Data Dependence, Parallelization, and Locality Enhancement

(courtesy of Tarek Abdelrahman, University of Toronto)

$$S_{1}: A = 1.0
S_{2}: B = A + 2.0
S_{3}: A = C - D
:
S_{4}: A = B/C$$

We define four types of data dependence.

- Flow (true) dependence: a statement S_i precedes a statement S_j in execution and S_i computes a data value that S_j uses.
- Implies that S_i must execute before S_j .

$$S_i \delta^{\dagger} S_j$$
 ($S_1 \delta^{\dagger} S_2$ and $S_2 \delta^{\dagger} S_4$)

Optimizing Compilers: Parallelization

$$S_{1}: A = 1.0$$

 $S_{2}: B = A + 2.0$
 $S_{3}: A = C - D$
 \vdots
 $S_{4}: A = B/C$

We define four types of data dependence.

- Anti dependence: a statement S_i precedes a statement S_j in execution and S_i uses a data value that S_j computes.
- It implies that S_i must be executed before S_j .

$$S_i \delta^{\alpha} S_j$$
 $(S_2 \delta^{\alpha} S_3)$

$$S_{1}: A = 1.0
S_{2}: B = A + 2.0
S_{3}: A = C - D
:
S_{4}: A = B/C$$

We define four types of data dependence.

- Output dependence: a statement S_i precedes a statement S_j in execution and S_i computes a data value that S_j also computes.
- It implies that S_i must be executed before S_j .

$$S_i \delta^{\circ} S_j$$
 ($S_1 \delta^{\circ} S_3$ and $S_3 \delta^{\circ} S_4$)

Optimizing Compilers: Parallelization

$$S_1: A = 1.0$$

 $S_2: B = A + 2.0$
 $S_3: A = C - D$
 \vdots
 $S_4: A = B/C$

We define four types of data dependence.

- Input dependence: a statement S_i precedes a statement S_j in execution and S_i uses a data value that S_j also uses.
- Does this imply that S_i must execute before S_j?

$$S_i \delta^{I} S_j$$
 $(S_3 \delta^{I} S_4)$

Optimizing Compilers: Parallelization

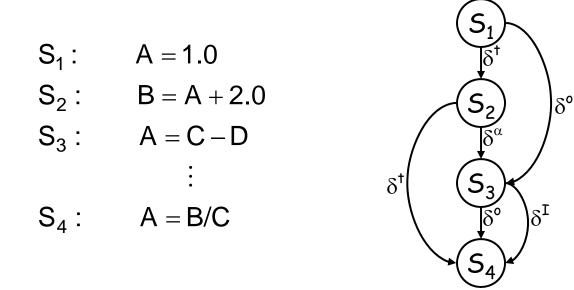
Data Dependence (continued)

- The dependence is said to flow from S_i to S_j because S_i precedes S_j in execution.
- S_i is said to be the source of the dependence. S_j is said to be the sink of the dependence.
- The only "true" dependence is flow dependence; it represents the flow of data in the program.
- The other types of dependence are caused by programming style; they may be eliminated by re-naming.

$$S_{1}: A = 1.0
S_{2}: B = A + 2.0
S_{3}: A1 = C - D
: S_{4}: A2 = B/C$$

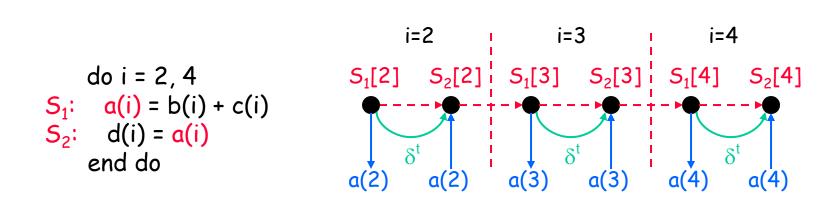
Data Dependence (continued)

• Data dependence in a program may be represented using a dependence graph G=(V,E), where the nodes V represent statements in the program and the directed edges E represent dependence relations.



Value or Location?

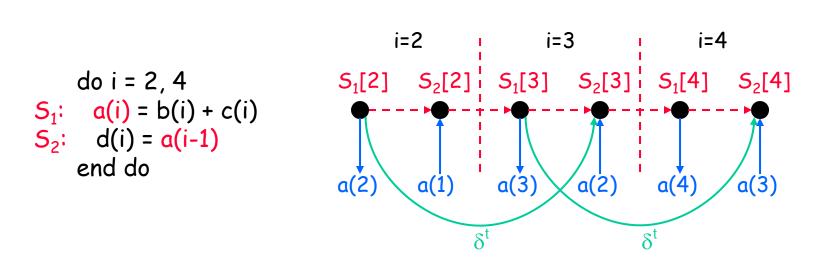
• There are two ways a dependence is defined: value-oriented or location-oriented.



