Lecture 12

Region-Based Analysis
I. Basic Idea
II. Algorithm
III. Optimization and Complexity
IV. Comparing region-based analysis with iterative algorithms

Reading: ALSU 9.7

15-745: Region-Based Analysis
Carnegie Mellon
Todd C. Mowry

- Exploit the structure of block-structured programs in data flow
- Tie in several concepts studied:
- Use of structure in induction variables, loop invariant
- motivated by nature of the problem
- This lecture: can we use structure for speed?
- Iterative algorithm for data flow
- This lecture: an alternative algorithm
- Reducibility
- all retreating edges of DFST are back edges
- reducible graphs converge quickly
- This lecture: algorithm exploits \& requires reducibility
- Usefulness in practice
- Faster for "harder" analyses
- Useful for analyses related to structure
- Theoretically interesting: better understanding of data flow
\square
15-745: Region-Based Analysis egie Mellon
Todd C. Mowry

I. Big Picture

15-745: Region-Based Analysis

Basic Idea

- In Iterative Analysis:
- DEFINITION: Transfer function F_{B} :
summarize effect from beginning to end of basic block B
- In Region-Based Analysis:
- DEFINITION: Transfer function $F_{R, B}$
summarize effect from beginning of R to end of basic block B
- Recursively
construct a larger region R from smaller regions
construct $F_{R, B}$ from transfer functions for smaller regions until the program is one region
- Let P be the region for the entire program,
and v be initial value at entry node
- out $[B]=F_{P, B}(v)$
- in $[B]=\wedge_{B^{\prime}}$ out $\left[B^{\prime}\right]$, where B^{\prime} is a predecessor of B

[^0]
II. Algorithm

1. Operations on transfer functions
2. How to build nested regions?
3. How to construct transfer functions that correspond to the larger regions?

2. Structure of Nested Regions (An Example)

- A region in a flow graph is a set of nodes that
- includes a header, which dominates all other nodes in a region
- T1-T2 rule (Hecht \& Ullman)

Ti: Remove a loop
If n is a node with a loop, i.e. an edge $n->n$, delete that edge

- T2: Remove a vertex

If there is a node n that has a unique predecessor, m, then m may consume n by
deleting n and making all successors of n be successors of m.

15-745: Region Bosed Analys
Carnegie Mellon
Todd C. Mowry

1. Operations on Transfer Functions

- Example: Reaching Definitions

- $F(x)=\operatorname{Gen} \cup(x-$ Kill $)$
- $F_{2}\left(F_{1}(x)\right)=\operatorname{Gen}_{2} \cup\left(F_{1}(x)-\right.$ Kill $\left._{2}\right)$
$=\operatorname{Gen}_{2} \cup\left(\right.$ Gen $_{1} \cup\left(x-\right.$ Kill $\left.\left._{1}\right)\right)-$ Kill $\left._{2}\right)$
$=\operatorname{Gen}_{2} \cup\left(\right.$ Gen $_{1}-$ Kill $\left._{2}\right) \cup\left(x-\left(\right.\right.$ Kill $_{1} \cup$ Kill $\left.\left._{2}\right)\right)$
- $F_{1}(x) \wedge F_{2}(x)=$ Gen $_{1} \cup\left(x-\right.$ Kill $\left._{1}\right) \cup$ Gen $_{2} \cup\left(x-\right.$ Kill $\left._{2}\right)$

$$
=\left(\operatorname{Gen}_{1} \cup \operatorname{Gen}_{2}\right) \cup\left(x-\left(\text { Kill }_{1} \cap \text { Kill }_{2}\right)\right)
$$

