
Data Dependence, Parallelization,
and Locality Enhancementand Locality Enhancement

(courtesy of Tarek Abdelrahman, University of Toronto)

Todd C. Mowry

Carnegie Mellon

Data Dependence

2.0AB:S
1.0A:S

2

1

B/CA:S

DCA:S
.BS

4

3

2

We define four types of data dependence.

 Flow (true) dependence: a statement Si precedes a
statement Sj in execution and Si computes a data value that
Sj uses.

 Implies that Si must execute before Sj.

)SδSandSδ(SSδS 4
t

22
t

1j
t

i

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -2-

4221j

Data Dependence

2.0AB:S
1.0A:S

2

1

B/CA:S

DCA:S
.BS

4

3

2

We define four types of data dependence.

 Anti dependence: a statement Si precedes a statement Sj in
execution and Si uses a data value that Sj computes.

It impli s th t S must b x cut d b f r S It implies that Si must be executed before Sj.

)Sδ(SSδS 3
a

2j
a

i

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -3-

32j

Data Dependence

2.0AB:S
1.0A:S

2

1

B/CA:S

DCA:S
.BS

4

3

2

We define four types of data dependence.

 Output dependence: a statement Si precedes a statement Sj
in execution and Si computes a data value that Sj also
computes.

 It implies that Si must be executed before Sj.

)SδSandSδ(SSδS 4
o

33
o

1j
o

i

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -4-

4331j

Data Dependence

2.0AB:S
1.0A:S

2

1

B/CA:S

DCA:S
.BS

4

3

2

We define four types of data dependence.

 Input dependence: a statement Si precedes a statement Sj
in execution and Si uses a data value that Sj also uses.

D s this impl th t S must x cut b f r S ? Does this imply that Si must execute before Sj?

)Sδ(SSδS 4
I

3j
I

i

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -5-

43j

Data Dependence (continued)
Th d d i id fl f S S b S The dependence is said to flow from Si to Sj because Si
precedes Sj in execution.

 Si is said to be the source of the dependence. Sj is said to i p j
be the sink of the dependence.

 The only “true” dependence is flow dependence; it
represents the flow of data in the program.represents the flow of data in the program.

 The other types of dependence are caused by programming
style; they may be eliminated by re-naming.

2.0AB:S
1.0A:S

2

1

B/CA2:S

DCA1:S

4

3

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -6-

Data Dependence (continued)
 Data dependence in a program may be represented using a

dependence graph G=(V,E), where the nodes V represent
statements in the program and the directed edges E

t d d l tirepresent dependence relations.

S1

S
t

o2 0AB:S
1.0A:S

2

1

S2

S3

o

t

DCA:S
2.0AB:S

3

2

S4

o IB/CA:S4

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -7-

Value or Location?
 There are two ways a dependence is defined: value-oriented

or location-oriented.

1 0A:S1

DCA:S
2.0AB:S

1.0A:S

3

2

1

B/CA:S4

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -8-

Example 1

do i = 2, 4
() () ()

S1[2] S2[2] S1[3] S2[3] S1[4] S2[4]

i=2 i=3 i=4

S1: a(i) = b(i) + c(i)
S2: d(i) = a(i)

end do
a(2) a(2) a(3) a(3) a(4) a(4)

t t t

 There is an instance of S1 that precedes an instance of S2 in
execution and S1 produces data that S2 consumes.

 S1 is the source of the dependence; S2 is the sink of the
dependence.

 The dependence flows between instances of statements in the
 it ti (l i d d t d d)same iteration (loop-independent dependence).

 The number of iterations between source and sink (dependence
distance) is 0. The dependence direction is =.

t t

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -9-

2
t

1 SδS 2
t
01 SδSor

Example 2

do i = 2, 4
() () ()

S1[2] S2[2] S1[3] S2[3] S1[4] S2[4]

i=2 i=3 i=4

S1: a(i) = b(i) + c(i)
S2: d(i) = a(i-1)

end do
a(2) a(1) a(3) a(2) a(4) a(3)

t t

 There is an instance of S1 that precedes an instance of S2 in
 d d d h execution and S1 produces data that S2 consumes.

