Lecture 4

Introduction to Data Flow Analysis

I. Structure of data flow analysis
II. Example 1: Reaching definition analysis
III. Example 2: Liveness analysis
IV. Generalization

What is Data Flow Analysis?

- Local analysis (e.g. value numbering)
- analyze effect of each instruction
- compose effects of instructions to derive information from beginning of basic block to each instruction
- Data flow analysis
- analyze effect of each basic block
- compose effects of basic blocks to derive information at basic block boundaries
- from basic block boundaries, apply local technique to generate information on instructions

```
15-745: Intro to Data Flow

\section*{Static Program vs. Dynamic Execution}

- Statically: Finite program
- Dynamically: Can have infinitely many possible execution paths
- Data flow analysis abstraction:
- For each point in the program:
combines information of all the instances of the same program point.
- Example of a data flow question:
- Which definition defines the value used in statement " \(b=a\) "?

\footnotetext{
15-745: Intro to Data Flow
Carnegie Mellon
Todd \(C\). Mow
Todd C. Mowry
}

\section*{Effects of a Basic Block}
- Effect of a statement: \(a=b+c\)
- Uses variables (b, c)
- Kills an old definition (old definition of a)
- new definition (a)
- Compose effects of statements \(\rightarrow\) Effect of a basic block
- A locally exposed use in a b.b. is a use of a data item which is not
preceded in the b.b. by a definition of the data item
- any definition of a data item in the basic block kills all definitions of the
same data item reaching the basic block.
- A locally available definition = last definition of data item in b.b.
\(\mathrm{t} 1=\mathrm{r} 1+\mathrm{r} 2\)
\(\mathrm{r} 2=\mathrm{t} 1\)
\(t 2=r 2+r 1\)
\(1=\mathrm{t} 2\)
\(\begin{array}{ll}t 3=r 1 * \\ r 2 & =t 3\end{array}\)
r2 = t3
if r2>100 goto L1
15-745: Intro to Data Flow

Reaching Definitions: Another Example


15-745: Intro to Data Flo

\section*{II. Reaching Definitions}

- Every assignment is a definition
- A definition dreaches a point \(p\)
if there exists path from the point immediately following \(d\) to \(p\)
such that \(d\) is not killed (overwritten) along that path.
- Problem statement
- For each point in the program, determine if each definition in the program reaches the point
- A bit vector per program point, vector-length = \#defs

\section*{Data Flow Analysis Schema}

- Build a flow graph (nodes = basic blocks, edges = control flow)
- Set up a set of equations between in[b] and out[b] for all basic blocks \(b\)
- Effect of code in basic block:
- Transfer function \(f_{b}\) relates in[b] and out[b], for same \(b\)
- Effect of flow of control:
- relates out \(\left[b_{1}\right]\), in \(\left[b_{2}\right]\) if \(b_{1}\) and \(b_{2}\) are adjacent
- Find a solution to the equations
15-745: Intro to Data Flow
negie Mellon
Todd \(C\). Mon

\section*{Data Flow Analysis Schema}

- Build a flow graph (nodes = basic blocks, edges = control flow)
- Set up a set of equations between in[b] and out[b] for all basic blocks \(b\)
- Effect of code in basic block:
- Transfer function \(f_{b}\) relates in[b] and out[b], for same b
- Effect of flow of control:
- relates out \(\left[b_{1}\right]\), in \(\left[b_{2}\right]\) if \(b_{1}\) and \(b_{2}\) are adjacent
- Find a solution to the equations

\section*{Effects of a Basic Block}
\begin{tabular}{|c|c|c|c|}
\hline in [B0] & \[
\begin{aligned}
& \mathrm{do}: \mathrm{y}=3 \\
& \hline
\end{aligned}
\] & \(f_{\text {do }}\) & \\
\hline & d1: \(\mathbf{x}=10\) & \(f_{d 1}\) & \(f_{\mathrm{B}}=\mathrm{f}_{\mathrm{d} 2} \cdot \mathrm{f}_{\mathrm{d} 1} \cdot \mathrm{f}_{\mathrm{d} 1}\) \\
\hline & d2: \(\mathrm{y}=11\) & \(\mathrm{f}_{\mathrm{d} 2}\) & \\
\hline
\end{tabular}
- Transfer function of a statement \(s\) :
- out \([s]=f_{s}(\) in \([s])=\operatorname{Gen}[s] U(\) in \([s]-K i l l[s])\)
- Transfer function of a basic block B
- Composition of transfer functions of statements in \(B\)