- There is an instance of S_1 that precedes an instance of S_2 in execution and S_1 produces data that S_2 consumes.
- S_1 is the source of the dependence; S_2 is the sink of the dependence.
- The dependence flows between instances of statements in the same iteration (loop-independent dependence).
- The number of iterations between source and sink (dependence distance) is 0. The dependence direction is =.

$$\mathbf{S}_{1} \, \mathbf{\delta}_{\pm}^{\dagger} \, \mathbf{S}_{2}^{\dagger}$$
 or $\mathbf{S}_{1} \, \mathbf{\delta}_{0}^{\dagger} \, \mathbf{S}_{2}^{\dagger}$

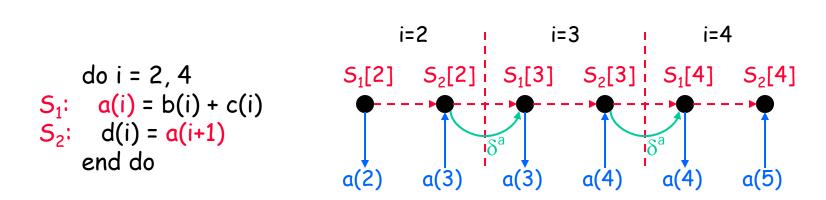
Optimizing Compilers: Parallelization



- There is an instance of S_1 that precedes an instance of S_2 in execution and S_1 produces data that S_2 consumes.
- S_1 is the source of the dependence; S_2 is the sink of the dependence.
- The dependence flows between instances of statements in different iterations (loop-carried dependence).
- The dependence distance is 1. The direction is positive (<).

$$\mathbf{S}_{1} \, \mathbf{\delta}_{<}^{\dagger} \, \mathbf{S}_{2}^{\dagger}$$
 or $\mathbf{S}_{1} \, \mathbf{\delta}_{1}^{\dagger} \, \mathbf{S}_{2}^{\dagger}$

Optimizing Compilers: Parallelization



- There is an instance of S₂ that precedes an instance of S₁ in execution and S₂ consumes data that S₁ produces.
- S_2 is the source of the dependence; S_1 is the sink of the dependence.
- The dependence is loop-carried.
- The dependence distance is 1.

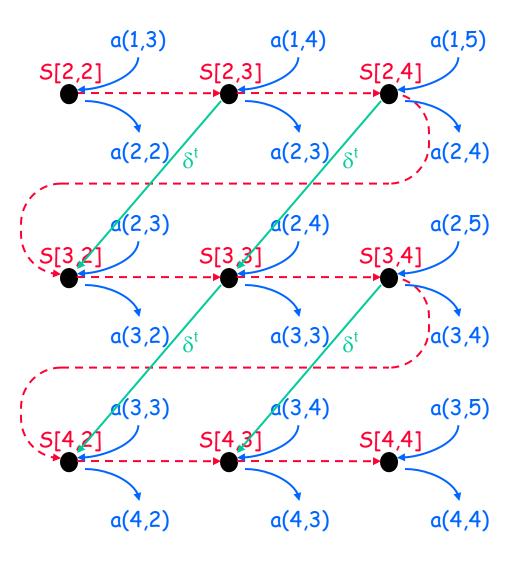
$$S_2 \delta_{<}^{\alpha} S_1$$
 or $S_2 \delta_1^{\alpha} S_1$

• Are you sure you know why it is $S_2 \delta_{<}^a S_1$ even though S_1 appears before S_2 in the code?

Optimizing Compilers: Parallelization

- do i = 2, 4 do j = 2, 4 S: a(i,j) = a(i-1,j+1) end do end do
- An instance of S precedes another instance of S and S produces data that S consumes.
- S is both source and sink.
- The dependence is loopcarried.
- The dependence distance is (1,-1).

$$S\delta^{\dagger}_{(<,>)}S$$
 or $S\delta^{\dagger}_{(1,-1)}$

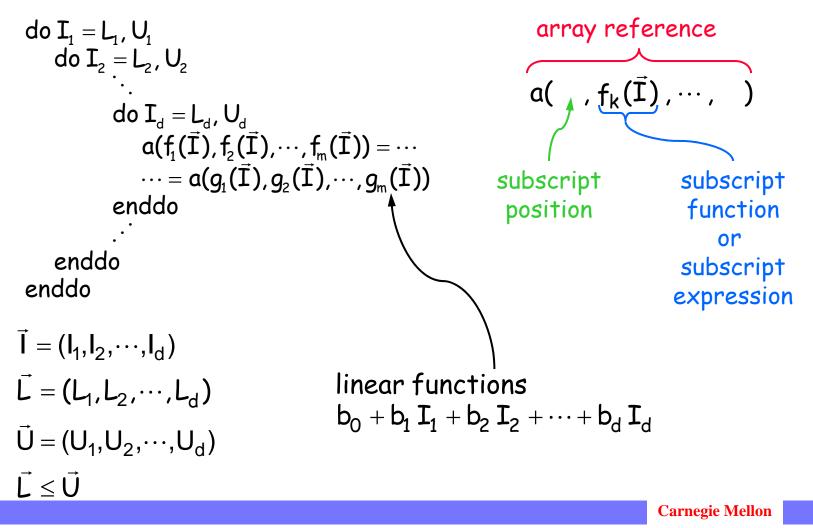


Optimizing Compilers: Parallelization

S

Problem Formulation

• Consider the following perfect nest of depth d:



Optimizing Compilers: Parallelization

Problem Formulation

• Dependence will exist if there exists two iteration vectors \vec{k} and \vec{j} such that $\vec{L} \le \vec{k} \le \vec{j} \le \vec{U}$ and:

and
$$f_{1}(\vec{k}) = g_{1}(\vec{j})$$

and
$$f_{2}(\vec{k}) = g_{2}(\vec{j})$$

i
and
$$\vdots$$

$$f_{m}(\vec{k}) = g_{m}(\vec{j})$$

• That is:

and
$$f_{1}(\vec{k}) - g_{1}(\vec{j}) = 0$$

and
$$f_{2}(\vec{k}) - g_{2}(\vec{j}) = 0$$

:
and
$$f_{m}(\vec{k}) - g_{m}(\vec{j}) = 0$$

Problem Formulation - Example

do i = 2, 4

$$S_1: a(i) = b(i) + c(i)$$

 $S_2: d(i) = a(i-1)$
end do

• Does there exist two iteration vectors i_1 and i_2 , such that $2 \le i_1 \le i_2 \le 4$ and such that:

 $i_1 = i_2 - 1?$

- Answer: yes; $i_1=2 \& i_2=3$ and $i_1=3 \& i_2=4$.
- Hence, there is dependence!
- The dependence distance vector is $i_2 i_1 = 1$.
- The dependence direction vector is sign(1) = <.

Problem Formulation - Example

```
do i = 2, 4

S_1: a(i) = b(i) + c(i)

S_2: d(i) = a(i+1)

end do
```

• Does there exist two iteration vectors i_1 and i_2 , such that $2 \le i_1 \le i_2 \le 4$ and such that:

 $i_1 = i_2 + 1?$

- Answer: yes; $i_1=3 \& i_2=2$ and $i_1=4 \& i_2=3$. (But, but!).
- Hence, there is dependence!
- The dependence distance vector is $i_2 i_1 = -1$.
- The dependence direction vector is sign(-1) = >.
- Is this possible?

Problem Formulation - Example

do i = 1, 10

$$S_1: a(2*i) = b(i) + c(i)$$

 $S_2: d(i) = a(2*i+1)$
end do

• Does there exist two iteration vectors i_1 and i_2 , such that $1 \le i_1 \le i_2 \le 10$ and such that:

 $2*i_1 = 2*i_2 + 1?$

- Answer: no; $2*i_1$ is even & $2*i_2+1$ is odd.
- Hence, there is no dependence!

Problem Formulation

- Dependence testing is equivalent to an integer linear programming (ILP) problem of 2d variables & m+d constraint!
- An algorithm that determines if there exits two iteration vectors \vec{k} and \vec{j} that satisfies these constraints is called a dependence tester.
- The dependence distance vector is given by $\vec{j} \vec{k}$.
- The dependence direction vector is give by sign($\vec{j} \vec{k}$).
- Dependence testing is NP-complete!
- A dependence test that reports dependence only when there is dependence is said to be exact. Otherwise it is in-exact.
- A dependence test must be conservative; if the existence of dependence cannot be ascertained, dependence must be assumed.

Optimizing Compilers: Parallelization

Dependence Testers

- Lamport's Test.
- GCD Test.
- Banerjee's Inequalities.
- Generalized GCD Test.
- Power Test.
- I-Test.
- Omega Test.
- Delta Test.
- Stanford Test.
- etc...

Lamport's Test

• Lamport's Test is used when there is a single index variable in the subscript expressions, and when the coefficients of the index variable in both expressions are the same.

$$A(\cdots, b^{*}i + c_{1}, \cdots) = \cdots$$
$$\cdots = A(\cdots, b^{*}i + c_{2}, \cdots)$$

• The dependence problem: does there exist i_1 and i_2 , such that $L_i \le i_1 \le i_2 \le U_i$ and such that

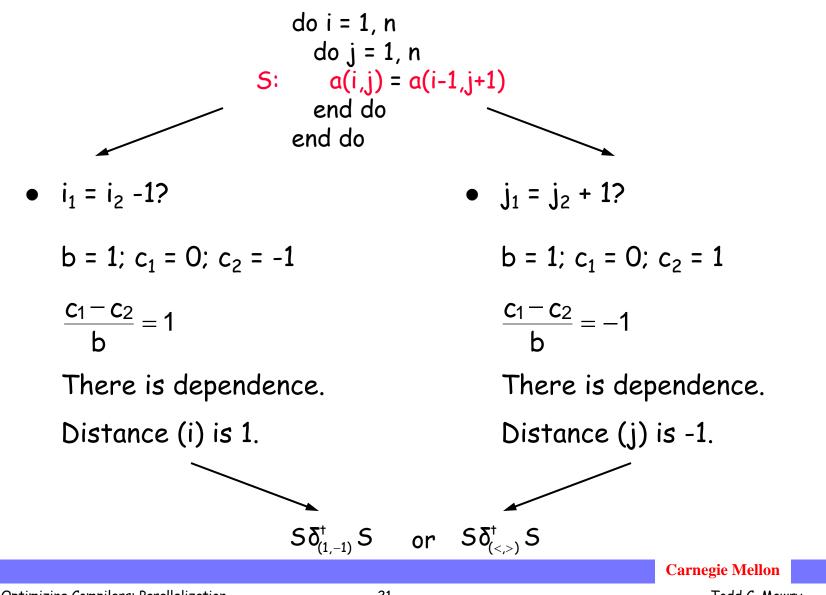
$$b*i_1 + c_1 = b*i_2 + c_2$$
? or $i_2 - i_1 = \frac{c_1 - c_2}{b}$?

- There is integer solution if and only if $\frac{c_1 c_2}{h}$ is integer.
- The dependence distance is $d = \frac{c_1 c_2}{b}$ if $L_i \le |d| \le U_i$.
- d > 0 ⇒ true dependence.
 d = 0 ⇒ loop independent dependence.
 d < 0 ⇒ anti dependence.

