-3 after constructing T'.

There are two case:

- 1) If we remove T\_2 from the tree then we can find a new sequence which does not use this link at all.
- 2) Consider the case of removing a child of T\_1 after T'.

  Since T is of minimum size we will remove a child of T\_2

7

after T'. Thus we could have removed these two children before the link and then linked them. This contradicts our assumption that the rank of T' was minimum.

Thus we now know that the rank of  $T_1$  and  $T_2$  are both n. WLOG all the rule-4s can be moved before T' except for the removal of a child of  $T_2$ . Let  $T'_2$  be the tree of rank n-1 with one child of the root removed.

$$|T| = |T_1| + |T'_2| >= F_(n+2) + F_(n+1) = F_(n+3).$$

QED

$$F_0 = F_{n-1} + F_{n-2}$$

$$F_0 = F_{n-1} + F_{n-2}$$

$$=) \left( \begin{array}{c} (1) \\ (1) \\ (1) \end{array} \right) = \left( \begin{array}{c} f_{n} \\ f_{n+1} \end{array} \right) = \left( \begin{array}{c} f_{n} \\ f_{n} \end{array} \right) = \left( \begin{array}{c} f_{n} \\ f_{n+1} \end{array} \right) = \left( \begin{array}{c} f_{n} \\ f_{n} \end{array} \right) = \left( \begin{array}{c} f_{n} \\ f_{n+1} \end{array} \right) = \left( \begin{array}{c} f_{n} \\ f_{n+1} \end{array} \right) = \left( \begin{array}{c} f_{n} \\ f_{n+1} \end{array} \right) = \left( \begin{array}{c} f_{n} \\ f_{n} \end{array} \right) = \left( \begin{array}{c} f_{n} \\ f_{n+1} \end{array} \right) = \left( \begin{array}{c} f_{n} \\ f_{n+1} \end{array} \right) = \left( \begin{array}{c} f_{n} \\ f_{n+1} \end{array} \right) = \left( \begin{array}{c} f_{n} \\ f_{n} \end{array} \right) = \left($$

$$dt(\lambda I - F) = (1 - 1) = \lambda(1 - 1) - 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1 - 1) + 1$$

$$dt(\lambda I - F) = (1$$

fall