Randomized Online-Algorithms

Online Problems
1) The Paging Problem
2) Server Problem
3) Cat/Mouse Games

Paging Prob

\[N \text{ pages in slow memory} \]
\[K \text{ pages in fast memory} \quad K < N \]

Request seq = \(\{ T_1, T_2, \ldots, T_m \} \)

Cost model

\[
\begin{array}{c|cc}
\text{request} & \text{cost} \\
T_e \text{ FM} & 0 \\
T_i \& \text{ FM} & 1 \quad \text{swap in } T_i \text{ and evict a page.}
\end{array}
\]
On-line Strategy (Deterministic)

LRU = Least Recently Used
(Evict page not used in longest time)

Off-line Strategy (Det)

LFD = Longest Forward Distance
(Evict page not needed for longest time)

Note: LRU & LFD are lazy alg.
Eager alg move before needed.
Know Results

Thm: Lazy algs suffice

Thm: LFO is off-line optimal

no pfs
Recall Metric Space =

1) Set S

2) Distance measure $d(\ ,\)$

$s.t.$

$\forall u \in S \ d(u,u) = 0$

$\forall u,v \in S \ d(u,v) \geq 0$

$\forall u,v,w \in S \ d(u,v) + d(v,w) \geq d(u,w)$

(triangle inequality)
K-server Prob

1) Metric space \(|S| \geq K+1\)

2) K-servers \(\{h_1, \ldots, h_K\} \subseteq S\)

3) Request sequence \(T = T_1, \ldots, T_m \subseteq S\)

Cost Model

<table>
<thead>
<tr>
<th>Request</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_i \in H)</td>
<td>0</td>
</tr>
<tr>
<td>(T_i \notin H)</td>
<td>Move some server (h_j) to (T_i) (\quad\text{Cost} = d(h_j, T_i))</td>
</tr>
</tbody>
</table>

A 2-server example = 2-headed disk Prob.

\[d(\text{head}_1, \text{head}_2) = \text{distance}\]
Paging Prob as a k-server Prob

Let

\[S = \text{pages of slow memory} \]

Fast memory as \(\subseteq S \)

\[d(u, v) = \begin{cases}
0 & \text{if } u = v \\
1 & \text{otherwise}
\end{cases} \]

\[\text{Known Thms} \]

Thm $\forall k$-server prob the competitive factor $\geq k$.

Thm $\forall k$-server probs $\exists 2k$-comp-fact alg

Conj $\forall k$-server probs $\exists k$-comp-fact alg.
Back to Paging Prob

The competitive factor for LRU versus LFD.

Consider case \(k+1 = N \)

Request \(T = 1, 2, 3, \ldots, N, 1, 2, 3, \ldots, N, 1, 2, \ldots \)

Note: After request \(1, \ldots, k \)

LRU has a page fault per request.

While

LFD has a page fault every \((k-1)\)'th request.

\[
\begin{array}{c|c|c}
& FM & requests & cost \\
\hline
& [1, \ldots, N-1] & N-1 & 0 \\
& [1, \ldots, N-2, N] & N & 1 \\
& [1, \ldots, N-3, N] & 1, \ldots, N-2 & 0 \\
& [1, \ldots, N-3, N-1, N] & N-1 & 1 \\
& [1, \ldots, N-4, N-2, N-1, N] & N, 1, \ldots, N-3 & 0 \\
& [1, \ldots, N-4, N-3, N-2, N] & N-2 & 1 \\
\end{array}
\]
Thus LRU is at most \((k-1)\)-competitive.

Goal: Get better cont-factor using randomization.

Def A randomized alg \(A\) is \(c\)-competitive if there exists a constant \(c\) and \(A\) is request seq \(\forall \text{ alg } B\) off-line

\[
\text{Expect} \left[C_A(T) \right] \leq c \cdot C_B(T) + \alpha
\]

We will show

\[\exists \text{ paging alg (Randomized) that is } O(\log N) \text{- competitive.} \]
Yet Another online Prob.

The Cat/Mouse Game

1) 1 Cat & 1 Mouse
2) N-hiding places

Cat = Seq of probes looking for mouse
Cost = \{ if mouse found
 \{ 0 o.w.

Note: Cat/Mouse just Paging with K+1 = N

Question: Find a good randomized strategy for mouse

First Try

RAND: If found move to random new home.
Claim RAND not good!

Suppose
Cat visits: 1, 2, \ldots, N-1, 2, 3, \ldots, N-1, 1

She does not probe N!

Opt off-line: Mouse moves to N
Total cost is 1.

RAND:
1) If at N cost is 0
2) If not at N

What is expected \# of moves to land at N?
This is the same as:
Expect \# of rolls of an N-sided die
to get, say, N.
Let E = The expected # of rolls

E satisfies recurrence:

$E = \frac{1}{N} (1) + \left(\frac{N-1}{N} \right) (1+E)$

$= 1 + \left(\frac{N-1}{N} \right) E$

$\frac{1}{N} E = 1 \Rightarrow E = N$

Back to RAND

$\text{Expect} [\text{RAND}] = N$

Thus RAND is $\mathcal{O}(N)$-competitive!
Claim: All alg are $\mathcal{O}(\log N)$ Competitive.

Proof:

Cats Alg: Probe randomly for t times where $t = N \log N$.

Online alg: Expected cost $= \frac{t}{N}$

Thus $= N \log N / N = \log N$

Off-line = Looking into future for a place to hide!

Question: # of probes for cat to inspect every square?

Let X be a random variable $=$ # probes.
Let $P_i =$ Prob of seeing a new sq after seeing i squares.

Thus $P_i = \frac{N-i}{N}$

let $X_i =$ Random variable # of probes to see a new sq after seeing i sq.

Note $X = \sum_{i=0}^{N-1} X_i$ & $E(X_i) = \frac{N}{N-i}$

Thus

$E(X) = \sum_{i=0}^{N-1} E(X_i) = \sum_{i=0}^{N-1} \frac{N}{N-i} = N \sum_{i=1}^{N} \frac{1}{i}$

$= \Theta(N \log N)$

Expect cost of off-line = $O(1)$

$\Rightarrow \Omega(\log N) = \text{Competitive} \quad \blacksquare$
A Better on-line Alg

MARKING : 1) Start at random place.
 2) Mark each probed place.
 3) When found move to random unmarked place.
 4) When all places marked unmark and restart.

Claim: Marking is $O(\log N)$-competitive.

Def: Phase = Time from a restart to a restart.
2 Types of probes

1) probing marked spot (no cost)
2) probing unmarked spot

Since Cat knows your strategy no type 1 probes.

Let $M_i = \begin{cases} 1 & \text{if found at probe } i, \\ 0 & \text{otherwise} \end{cases}$

$M = \sum M_i$ & $E(M_i) = \frac{1}{N-i+1}$

Thus $E(M) = \sum E(M_i) = \Theta(\log N)$

Since every place probed per phase

$Opt \geq 2$

Thus Marking is $O(\log N)$-Competitive
Marking for Pages

Init = no marks

1) Mark each requested page.
2) Eject a random unmarked page.
3) When all pages in fast memory are marked, restart.

Known: This alg is a Hk-Competitive