Optimizing Compilers: Parallelization

Todd C. Mowry

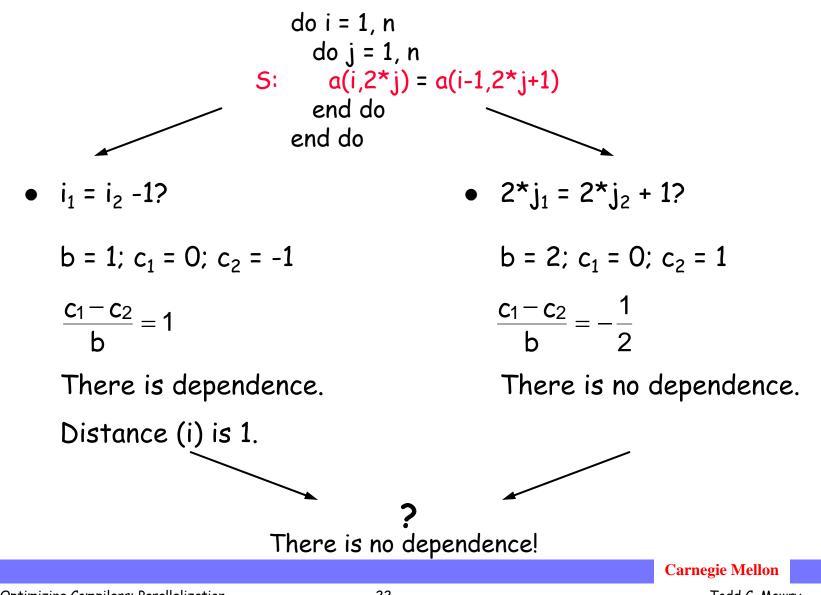
Lamport's Test - Example



Optimizing Compilers: Parallelization

Todd C. Mowry

Lamport's Test - Example



Optimizing Compilers: Parallelization

Todd C. Mowry

<u>GCD Test</u>

• Given the following equation:

$$\sum_{i=1}^{n} a_i x_i = c \qquad a_i's and c are integers$$

an integer solution exists if and only if:

$$gcd(a_1, a_2, \dots, a_n)$$
 divides c

- Problems:
 - ignores loop bounds.
 - gives no information on distance or direction of dependence.
 - often gcd(.....) is 1 which always divides c, resulting in false dependences.

Optimizing Compilers: Parallelization

GCD Test - Example

do i = 1, 10

$$S_1: a(2*i) = b(i) + c(i)$$

 $S_2: d(i) = a(2*i-1)$
end do

• Does there exist two iteration vectors i_1 and i_2 , such that $1 \le i_1 \le i_2 \le 10$ and such that:

$$2*i_1 = 2*i_2 - 1?$$

or

- There will be an integer solution if and only if gcd(2,-2) divides 1.
- This is not the case, and hence, there is no dependence!

Optimizing Compilers: Parallelization

GCD Test Example

do i = 1, 10

$$S_1: a(i) = b(i) + c(i)$$

 $S_2: d(i) = a(i-100)$
end do

• Does there exist two iteration vectors i_1 and i_2 , such that $1 \le i_1 \le i_2 \le 10$ and such that:

```
i_1 = i_2 -100?
or
i_2 - i_1 = 100?
```

- There will be an integer solution if and only if gcd(1,-1) divides 100.
- This is the case, and hence, there is dependence! Or is there?

Optimizing Compilers: Parallelization

Dependence Testing Complications

• Unknown loop bounds.

do i = 1, N S₁: a(i) = a(i+10) end do

What is the relationship between N and 10?

• Triangular loops.

Must impose j < i as an additional constraint.

Optimizing Compilers: Parallelization

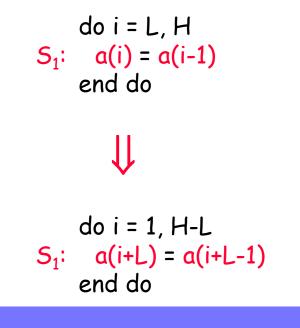
Todd C. Mowry

More Complications

• User variables.

do i = 1, 10 S₁: a(i) = a(i+k) end do

Same problem as unknown loop bounds, but occur due to some loop transformations (e.g., normalization).



Optimizing Compilers: Parallelization

Todd C. Mowry

More Complications

• Scalars.

	do i = 1, N
S ₁ :	<mark>×</mark> = a(i)
S ₂ :	b(i) = 🗙
_	end do

do i = 1, N S₁: x(i) = a(i) S₂: b(i) = x(i) end do

do i = 1, N $S_1: a(i) = a(N-i)$

end do

sum = 0 do i = 1, N S₁: sum = sum + a(i) end do do i = 1, N S₁: sum(i) = a(i) end do sum += sum(i) i = 1, N

Carnegie Mellon

Todd C. Mowry

Serious Complications

- Aliases.
 - Equivalence Statements in Fortran:

real a(10,10), b(10)

makes b the same as the first column of a.

common /shared/x,y,z

Optimizing Compilers: Parallelization

Todd C. Mowry

 A dependence is said to be carried by a loop if the loop is the outmost loop whose removal eliminates the dependence. If a dependence is not carried by the loop, it is loopindependent.