 S1 is the source of the dependence; S2 is the sink of the
dependence.

 The dependence flows between instances of statements in
different iterations (loop-carried dependence).

 The dependence distance is 1. The direction is positive (<).

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -10-

2
t

1 SδS 2SδS t
11or

Example 3

do i = 2, 4
() () ()

S1[2] S2[2] S1[3] S2[3] S1[4] S2[4]

i=2 i=3 i=4

S1: a(i) = b(i) + c(i)
S2: d(i) = a(i+1)

end do
a(2) a(3) a(3) a(4) a(4) a(5)

a a

 There is an instance of S2 that precedes an instance of S1 in
execution and S2 consumes data that S1 produces.
S is the source of the dependence; S is the sink of the S2 is the source of the dependence; S1 is the sink of the
dependence.

 The dependence is loop-carried.

1
a

2 SδS 1
a
12 SδSor

 The dependence distance is 1.

 Are you sure you know why it is even though S1 appears 1
a

2 SS

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -11-

 Are you sure you know why it is even though S1 appears
before S2 in the code?

12 SS <

Example 4

do i = 2, 4
do j = 2, 4

S: a(i,j) = a(i-1,j+1)
S[2,2] S[2,3] S[2,4]

a(1,3) a(1,4) a(1,5)

S a(,j) a(,j)
end do

end do a(2,2) a(2,3) a(2,4)t t

 An instance of S precedes

S[3,2] S[3,3] S[3,4]
a(2,3) a(2,4) a(2,5)

p
another instance of S and
S produces data that S
consumes.
S i b h d i k

a(3,3) a(3,4) a(3,5)

a(3,2) a(3,3) a(3,4)tt
 S is both source and sink.
 The dependence is loop-

carried.

S[4,2] S[4,3] S[4,4]
a(3,3) a(3,4) a(3,5)

a(4 2) a(4 3) a(4 4)

 The dependence distance
is (1,-1).

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -12-

a(4,2) a(4,3) a(4,4)SδS t
),(or SδS t

1)(1,

Problem Formulation

 Consider the following perfect nest of depth d:

U ,L I do 111 array reference

))I(f)I(f)I((f
U ,L I do

U ,L I do
U ,L I do

ddd

222

111

),,)I(f,a(k

y

enddo
))I(g,),I(g),I(a(g

))I(f,),I(f),I(a(f
m21

m21

subscript
position

subscript
function

or

enddo
enddo

)II(II d21

or
subscript

expression

)I,,I,(II d21

)L,,L,L(L d

21

)U,,U,U(U d21

dd22110 IbIbIbb
functionslinear

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -13-

)U,,U,U(U d21

UL

Problem Formulation
 Dependence will exist if there exists two iteration vectors

and such that and:

)j(g)k(f 11

UjkL

k

j

)j(g)k(f

)j(g)k(f

22

11

and
and

d
)j(g)k(f mm

 That is:

and

0

0

22

11

)j(g)k(f

)j(g)k(f

 That is:

and
and

0)j(g)k(f

jg

mm

and

and

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -14-

Problem Formulation - Example

do i = 2, 4
S1: a(i) = b(i) + c(i)
S2: d(i) = a(i-1)

 Does there exist two iteration vectors i1 and i2, such that

end do

2 i1 i2 4 and such that:

i1 = i2 -1?

 Answer: yes; i1=2 & i2=3 and i1=3 & i2 =4.

 Hence, there is dependence! , p

 The dependence distance vector is i2-i1 = 1.

 The dependence direction vector is sign(1) =

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -15-

 The dependence direction vector is sign(1) = .

Problem Formulation - Example
do i = 2, 4

S1: a(i) = b(i) + c(i)
S2: d(i) = a(i+1)

end do

 Does there exist two iteration vectors i1 and i2, such that
2 i1 i2 4 and such that:

end do

2 i1 i2 4 and such that:

i1 = i2 +1?

