Basic Topic so far!

Present a prob (eg Max-Flow-Prob) give an algorithm for the prob.

For each prob we gave a bd on time, space, on work (eg $O(n^3)$)

Alice & Bob Prob:

Bob's Job: Write efficient code for 2-coloring a graph.

Alice's Job: " 3-coloring a graph!"
Run-time Guarantees

All have been polynomial time:

\(O(n^k) \) for some \(k \)

Times like \(O(2^n) \) or \(O(n \log n) \) are not polynomial time guarantees.

Problem Size and Actual Size

<table>
<thead>
<tr>
<th>Prob</th>
<th>Prob Size</th>
<th>Actual Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>(G = (V,E))</td>
<td>(V + E)</td>
<td>(V^2, (V+E) \log V)</td>
</tr>
<tr>
<td>Data Structure Keys</td>
<td>(n)</td>
<td>(n \log n)</td>
</tr>
<tr>
<td>Matrix (n \times n)</td>
<td>(n)</td>
<td>(n^{3 \log n} \log n)</td>
</tr>
</tbody>
</table>
Claim: A polynomial of a polynomial is a polynomial

If \(f, g \in \mathbb{Q}[x] \) then \(f(g(x)) \in \mathbb{Q}[x] \)

In particular \(\text{deg}(f) = n \) & \(\text{deg}(g) = m \)

then \(\text{deg}(f \circ g) = n \cdot m \)

What is a Prob?

Input - Output form

\[G = (V, E), a, b \in V \text{ encoded as a string in binary} \]

Output: Short path from \(a \) to \(b \)

encoded as a string in binary
Language Form: e.g.

\[\text{Prime} = \{ x \in \{0,1\}^* \mid x \text{ is a number in binary } \land \text{ } n \text{ is a prime number} \} \]

\[\text{Def } P = \{ L \subseteq \{0,1\}^* \mid \exists \text{ poly-time alg for deciding } L \} \]

\[\text{Thm } \text{Prime } \in P \hspace{1cm} (\text{no proof}) \]

\[\text{Def } \text{A cycle } C \text{ of } G \text{ is Hamiltonian if} \]

1) \(C \) is simple
2) \(C \) contains every vertex of \(G \).

\[\text{Ham-Cycle} = \{ G \mid G \text{ has a Ham-cycle} \} \]

\[\{ G \text{ has a Ham-cycle of } G \} \]
Witness and Certificates

\[H = \{ (G, C) \mid C \text{ is a Ham-cycle of } G \} \]

Note: \(H \in \text{P} \)

\[\text{Ham-Cycle} = \{ G \mid \exists C \text{ s.t. } (G, C) \in H \} \]

\[\text{Witness} \]

\[\text{NP} = \{ L \mid \exists R \text{ (poly-time relation) } \wedge \]
\[X \in L \iff (\exists y R(x, y) \wedge |y| \leq |x|^k \text{ some } k) \} \]

Thus, \(\text{Ham-Cycle} \in \text{NP} \)

\[L = \{ x \in \{0,1\}^* \mid x \notin \text{L3} \} \]

\[\text{Def: } \text{co-NP} = \{ L \subseteq \{0,1\}^* \mid \overline{L} \in \text{NP} \} \]
Reducibility

Many-One: \(L_1 \leq_p L_2 \) if \(\exists f \text{ s.t.}
\begin{align*}
1) & f \text{ is poly-time computable} \\
2) & x \in L_1 \iff f(x) \in L_2
\end{align*}
Turing Reduction:

$L_1 \leq_T^P L_2$ iff \exists poly-time alg A st

1) $L_1 = L_2$ is accepted by A

2) A may require calls to oracle for L_0.

Claims:

1) $L_1 \leq_P L_2 \leq_P L_3 \implies L_1 \leq_P L_3$

2) $L_1 \leq_T^P L_2 \leq_T^P L_3 \implies L_1 \leq_T^P L_3$

3) $L_1 \leq_P L_2 \land L_2 \in P \implies L_1 \in P$
Def. L is NP-Hard if $\forall L' \in \text{NP}$, $L' \leq_p L$.

Def. L is NP-Complete if

1) $L \in \text{NP}$
2) L is NP-Hard.
Models of computation for which poly-time are equivalent:

1) RAM
2) Turing Machines
3) Parallel-RAM ($\text{poly} \cdot \#\text{of processors}$)
4) Arrays of finite controls
5) λ-calculus

Not known

Quantum Computers
The First NP-Complete Prob

Boolean Formula

- Variables: x_1, \ldots, x_n, \overline{x}_i denote not x_i
- Literals: $x_1, \overline{x}_2, \ldots, x_n, \overline{x}_n$, a_i denote a literal

$\land \equiv \text{and} \quad \lor \equiv \text{or}$

Boolean Formula = Formula made from $\land, \lor, \neg, \text{ literals}$

Conjunctive Normal Form = Formula $\land \lor (\text{literals})$

Example: $(x_1 \lor x_2 \lor \overline{x}_3)(x_1 \lor \overline{x}_2 \lor x_4)(\ldots)$

Clause

$
\text{CNF} \equiv \{ \varphi \text{ in cnf} \mid \varphi \text{ is satisfiable} \}$

ie $\forall \text{ variables} \rightarrow \{T, F\}$ s.t. $T(\varphi)$ is true
(Cook's Thm) CNF is NP-Complete

No proof! See Kogen