do i = 2, n-1
do j = 2, m-1

$$a(i, j) = ...$$

 $... = a(i, j)$
 $b(i, j) = ...$
 $... = b(i, j-1)$
 $c(i, j) = ...$
 $... = c(i-1, j)$
end do
end do

 A dependence is said to be carried by a loop if the loop is the outmost loop whose removal eliminates the dependence. If a dependence is not carried by the loop, it is loopindependent.

do i = 2, n-1
do j = 2, m-1

$$a(i, j) = ...$$

 $b(i, j) = ...$
 $b(i, j) = ...$
 $c(i, j)$

 A dependence is said to be carried by a loop if the loop is the outmost loop whose removal eliminates the dependence. If a dependence is not carried by the loop, it is loopindependent.

do i = 2, n-1
do j = 2, m-1

$$a(i, j) = ...$$

 $... = a(i, j)$
 $\delta^{\dagger}_{=,<}$
 $b(i, j) = ...$
 $... = b(i, j-1)$
 $c(i, j) = ...$
 $... = c(i-1, j)$
end do
end do

 A dependence is said to be carried by a loop if the loop is the outmost loop whose removal eliminates the dependence. If a dependence is not carried by the loop, it is loopindependent.

do i = 2, n-1
do j = 2, m-1

$$a(i, j) = ...$$

 $... = a(i, j)$
 $b(i, j) = ...$
 $... = b(i, j-1)$
 $\delta^{\dagger}_{<,=} = c(i-1, j)$
end do
end do

 A dependence is said to be carried by a loop if the loop is the outmost loop whose removal eliminates the dependence. If a dependence is not carried by the loop, it is loopindependent.

do i = 2, n-1
do j = 2, m-1

$$a(i, j) = ...$$

 $\delta^{\dagger}_{=,=}$... = a(i, j)
 $\delta^{\dagger}_{=,<}$ $b(i, j) = ...$
 $... = b(i, j-1)$
 $\delta^{\dagger}_{<,=}$ $c(i, j) = ...$
 $... = c(i-1, j)$
end do
end do

• Outermost loop with a non "=" direction carries dependence!

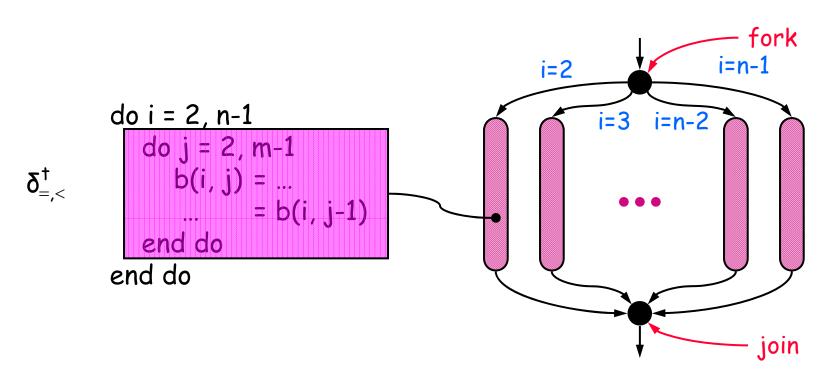
Carnegie Mellon

Optimizing Compilers: Parallelization

Todd C. Mowry

The iterations of a loop may be executed in parallel with one another if and only if no dependences are carried by the loop!