A i 3 & i 2 d i 4 & i 3 (B t b t!) Answer: yes; i1=3 & i2=2 and i1=4 & i2 =3. (But, but!).

 Hence, there is dependence!

 The dependence distance vector is i i = 1 The dependence distance vector is i2-i1 = -1.

 The dependence direction vector is sign(-1) = .

 Is this possible?

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -16-

 Is this possible?

Problem Formulation - Example

do i = 1, 10
S1: a(2*i) = b(i) + c(i)
S2: d(i) = a(2*i+1)S2 d(i) a(2 i 1)

end do

 Does there exist two iteration vectors i1 and i2, such that
1 i1 i2 10 and such that:

2* 2* 12*i1 = 2*i2 +1?

 Answer: no; 2*i1 is even & 2*i2+1 is odd.

 Hence, there is no dependence!

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -17-

Problem Formulation
 Dependence testing is equivalent to an integer linear

programming (ILP) problem of 2d variables & m+d constraint!

 An algorithm that determines if there exits two iteration An algorithm that determines if there exits two iteration
vectors and that satisfies these constraints is called a
dependence tester.

k

j

 The dependence distance vector is given by .

 The dependence direction vector is give by sign().

k

j

-

k

j

-

 Dependence testing is NP-complete!

 A dependence test that reports dependence only when there p p p y
is dependence is said to be exact. Otherwise it is in-exact.

 A dependence test must be conservative; if the existence of
d d t b t i d d d t b

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -18-

dependence cannot be ascertained, dependence must be
assumed.

Dependence Testers
 Lamport’s Test.
 GCD Test.
 Banerjee’s Inequalities.Banerjee s Inequalities.
 Generalized GCD Test.
 Power Test.

I T t I-Test.
 Omega Test.
 Delta Test.
 Stanford Test.
 etc…

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -19-

Lamport’s Test
 Lamport’s Test is used when there is a single index variable

in the subscript expressions, and when the coefficients of
the index variable in both expressions are the same.

),ci*b,A(1
),ci*b,A(2

 The dependence problem: does there exist i1 and i2, such
that Li i1 i2 Ui and such that

cc 21b*i1 + c1 = b*i2 + c2? or

 There is integer solution if and only if is integer.

?
b

ccii 21
12

b
cc 21

 The dependence distance is d = if Li |d| Ui.
 d 0 true dependence.

d = 0 loop independent dependence

b

b
cc 21

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -20-

d = 0 loop independent dependence.
d 0 anti dependence.

Lamport’s Test - Example

do i = 1, n
do j = 1, n

S: a(i,j) = a(i-1,j+1)

 i1 = i2 -1?

end do
end do

 j1 = j2 + 1? i1 i2 1?

b = 1; c1 = 0; c2 = -1

cc

 j1 j2 1?

b = 1; c1 = 0; c2 = 1

cc

There is dependence.

121

b

cc

There is dependence.

121

b

cc

Distance (i) is 1. Distance (j) is -1.

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -21-

SδS t
),(orSδS t

1)(1,

Lamport’s Test - Example

do i = 1, n
do j = 1, n

S: a(i,2*j) = a(i-1,2*j+1)

 i1 = i2 -1?

end do
end do

 2*j1 = 2*j2 + 1? i1 i2 1?

b = 1; c1 = 0; c2 = -1

cc

 2 j1 2 j2 1?

b = 2; c1 = 0; c2 = 1

1cc

There is dependence.

121

b

cc

There is no dependence.
2
121

b

cc

Distance (i) is 1.

?

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -22-

?
There is no dependence!

GCD Test
 Given the following equation:

egersintarecands'acxa
n

an integer solution exists if and only if:

egersintarecandsacxa ii
i

i
1

an integer solution exists if and only if:

cdivides)a,,a,agcd(n21

 Problems:
i nores loop bounds– ignores loop bounds.

– gives no information on distance or direction of dependence.
– often gcd(……) is 1 which always divides c, resulting in false

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -23-

dependences.