- out \([B]=f_{B}(\operatorname{in}[B])=f_{d 2} f_{d 1} f_{d 0}(\) in \([B])\)
\(\left.=\operatorname{Gen}\left[d_{2}\right] \cup\left(\operatorname{Gen}\left[d_{1}\right] \cup\left(\operatorname{Gen}\left[d_{0}\right] \cup\left(\operatorname{in}[B]-\operatorname{Kill}\left[d_{0}\right]\right)\right)-\operatorname{Kill}\left[d_{1}\right]\right)\right)-\operatorname{Kill}\left[d_{2}\right]\)
\(=\operatorname{Gen}\left[d_{2}\right] \cup\left(\operatorname{Gen}\left[d_{1}\right] \cup\left(\operatorname{Gen}\left[d_{0}\right]-\operatorname{Kill}\left[d_{1}\right]\right)-\operatorname{Kill}\left[d_{2}\right]\right) \cup\)
\(=\operatorname{Gen}[B] \cup(\operatorname{in}[B]-\operatorname{Kill}[B])\)
- Gen[B]: locally exposed definitions (available at end of bb)
- Kill[B]: set of definitions killed by B

15-745: Intro to Data Flow rnegie Mellon
Todd C. Mowry
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Effects of a Stateme} \\
\hline \multicolumn{2}{|l|}{in [B0]} \\
\hline & d0: \(\mathrm{y}=3\) \\
\hline & \(\downarrow\) \\
\hline & d1: \(\mathbf{x}=10\) \\
\hline & \(\downarrow\) \\
\hline & d2: \(\mathrm{y}=11\) \\
\hline
\end{tabular}
- \(f_{s}\) : A transfer function of a statement
- abstracts the execution with respect to the problem of interest
- For a statement \(s(d: x=y+z)\)
out[s] = \(f_{s}\) (in[s]) \(=\) Gen[s] U (in[s]-Kill[s])
- Gen[s]: definitions generated: Gen[s] = \{d\}
- Propagated definitions: in[s]-Kill[s],
where Kill \([s]=\) set of all other defs to \(x\) in the rest of program

15-745: Intro to Data Flow

\section*{Example}

- a transfer function \(f_{b}\) of \(a\) basic block \(b\) :

OUT[b] = \(f_{b}\) (IN[b])
incoming reaching definitions \(\rightarrow\) outgoing reaching definitions
- A basic block b
- generates definitions: Gen[b],
- set of locally available definitions in b
- kills definitions: in[b] - Kill [b],
where Kill[b]=set of defs (in rest of program) killed by defs in b
- out[b] \(=\) Gen[b] U (in(b)-Kill[b])
15-745: Intro to Data Flow
Carnegie Mellon
Todd C. Monry

- out[b] \(=f_{b}(\) in[b] \()\)
- Join node: a node with multiple predecessors
- meet operator:
in \([\mathrm{b}]=\) out \(\left[p_{1}\right] \cup\) out \(\left[p_{2}\right] \cup \ldots \cup\) out \(\left[p_{n}\right]\), where
\(p_{1}, \ldots, p_{n}\) are all predecessors of \(b\)
15-745: Intro to Data Flo

\section*{Reaching Definitions: Iterative Algorithm}
input: control flow graph CFG = (N, E, Entry, Exit)
// Boundary condition
out[Entry] \(=\varnothing\)
// Initialization for iterative algorithm
For each basic block B other than Entry out \([B]=\varnothing\)

\section*{// iterate}

While (Changes to any out[] occur)
For each basic block B other than Entry \(\{\)
in \([B]=\cup\) (out \([p]\) ), for all predecessors \(p\) of \(B\) out \([B]=f_{B}(\operatorname{in}[B]) \quad / /\) out \([B]=\) gen \([B] \cup(\operatorname{in}[B]-k i l l[B])\) \}

\section*{Reaching Definitions: Worklist Algorithm}
input: control flow graph CFG = (N, E, Entry, Exit)
// Initialize
out [Entry] \(=\varnothing \quad\) // can set out [Entry] to special def
For all nodes i // if reaching then undefined use
out[i] \(=\varnothing \quad\) // can optimize by out[i]=gen[i]
ChangedNodes \(=\mathrm{N}\)
// iterate
While ChangedNodes \(\neq \varnothing\),
Remove i from ChangedNodes
in \([i]=U\) (out[p]), for all predecessors \(p\) of \(i\)
out \([i]=f_{i}(\operatorname{in}[i])\)
if (oldout \(\neq\) out \([i]\) ) \(/ /\) out[i]=gen[i]U(in[i]-kill[i])
for all successors s of i
add \(s\) to ChangedNodes
\}
1


\section*{III. Live Variable Analysis}
- Definition
- \(A\) variable \(v\) is live at point \(p\) if
- the value of \(v\) is used along some path in the flow graph starting at \(p\).
- Otherwise, the variable is dead.
- Motivation
- e.g. register allocation
for \(i=0\) to \(n\)
... i ...
for \(i=0\) to \(n\)
- Problem statement
- For each basic block
- determine if each variable is live in each basic block
- Size of bit vector: one bit for each variable
```