- $F^{*}(x) \leq F^{n}(x), \forall n \geq 0$
$=x \cup F(x) \cup F(F(x)) \cup$.
$=x \cup(\operatorname{Gen} \cup(x-$ Kill $)) \cup(\operatorname{Gen} \cup((\operatorname{Gen} \cup(x-$ Kill $))-$ Kill $)) \cup \ldots$
$=\operatorname{Gen} \cup(x-\varnothing)$

```
15-745: Region-Based Analysis


\section*{Example}
- In reduced graph:
- each vertex represents a subgraph of original graph (a region)
- each edge represents an edge in original graph
- Limit flow graph: result of exhaustive application of T1 and T2
- independent of order of application.
- if limit flow graph has a single vertex \(\rightarrow\) reducible
- Can define larger regions (e.g. Allen\&Cocke's intervals)
- simple regions \(\rightarrow\) simple composition rules for transfer functions


\section*{3. Transfer Functions for T2 Rule}

- Transfer function
\(F_{R, B}\) : summarizes the effect from beginning of \(R\) to end of \(B\)
\(F_{R, i n(H 2)}\) : summarizes the effect from beginning of \(R\) to beginning of \(H 2\)
- Unchanged for blocks \(B\) in region \(R_{1}\left(F_{R, B}=F_{R 1, B}\right)\)
- \(F_{R, i n(H 2)}=\wedge_{p} F_{R, P}\), where \(p\) is a predecessor of \(H_{2}\)
- For blocks \(B\) in region \(R_{2}: F_{R, B}=F_{R 2, B} \cdot F_{R, \text { in(H2) }}\)

15-745: Region-Based Analysis
negie Mellon
Todd C. Mowry

First Example

- R: region name
- \(R^{\prime}\) : region whose header will be subsumed
\begin{tabular}{ll|l} 
15-745: Region-Based Analysis & 11 & \(\begin{array}{c}\text { Carnegie Mellon } \\
\text { Todd C. Mowry }\end{array}\)
\end{tabular}

Transfer Functions for T1 Rule

- Transfer Function \(F_{R, B}\)
- \(F_{R, \operatorname{in}(H)}=\left(\wedge_{P} F_{R 1, P}\right)^{*}\), where \(p\) is a predecessor of H in \(R\)
\(-F_{R, B}=F_{R 1, B} \cdot F_{R, \operatorname{in}(H)}\)
First Example

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R & \(\mathrm{T}_{1} \mathrm{~T}_{2}\) & R' & \(F_{\text {R,in(R) }}\) & \(\mathrm{F}_{\mathrm{R}, \mathrm{B1}}\) & \(\mathrm{F}_{\mathrm{R}, \mathrm{B} 2}\) & \(\mathrm{F}_{\mathrm{R}, \mathrm{B} 3}\) & \(\mathrm{F}_{\mathrm{R}, 84}\) \\
\hline \(\mathrm{R}_{1}\) & \(\mathrm{T}_{2}\) & \(\mathrm{B}_{2}\) & \(\mathrm{F}_{\mathrm{B} 1}\) & \(\mathrm{F}_{\mathrm{B} 1}\) & \(\mathrm{F}_{\mathrm{B2}} \cdot \mathrm{~F}_{\text {R1, } 1(32)}\) & & \\
\hline \(\mathrm{R}_{2}\) & \(\mathrm{T}_{2}\) & \(\mathrm{R}_{1}\) & \(\mathrm{F}_{\text {B }}\) &  &  & \(\mathrm{F}_{\text {B3 }}\) & \\
\hline \(\mathrm{R}_{3}\) & \(\mathrm{T}_{1}\) & \(\mathrm{R}_{2}\) & \(\left(F_{\text {R281 }} F_{\text {R2822 }}\right)^{*}\) & \(F_{R 2,81} \cdot F_{R 3, i n(R 2)}\) & \(\mathrm{F}_{\mathrm{R} 2,82} \cdot \mathrm{~F}_{\mathrm{R} 3 \text {; } \mathrm{n}(22)}\) & \(\mathrm{F}_{\mathrm{R} 2,33} \cdot \mathrm{~F}_{\mathrm{R} 3, \mathrm{in}(2)}\) & \\
\hline \(\mathrm{R}_{4}\) & \(\mathrm{T}_{2}\) & \(\mathrm{B}_{4}\) & \(\mathrm{F}_{\text {R3B }} \wedge \wedge_{\text {R332 }}\) & \(\mathrm{F}_{\mathrm{R},{ }^{\text {B }} \text { 1 }}\) & \(\mathrm{F}_{\mathrm{R} 3, \mathrm{B2}}\) & \(\mathrm{F}_{\mathrm{R} 3,83}\) & \(\mathrm{F}_{84} \cdot \mathrm{~F}_{\text {R4, in(34) }}\) \\
\hline
\end{tabular}
- R: region name
- \(R^{\prime}\) : region whose header will be subsumed

\footnotetext{
15-745: Region-Based Analysis
rnegie Mellon
Todd C. Mow
}


\section*{Optimization}
- Let \(m=\) number of edges, \(n=\) number of nodes
- Ideas for optimization
- If we compute \(F_{R, B}\) for every region \(B\) is in, then it is very expensive
- We are ultimately only interested in the entire region ( \(E\) ):
we need to compute only \(F_{E, B}\) for every \(B\).
- There are many common subexpressions between \(F_{E, B 1}, F_{E, B 2}, \ldots\)
- Number of \(F_{E, B}\) calculated \(=m\)
- Also, we need to compute \(F_{R, i n\left(R^{\prime}\right)}\), where \(R^{\prime}\) represents the region whose header is subsumed.
- Number of \(F_{R, B}\) calculated, where \(R\) is not final \(=n\)
- Total number of \(F_{R, B}\) calculated: \((m+n)\)
- Data structure keeps "header" relationship
- Practical algorithm: \(O(m \log n)\)
- Complexity: \(O(m \alpha(m, n)), \alpha\) is inverse Ackermann function
```

15-745: Region-Based Analysis

IV. Comparison with Iterative Data Flow

- Applicability
- Definitions of F^{*} can make technique more powerful than iterative algorithms
- Backward flow: reverse graph is not typically reducible.
- Requires more effort to adapt to backward flow than iterative algorithm
- More important for interprocedural optimization
- Speed
- Irreducible graphs
- Iterative algorithm can process irreducible parts uniformly
- Serious "irreducibility" can be slow with region-based analysis
- If no T1, T2 is applicable before graph is reduced to single node, then split node and continue
- Worst case: exponential
- Most graphs (including GOTO programs) are reducible
- Reducible graph \& Cycles do not add information (common)
- Iterative: (depth +2) passes
depth is 2.75 average, independent of code length
- Region-based analysis: Theoretically almost linear, typically $O(m \log n)$
- Reducible \& Cycles add information

Iterative takes longer to converge

- Region-based analysis remains the same

[^0]: 15-745: Region-Based Analysis
 Carnegii Mellon Todd C. Mowry

