Lecture 8
Induction Variables and
Strength Reduction

I. Overview of optimization

II. Algorithm to find induction variables

Definitions

- A **basic induction variable** is
 - a variable X whose only definitions within the loop are assignments of the form:
 $$X = X + c \quad \text{or} \quad X = X - c,$$
 where c is either a constant or a loop-invariant variable.

- An **induction variable** is
 - a basic induction variable, or
 - a variable defined once within the loop, whose value is a linear function of some basic induction variable at the time of the definition:
 $$A = c_1 B + c_2$$

- The **FAMILY** of a basic induction variable B is
 - the set of induction variables A such that each time A is assigned in the loop, the value of A is a linear function of B.

Optimizations

1. **Strength reduction:**
 - Let A be an induction variable in family of basic induction variable B ($A = c_1 B + c_2$)
 - Create new variable: A'
 - Initialization in preheader: $A' = c_1 B + c_2$
 - Track value of B: add after $B = B + x$: $A' = A' + x c_1$
 - Replace assignment to A: $A = A'$

Example

FOR $i = 0$ to 100
 $A[i] = 0$
END

L2: IF $i \geq 100$ GOTO L1
 $t1 = 4 * i$
 $t2 = 4A + t1$
 $i = i + 1$
 GOTO L2
L1:
Optimizations (continued)

2. Optimizing non-basic induction variables
 - copy propagation
 - dead code elimination

3. Optimizing basic induction variables
 - Eliminate basic induction variables used only for
 - calculating other induction variables and loop tests
 - Algorithm:
 - Select an induction variable \(A \) in the family of \(B \), preferably with simple constants \(A = c_1 B + c_2 \).
 - Replace a comparison such as

       ```
       if \( B > X \) goto L1
       ```

 with

       ```
       if \( (A' > c_1 X + c_2) \) goto L1
       ```
 (assuming \(c_2 \) is positive)
 - if \(B \) is live at any exit from the loop, recompute it from \(A' \)
 - After the exit, \(B = (A' - c_2) / c_1 \)

II. Basic Induction Variables

- A BASIC induction variable in a loop \(L \)
 - a variable \(X \) whose only definitions within \(L \) are assignments of the form
 \(X = X + c \) or \(X = X - c \), where \(c \) is either a constant or a loop-invariant variable.
- Algorithm: can be detected by scanning \(L \)
- Example:

  ```
  k = 0;
  for (i = 0; i < n; i++) {
    k = k + 3;
    … = m;
    if (x < y) k = k + 4;
    if (a < b) m = 2 * k;
    k = k – 2;
    … = m;
  }
  ```
 Each iteration may execute a different number of increments/decrements!!

Strength Reduction Algorithm

- Key idea:
 - For each induction variable \(A \), \(A = c_1 B + c_2 \) at time of definition
 - variable \(A' \) holds expression \(c_1 B + c_2 \) at all times
 - replace definition of \(A \) with \(A = A' \) only when executed

- Result:
 - Program is correct
 - Definition of \(A \) does not need to refer to \(B \)

Finding Induction Variable Families

- Let \(B \) be a basic induction variable
 - Find all induction variables \(A \) in family of \(B \):
 - \(A = c_1 B + c_2 \)
 (where \(B \) refers to the value of \(B \) at time of definition)
 - Conditions:
 - If \(A \) has a single assignment in the loop \(L \), and assignment is one of:
 - \(A = B * c \)
 - \(A = c * B \)
 - \(A = B / c \) (assuming \(c \) is real)
 - \(A = B + c \)
 - \(A = c + B \)
 - \(A = B - c \)
 - \(A = c - B \)
 - OR, ... (next page)
Finding Induction Variable Families (continued)

Let \(D \) be an induction variable in the family of \(B \) \((D = c_1 \times B + c_2)\)

- If \(A \) has a single assignment in the loop \(L \), and assignment is one of:
 \[
 \begin{align*}
 A &= D \times c \\
 A &= c \times D \\
 A &= D / c \quad \text{(assuming} \ A \text{ is real)} \\
 A &= D + c \\
 A &= c + D \\
 A &= D - c \\
 A &= c - D
 \end{align*}
 \]
- No definition of \(D \) outside \(L \) reaches the assignment to \(A \)
- Between the lone point of assignment to \(D \) in \(L \) and the assignment to \(A \), there are no definitions of \(B \)

Summary

- Precise definitions of induction variables
- Systematic identification of induction variables
- Strength reduction
- Clean up:
 - eliminating basic induction variables
 - used in other induction variable calculations
 - replacement of loop tests
 - eliminating other induction variables
 - standard optimizations