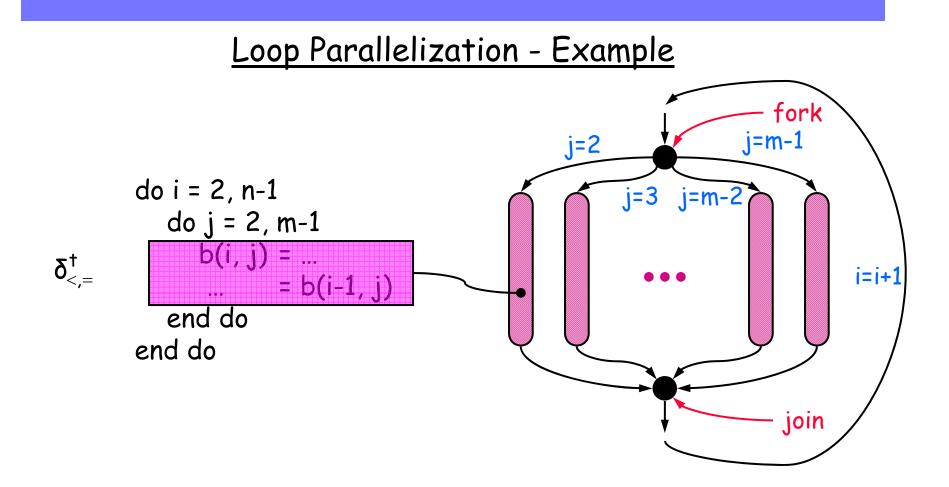
Loop Parallelization - Example



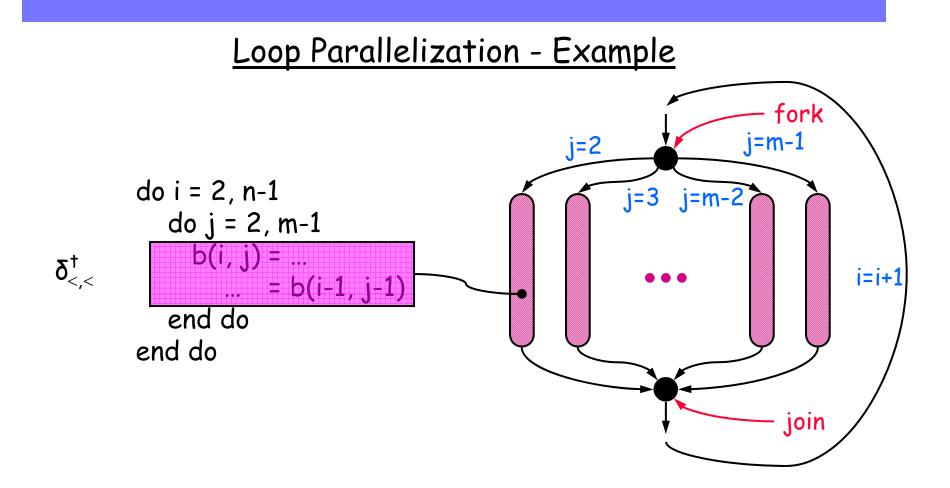
- Iterations of loop j must be executed sequentially, but the iterations of loop i may be executed in parallel.
- Outer loop parallelism.

Optimizing Compilers: Parallelization

Todd C. Mowry



- Iterations of loop i must be executed sequentially, but the iterations of loop j may be executed in parallel.
- Inner loop parallelism.

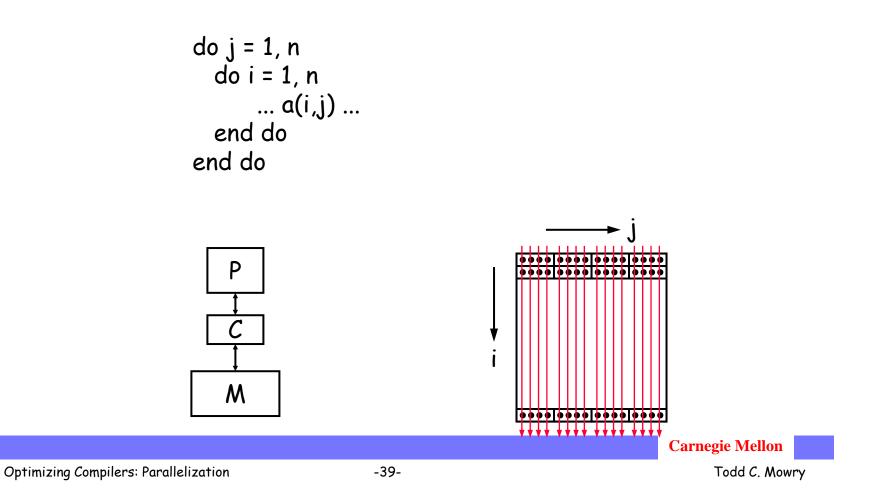


- Iterations of loop i must be executed sequentially, but the iterations of loop j may be executed in parallel. Why?
- Inner loop parallelism.

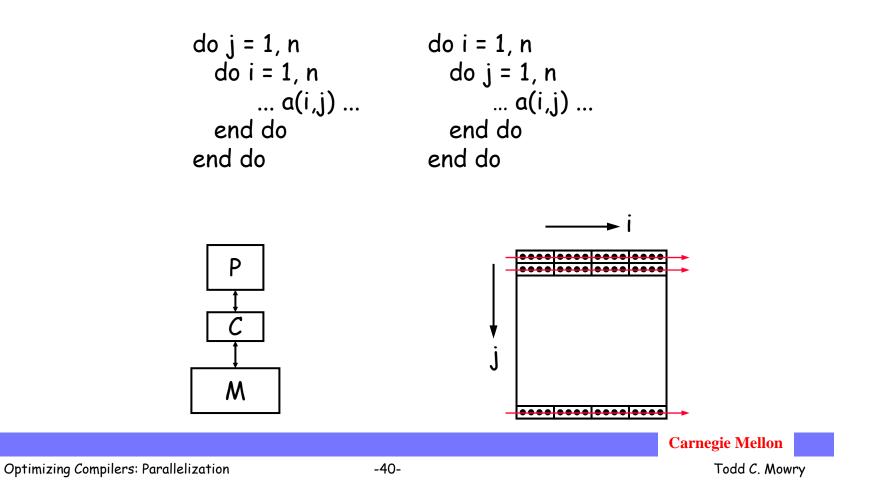
Optimizing Compilers: Parallelization

Todd C. Mowry

Loop interchange changes the order of the loops to improve the spatial locality of a program.



Loop interchange changes the order of the loops to improve the spatial locality of a program.

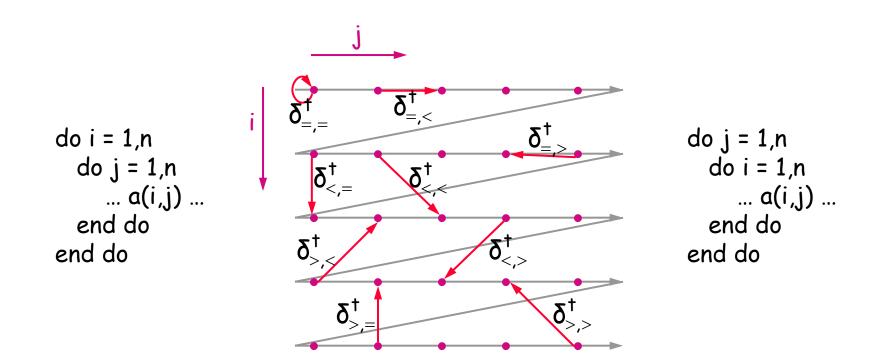


• Loop interchange can improve the granularity of parallelism!