GCD Test - Example

do i = 1, 10
S1: a(2*i) = b(i) + c(i)
S d(i) (2*i 1)S2: d(i) = a(2*i-1)

end do

 Does there exist two iteration vectors i1 and i2, such that
1 i1 i2 10 and such that:

2*i1 = 2*i2 -1?
or

2*i2 - 2*i1 = 1?

 There will be an integer solution if and only if gcd(2,-2)
divides 1.

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -24-

 This is not the case, and hence, there is no dependence!

GCD Test Example

do i = 1, 10
S1: a(i) = b(i) + c(i)
S d(i) (i 100)S2: d(i) = a(i-100)

end do

 Does there exist two iteration vectors i1 and i2, such that
1 i1 i2 10 and such that:

i i 100?i1 = i2 -100?
or

i2 - i1 = 100?

 There will be an integer solution if and only if gcd(1,-1) divides
100.

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -25-

 This is the case, and hence, there is dependence! Or is there?

Dependence Testing Complications
 Unknown loop bounds.

do i = 1, N
S1: a(i) = a(i+10)

What is the relationship between N and 10?

S1: a(i) a(i+10)
end do

 Triangular loops.

do i = 1, N
do j = 1, i-1

S: a(i,j) = a(j,i)
d d

M t i j i dditi l t i t

end do
end do

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -26-

Must impose j i as an additional constraint.

More Complications
 User variables.

do i = 1, 10
S1: a(i) = a(i+k)

Same problem as unknown loop bounds, but occur due to
some loop transformations (e g normalization)

S1: a(i) a(i+k)
end do

some loop transformations (e.g., normalization).

do i = L, H
S : (i) (i 1)S1: a(i) = a(i-1)

end do

do i = 1, H-L

S : a(i+L) = a(i+L 1)

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -27-

S1: a(i+L) = a(i+L-1)
end do

More Complications
 Scalars.

do i = 1, N
S1: x = a(i)

do i = 1, N
S1: x(i) = a(i)S1: x a(i)

S2: b(i) = x
end do

S1: x(i) a(i)
S2: b(i) = x(i)

end do

j = N-1
do i = 1, N

S1: a(i) = a(j)
do i = 1, N

S1: a(i) = a(N-i)j
S2: j = j - 1

end do end do

sum = 0
do i = 1, N

S1: sum = sum + a(i)
d d

do i = 1, N
S1: sum(i) = a(i)

end do
 (i) i 1 N

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -28-

end do sum += sum(i) i = 1, N

Serious Complications
 Aliases.

– Equivalence Statements in Fortran:

real a(10,10), b(10)

makes b the same as the first column of a.

– Common blocks: Fortran’s way of having shared/global variables.

common /shared/a,b,c
:
:

subroutine foo (…)
common /shared/a,b,c

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -29-

common /shared/x,y,z

Loop Parallelization
 A dependence is said to be carried by a loop if the loop is

the outmost loop whose removal eliminates the dependence.
If a dependence is not carried by the loop, it is loop-
i d d t

do i = 2, n-1
do j = 2, m-1

a(i j)

independent.

a(i, j) = …
... = a(i, j)

b(i j) = b(i, j) = …
… = b(i, j-1)

c(i, j) = …c(, j) …
… = c(i-1, j)

end do
end do

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -30-

Loop Parallelization
 A dependence is said to be carried by a loop if the loop is

the outmost loop whose removal eliminates the dependence.
If a dependence is not carried by the loop, it is loop-
i d d t

do i = 2, n-1
do j = 2, m-1

a(i j)

independent.

a(i, j) = …
... = a(i, j)

b(i j) =

t
,δ

b(i, j) = …
… = b(i, j-1)

c(i, j) = …c(, j) …
… = c(i-1, j)

end do
end do

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -31-

Loop Parallelization
 A dependence is said to be carried by a loop if the loop is

the outmost loop whose removal eliminates the dependence.
If a dependence is not carried by the loop, it is loop-
i d d t

do i = 2, n-1
do j = 2, m-1

a(i j)

independent.