15-745: Intro to Data Flow

Effects of a Basic Block (Transfer Function)

- Insight: Trace uses backwards to the definitions an execution path control flow example

- A basic block b can
- generate live variables: Use[b]
- set of locally exposed uses in b
- propagate incoming live variables: OUT[b] - Def[b],

$$
\text { - where } \operatorname{Def}[b]=\text { set of variables defined in b.b. }
$$

- transfer function for block $b:$
in[b] = Use[b] U (out(b)-Def[b])

15-745: Intro to Data Flow

Flow Graph

- in[b] $=f_{b}$ (out[b])
- Join node: a node with multiple successors
- meet operator:
out $[b]=\operatorname{in}\left[s_{1}\right] \cup$ in $\left[s_{2}\right] \cup \ldots \cup$ in $\left[s_{n}\right]$, where

$$
s_{1}, \ldots, s_{n} \text { are all successors of } b
$$

[^0]
Liveness: Iterative Algorithm

input: control flow graph CFG $=(\mathbf{N}, \mathrm{E}$, Entry, Exit)
// Boundary condition
in [Exit] $=\varnothing$
// Initialization for iterative algorithm
For each basic block B other than Exit
in $[B]=\varnothing$

// iterate

While (Changes to any in[] occur) \{
For each basic block B other than Exit $\{$
out $[B]=\cup$ (in [s]), for all successors s of B $\operatorname{in}[B]=f_{B}($ out $[B]) \quad / / \operatorname{in}[B]=U s e[B] \cup($ out $[B]-\operatorname{Def}[B])$
\}

15-745: Intro to Data Flow
rnegie Mellon
Todd C. Mowry

Thought Problem 1. "Must-Reach" Definitions

- A definition $D(a=b+c)$ must reach point P iff
- D appears at least once along on all paths leading to P
- a is not redefined along any path after last appearance of D and before P
- How do we formulate the data flow algorithm for this problem?
$\left.\begin{array}{|l|l|} & \begin{array}{l}\text { out }[b]=f_{b}(\operatorname{in}[b]) \\ \text { in }[b]=\wedge \text { out }[p r e d(b)]\end{array}\end{array} \begin{array}{l}\text { in }[b]=f_{b}(\text { out }[b]) \\ \text { out }[b]=\wedge \operatorname{in}[\operatorname{succ}(b)]\end{array}\right]$

Initial interior points out $[b]=\varnothing$

Carnegie Mellon
Todd C. Mowry

Problem 2: A legal solution to (May) Reaching Def?

- Will the worklist algorithm generate this answer?

Questions

- Correctness
- equations are satisfied, if the program terminates.
- Precision: how good is the answer?
- is the answer ONLY a union of all possible executions?
- Convergence: will the analysis terminate?
- or, will there always be some nodes that change?
- Speed: how fast is the convergence?
- how many times will we visit each node?

[^0]: 15-745: Intro to Data Flow