 $\delta^{\dagger}_{=,<}$

.

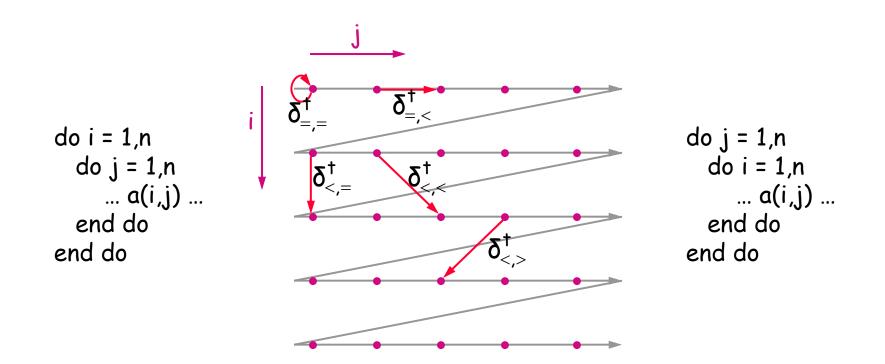
Optimizing Compilers: Parallelization



• When is loop interchange legal?

Optimizing Compilers: Parallelization

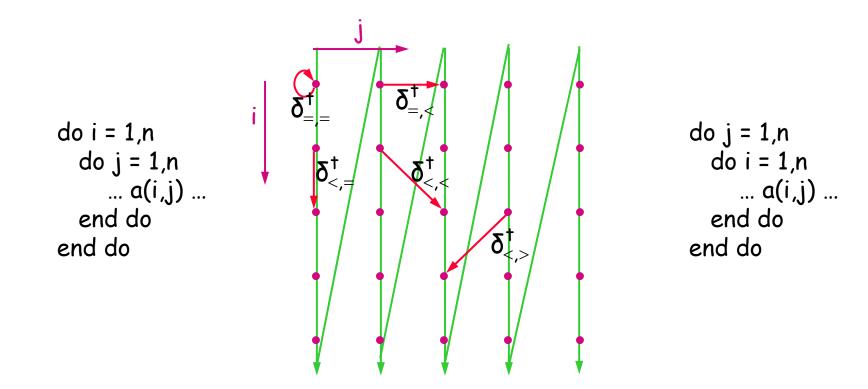
Todd C. Mowry



• When is loop interchange legal?

Optimizing Compilers: Parallelization

Todd C. Mowry

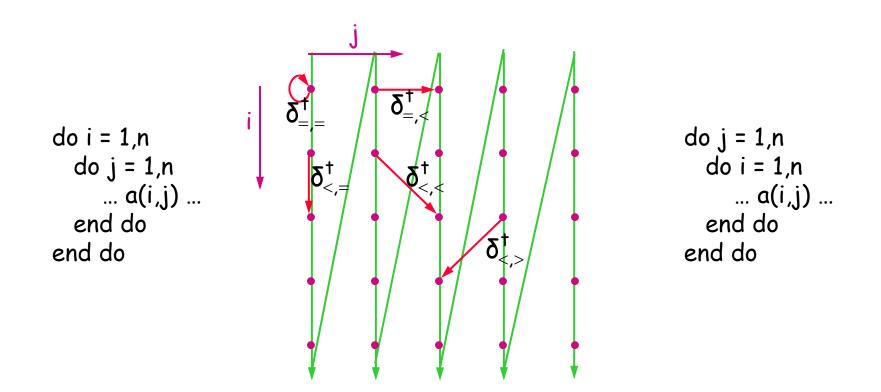


• When is loop interchange legal?

Optimizing Compilers: Parallelization

Carnegie Mellon

Todd C. Mowry



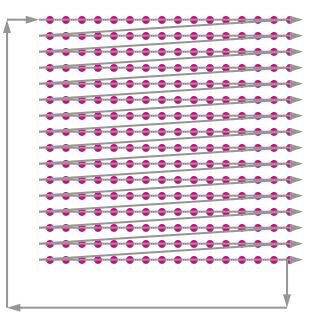
• When is loop interchange legal? when the "interchanged" dependences remain lexiographically positive!

Carnegie Mellon

Optimizing Compilers: Parallelization

Exploits temporal locality in a loop nest.

```
do t = 1,T
do i = 1,n
do j = 1,n
... a(i,j) ...
end do
end do
end do
end do
```

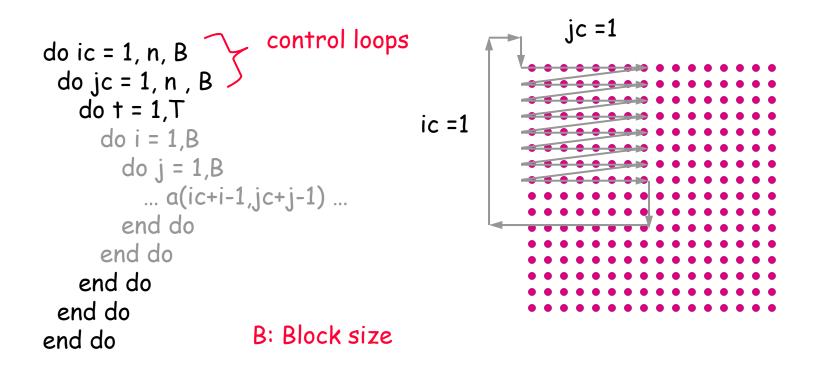


Exploits temporal locality in a loop nest.

