
1

Lecture 12

Region Based AnalysisRegion-Based Analysis

I. Basic Idea
II. Algorithm
III. Optimization and Complexity
IV Comparing region-based analysis with iterative

Carnegie Mellon

IV. Comparing region based analysis with iterative
algorithms

Reading: ALSU 9.7

Todd C. Mowry 15-745: Region-Based Analysis 1

Motivation for Studying Region-Based Analysis

• Exploit the structure of block-structured programs in data flow
• Tie in several concepts studied:

– Use of structure in induction variables, loop invariant
d b f h bl• motivated by nature of the problem

• This lecture: can we use structure for speed?
– Iterative algorithm for data flow

• This lecture: an alternative algorithm
– Reducibility

• all retreating edges of DFST are back edges
• reducible graphs converge quickly
• This lecture: algorithm exploits & requires reducibility

Carnegie Mellon

g p q y
• Usefulness in practice

– Faster for “harder” analyses
– Useful for analyses related to structure

• Theoretically interesting: better understanding of data flow

Todd C. Mowry15-745: Region-Based Analysis 2

I. Big Picture

B3 B1 B2 B4

B3 B1 B2 B4

B3 B1 B2 B4

B3 B1 B2 B4

Carnegie Mellon
Todd C. Mowry15-745: Region-Based Analysis 33

B3 B1 B2 B4

Basic Idea

• In Iterative Analysis:
• DEFINITION: Transfer function FB:

summarize effect from beginning to end of basic block B

• In Region-Based Analysis:
• DEFINITION: Transfer function FR,B:

summarize effect from beginning of R to end of basic block B

• Recursively
construct a larger region R from smaller regions
construct FR,B from transfer functions for smaller regions

until the program is one region

Carnegie Mellon

• Let P be the region for the entire program,
and v be initial value at entry node

– out[B] = FP,B (v)
– in [B] = B’ out[B’], where B’ is a predecessor of B

Todd C. Mowry15-745: Region-Based Analysis 4

2

II. Algorithm

1. Operations on transfer functions

2. How to build nested regions?

3. How to construct transfer functions that correspond to the larger
regions?

Carnegie Mellon
Todd C. Mowry15-745: Region-Based Analysis 5

1. Operations on Transfer Functions

• Example: Reaching Definitions

• F(x) = Gen (x - Kill)
F (F ()) G (F () Kill)• F2(F1(x)) = Gen2 (F1(x) - Kill2)

= Gen2 (Gen1 (x - Kill1)) - Kill2)
= Gen2 (Gen1 - Kill2) (x - (Kill1 Kill2))

• F1(x) F2(x) = Gen1 (x - Kill1) Gen2 (x - Kill2)
= (Gen1 Gen2) (x - (Kill1 Kill2))

F*() Fn() 0

Carnegie Mellon

• F*(x) ≤ Fn(x), n 0
= x F(x) F(F(x)) ...
= x (Gen (x - Kill)) (Gen ((Gen (x - Kill)) - Kill)) ...
= Gen (x -)

Todd C. Mowry15-745: Region-Based Analysis 6

2. Structure of Nested Regions (An Example)

• A region in a flow graph is a set of nodes that
– includes a header, which dominates all other nodes in a region

• T1-T2 rule (Hecht & Ullman)
1 R l• T1: Remove a loop

If n is a node with a loop, i.e. an edge n->n, delete that edge

• T2: Remove a vertex
If there is a node n that has a unique predecessor, m,
th n m m nsum n b

Carnegie Mellon

then m may consume n by
deleting n and making all successors of n be successors of m.

Todd C. Mowry15-745: Region-Based Analysis 7

Example

a

b c

• In reduced graph:
– each vertex represents a subgraph of original graph (a region).
– each edge represents an edge in original graph

• Limit flow graph: result of exhaustive application of T1 and T2

d

Carnegie Mellon

Limit flow graph: result of exhaustive application of T1 and T2
– independent of order of application.
– if limit flow graph has a single vertex reducible

• Can define larger regions (e.g. Allen&Cocke’s intervals)
– simple regions simple composition rules for transfer functions

Todd C. Mowry15-745: Region-Based Analysis 8

3

3. Transfer Functions for T2 Rule
R1 R

H1

R1 R
H

• Transfer function
FR,B: summarizes the effect from beginning of R to end of B

R2
H2

R2

Carnegie Mellon

,
FR,in(H2): summarizes the effect from beginning of R to beginning of H2
– Unchanged for blocks B in region R1 (FR,B = FR1,B)
– FR,in(H2) = P FR,P, where p is a predecessor of H2

– For blocks B in region R2: FR,B = FR2,B ·FR,in(H2)

Todd C. Mowry15-745: Region-Based Analysis 9

Transfer Functions for T1 Rule

R1

R

H

• Transfer Function FR B

Carnegie Mellon

R,B

– FR,in(H) = (P FR1,P) *, where p is a predecessor of H in R
– FR,B = FR1,B·FR,in(H)