a(i, j) = …
... = a(i, j)

b(i j) = b(i, j) = …
… = b(i, j-1)

c(i, j) = …

t
,δ

c(, j) …
… = c(i-1, j)

end do
end do

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -32-

Loop Parallelization
 A dependence is said to be carried by a loop if the loop is

the outmost loop whose removal eliminates the dependence.
If a dependence is not carried by the loop, it is loop-
i d d t

do i = 2, n-1
do j = 2, m-1

a(i j)

independent.

a(i, j) = …
... = a(i, j)

b(i j) = b(i, j) = …
… = b(i, j-1)

c(i, j) = …tδ c(, j) …
… = c(i-1, j)

end do
end do

t
,δ

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -33-

Loop Parallelization
 A dependence is said to be carried by a loop if the loop is

the outmost loop whose removal eliminates the dependence.
If a dependence is not carried by the loop, it is loop-
i d d tindependent.

do i = 2, n-1
do j = 2, m-1

a(i j) a(i, j) = …
... = a(i, j)

b(i j) =

t
,δ

b(i, j) = …
… = b(i, j-1)

c(i, j) = …

t
,δ

tδ c(, j) …
… = c(i-1, j)

end do
end do

t
,δ

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -34-

 Outermost loop with a non “=“ direction carries dependence!

Loop Parallelization

The iterations of a loop may be executed The iterations of a loop may be executed
in parallel with one another if and only if
no dependences are carried by the loop!

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -35-

Loop Parallelization - Example

do i = 2 n 1

fork
i=2

i 3 i 2

i=n-1

do i = 2, n-1
do j = 2, m-1

b(i, j) = …
… = b(i, j-1)

t
,δ

i=3 i=n-2

… b(i, j 1)
end do

end do

join

 Iterations of loop j must be executed sequentially, but the
iterations of loop i may be executed in parallel.

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -36-

 Outer loop parallelism.

Loop Parallelization - Example

do i = 2 n 1

fork
j=2

j 3 j 2

j=m-1

do i = 2, n-1
do j = 2, m-1

b(i, j) = …
… = b(i-1, j)

t
,δ

j=3 j=m-2

i=i+1… b(i 1, j)
end do

end do

join

 Iterations of loop i must be executed sequentially, but the
iterations of loop j may be executed in parallel.

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -37-

 Inner loop parallelism.

Loop Parallelization - Example

do i = 2 n 1

fork
j=2

j 3 j 2

j=m-1

do i = 2, n-1
do j = 2, m-1

b(i, j) = …
… = b(i-1, j-1)

t
,δ

j=3 j=m-2

i=i+1… b(i 1, j 1)
end do

end do

join

 Iterations of loop i must be executed sequentially, but the
iterations of loop j may be executed in parallel. Why?

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -38-

 Inner loop parallelism.

Loop Interchange

Loop interchange changes the order of the loops to improve the
spatial locality of a program.

do j = 1, n
do i = 1 ndo i = 1, n

... a(i,j) ...
end do

end do

P

j

M

C
i

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -39-

M

Loop Interchange

Loop interchange changes the order of the loops to improve the
spatial locality of a program.

do j = 1, n
do i = 1 n

do i = 1, n
do j = 1 ndo i = 1, n

... a(i,j) ...
end do

end do

do j = 1, n
… a(i,j) ...

end do
end do

i

P

j
M

C

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -40-

M

Loop Interchange
 Loop interchange can improve the granularity of parallelism!

do i = 1, n
do j = 1 n

do j = 1, n
do i = 1 ndo j = 1, n

a(i,j) = b(i,j)
c(i,j) = a(i-1,j)

end do
d d

do i = 1, n
a(i,j) = b(i,j)
c(i,j) = a(i-1,j)

end do
d dend do end do

t
,δ

t
,δ

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -41-

Loop Interchange

j

do i = 1,n
do j = 1,n

 (i j)

do j = 1,n
do i = 1,n

 (i j)

i

tδ
tδ

t
,δ

t
,δ

t
,δ

… a(i,j) …
end do

end do

… a(i,j) …
end do

end dot
,δ

,δ

t
,δ

,δ

t
,δ

t
,δ

 When is loop interchange legal?