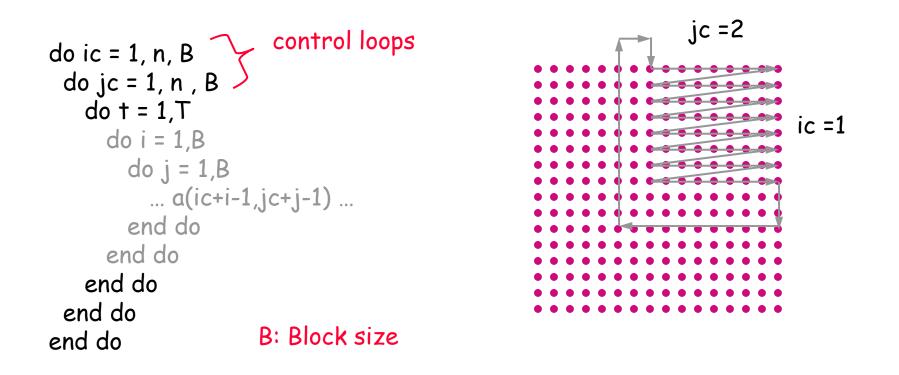
do ic = 1, n, B do jc = 1, n, B do t = 1,T do i = 1,B do j = 1,B ... a(ic+i-1,jc+j-1) ... end do end do end do end do B: Block size

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
٠	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	٠	٠	٠
٠	•	•	•	•	٠	•	•	•	•	٠	•	•	٠	•	٠
٠	•	•	•	•	٠	•	•	•	•	٠	•	•	•	•	٠
٠	•	•	•	•	٠	•	•	•	•	٠	•	•	•	•	٠
٠	•	•	•	•	٠	•	•	•	•	٠	•	•	•	•	٠
•	•	•	•	•	٠	•	•	•	•	٠	•	•	•	•	٠
•	•	•	•	•	٠	•	•	•	•	٠	•	•	•	•	٠
٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

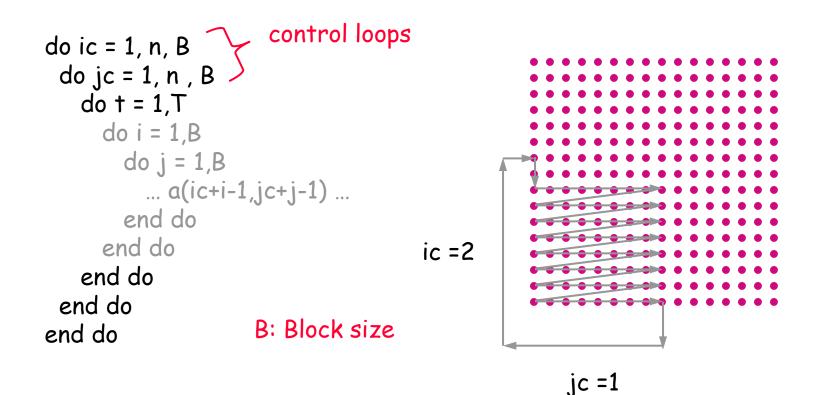
Exploits temporal locality in a loop nest.



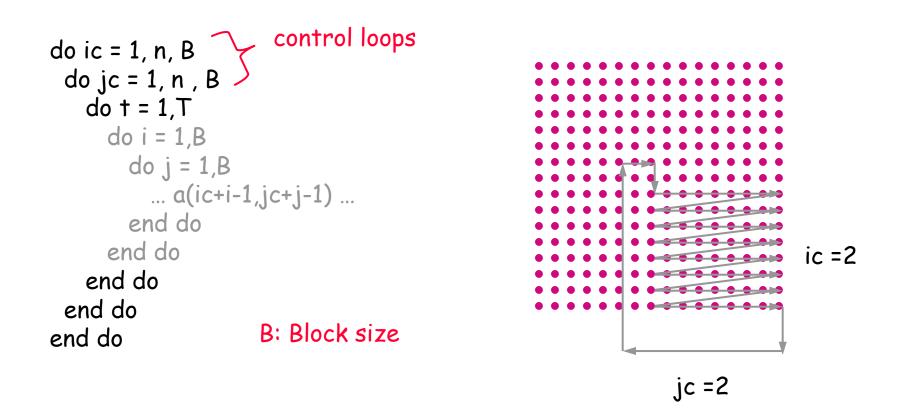
Exploits temporal locality in a loop nest.



Exploits temporal locality in a loop nest.



Exploits temporal locality in a loop nest.



Loop Blocking (Tiling)

do t = 1,T do i = 1,n do j = 1,n ... a(i,j) ... end do end do end do

- do t = 1,T do ic = 1, n, B do i = 1,B do jc = 1, n, B do j = 1,B ... a(ic+i-1,jc+j-1) ... end do end do end do
- do ic = 1, n, B do jc = 1, n, B do t = 1,T do i = 1,B do j = 1,B ... a(ic+i-1,jc+j-1) ... end do end do end do end do end do end do

• When is loop blocking legal?