Todd C. Mowry15-745: Region-Based Analysis 10

First Example

B1 B2 B4B3

R4

R1

R2

R3

R4

R3 B4

R2

R1

B1 B2

B3

R T1/T2 R’ FR,in(R’) FR,B1 FR,B2 FR,B3 FR,B4

R1 T2 B2 FB1 FB1 FB2·FR1,in(B2)

R2 T2 R1 FB3 FR1,B1·FR2,in(R1) FR1,B2·FR2,in(R1) FB3

R3 T1 R2 (FR2B1FR2B2)* FR2 B1·FR3 in(R2) FR2 B2·FR3 in(R2) FR2 B3·FR3 in(R2)

Carnegie Mellon

• R: region name
• R’: region whose header will be subsumed

Todd C. Mowry15-745: Region-Based Analysis 11

R3 T1 R2 (FR2B1FR2B2) FR2,B1 FR3,in(R2) FR2,B2 FR3,in(R2) FR2,B3 FR3,in(R2)

R4 T2 B4 FR3B3FR3B2 FR3,B1 FR3,B2 FR3,B3 FB4·FR4,in(B4)

First Example

B1 B2 B4B3

R4

R1

R2

R3

R4

R3 B4

R2

R1

B1 B2

B3

R T1/T2 R’ FR,in(R’) FR,B1 FR,B2 FR,B3 FR,B4

R1 T2 B2 FB1 FB1 FB2·FR1,in(B2)

R2 T2 R1 FB3 FR1,B1·FR2,in(R1) FR1,B2·FR2,in(R1) FB3

R3 T1 R2 (FR2B1FR2B2)* FR2 B1·FR3 in(R2) FR2 B2·FR3 in(R2) FR2 B3·FR3 in(R2)

Carnegie Mellon

• R: region name
• R’: region whose header will be subsumed

Todd C. Mowry15-745: Region-Based Analysis 12

R3 T1 R2 (FR2B1FR2B2) FR2,B1 FR3,in(R2) FR2,B2 FR3,in(R2) FR2,B3 FR3,in(R2)

R4 T2 B4 FR3B3FR3B2 FR3,B1 FR3,B2 FR3,B3 FB4·FR4,in(B4)

4

III. Complexity of Algorithm
12345

1
2
3
4

R T1/T R’ F F F F F FR T1/T
2

R FR,in(R’) FR,B1 FR,B2 FR,B3 FR,B4 FR,B5

R1 T2 B2 FB2 FB1·FB2 FB2

R2 T2 R1 FB3 FR1,B1·FB3 FR1,B2·FB3 FB3

R3 T2 R2 FB4 FR2,B1·FB4 FR2,B2·FB4 FR2,B3·FB4 FB4

R4 T2 R3 FB5 FR3,B1·FB5 FR3,B2·FB5 FR3,B3·FB5 FB4·FB5 FB5

R FR4,in(R) B FR4,B
R4

Carnegie Mellon
Todd C. Mowry15-745: Region-Based Analysis 13

R4 I
R3 FB5·FR4,in(R4)

R2 FB4·FR4,in(R3)

R1 FB3·FR4,in(R2)

B1 FB2·FR4,in(R1)

B5 FB5·I
B4 FB4·FR4,in(R3)

B3 FB3·FR4,in(R2)

B2 FB2·FR4,in(R1)

B1 FB1·FR4,in(B1)

R3

B4 R2

R1

B2 B1

B3

B5

Optimization

• Let m = number of edges, n = number of nodes

• Ideas for optimization
– If we compute FR B for every region B is in, then it is very expensivef mp FR,B f y g , y p
– We are ultimately only interested in the entire region (E);

we need to compute only FE,B for every B.
• There are many common subexpressions between FE,B1, FE,B2, ...
• Number of FE,B calculated = m

– Also, we need to compute FR,in(R’), where R’ represents the region
whose header is subsumed.

• Number of FR,B calculated, where R is not final = n

Carnegie Mellon

• Total number of FR,B calculated: (m + n)
– Data structure keeps “header” relationship

• Practical algorithm: O(m log n)
• Complexity: O(m(m,n)), is inverse Ackermann function

Todd C. Mowry15-745: Region-Based Analysis 14

Reducibility

1

• If no T1, T2 is applicable before graph is reduced to single node, then
split node and continue

• Worst case: exponential

2 3

Carnegie Mellon

p

• Most graphs (including GOTO programs) are reducible

Todd C. Mowry15-745: Region-Based Analysis 15

IV. Comparison with Iterative Data Flow

• Applicability
– Definitions of F* can make technique more powerful than iterative

algorithms
– Backward flow: reverse graph is not typically reducibleBackward flow: reverse graph is not typically reducible.

• Requires more effort to adapt to backward flow than iterative algorithm
– More important for interprocedural optimization

• Speed
– Irreducible graphs

• Iterative algorithm can process irreducible parts uniformly
• Serious “irreducibility” can be slow with region-based analysis

– Reducible graph & Cycles do not add information (common)
• Iterative: (depth + 2) passes

Carnegie Mellon

p p
depth is 2.75 average, independent of code length

• Region-based analysis: Theoretically almost linear, typically O(m log n)
– Reducible & Cycles add information

• Iterative takes longer to converge
• Region-based analysis remains the same

Todd C. Mowry15-745: Region-Based Analysis 16