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -42-

Loop Interchange

j

do i = 1,n
do j = 1,n

 (i j)

do j = 1,n
do i = 1,n

 (i j)

i

tδ
tδ

t
,δ

t
,δ

… a(i,j) …
end do

end do

… a(i,j) …
end do

end dot
,δ

,δ ,δ

 When is loop interchange legal?

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -43-

Loop Interchange

j

do i = 1,n
do j = 1,n

 (i j)

do j = 1,n
do i = 1,n

 (i j)

i

tδ
tδ

t
,δ

t
,δ

… a(i,j) …
end do

end do

… a(i,j) …
end do

end dot
,δ

,δ ,δ

 When is loop interchange legal?

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -44-

Loop Interchange

j

do i = 1,n
do j = 1,n

 (i j)

do j = 1,n
do i = 1,n

 (i j)

i

tδ
tδ

t
,δ

t
,δ

… a(i,j) …
end do

end do

… a(i,j) …
end do

end dot
,δ

,δ ,δ

 When is loop interchange legal? when the “interchanged”

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -45-

dependences remain lexiographically positive!

Loop Blocking (Loop Tiling)
Exploits temporal locality in a loop nest.

do t = 1,T
do i = 1,n

do j = 1,n
 a(i j) … a(i,j) …

end do
end do

end do

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -46-

Loop Blocking (Loop Tiling)
Exploits temporal locality in a loop nest.

do ic = 1, n, B
do jc = 1, n , B

do t = 1,T

control loops

do t 1,T
do i = 1,B

do j = 1,B
… a(ic+i-1,jc+j-1) …
d dend do

end do
end do

end do
end do B: Block size

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -47-

Loop Blocking (Loop Tiling)
Exploits temporal locality in a loop nest.

do ic = 1, n, B
do jc = 1, n , B

do t = 1,T

jc =1

i 1

control loops

do t 1,T
do i = 1,B

do j = 1,B
… a(ic+i-1,jc+j-1) …
d d

ic =1

end do
end do

end do
end do

end do B: Block size

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -48-

Loop Blocking (Loop Tiling)
Exploits temporal locality in a loop nest.

do ic = 1, n, B
do jc = 1, n , B

do t = 1,T

jc =2

i 1

control loops

do t 1,T
do i = 1,B

do j = 1,B
… a(ic+i-1,jc+j-1) …
d d

ic =1

end do
end do

end do
end do

end do B: Block size

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -49-

Loop Blocking (Loop Tiling)
Exploits temporal locality in a loop nest.

do ic = 1, n, B
do jc = 1, n , B

do t = 1,T

control loops

do t 1,T
do i = 1,B

do j = 1,B
… a(ic+i-1,jc+j-1) …
d dend do

end do
end do

end do

ic =2

end do

jc =1

B: Block size

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -50-

Loop Blocking (Loop Tiling)
Exploits temporal locality in a loop nest.

do ic = 1, n, B
do jc = 1, n , B

do t = 1,T

control loops

do t 1,T
do i = 1,B

do j = 1,B
… a(ic+i-1,jc+j-1) …
d dend do

end do
end do

end do

ic =2

end do

jc =2

B: Block size

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -51-

Loop Blocking (Tiling)

d t 1 T
do ic = 1, n, B
d j 1 B

do t = 1,T
do i = 1,n

do j = 1,n

do t = 1,T
do ic = 1, n, B
do i = 1,B
do jc = 1, n, B

do jc = 1, n , B
do t = 1,T

do i = 1,B
do j = 1,Bj ,

… a(i,j) …
end do

end do
end do

j , ,
do j = 1,B

… a(ic+i-1,jc+j-1) …
end do

end do

j ,
… a(ic+i-1,jc+j-1) …

end do
end do

end doend do end do
end do

end do
end do

end do

Wh i l bl ki l l?

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -52-

 When is loop blocking legal?

