Lecture 6

More Examples of Data Flow Analysis:
Global Common Subexpression Elimination:
Constant Propagation/Folding

I. Available Expressions Analysis
II. Eliminating CSEs
III. Constant Propagation/Folding

Reading: 9.2.6, 9.4

Global Common Subexpressions

Formulating the Problem

- Domain:
 - a bit vector, with a bit for each textually unique expression in the program
- Forward or Backward?
- Lattice Elements?
- Meet Operator?
 - check commutative, idempotent, associative
- Partial Ordering
- Top?
- Bottom?
- Boundary condition: entry/exit node?
- Initialization for iterative algorithm?

Transfer Functions

- Can use the same equation as reaching definitions
 - out[b] = gen[b] \(\cup\) (in[b] - kill[b])
- Start with the transfer function for a single instruction
 - When does the instruction generate an expression?
 - When does it kill an expression?
- Calculate transfer functions for complete basic blocks
 - Compose individual instruction transfer functions
Composing Transfer Functions

- Derive the transfer function for an entire block
 \[\text{in1} \]
 \[\rightarrow \text{out1} = \text{gen1} U (\text{in1} - \text{kill1}) = \text{in2} \]
 \[\rightarrow \text{out2} = \text{gen2} U (\text{in2} - \text{kill2}) \]

- Since \(\text{out1} = \text{in2} \) we can simplify:
 - \(\text{out2} = \text{gen2} U ((\text{gen1} U (\text{in1} - \text{kill1})) - \text{kill2}) \)
 - \(\text{out2} = \text{gen2} U (\text{gen1} - \text{kill2}) U (\text{in1} - (\text{kill1} U \text{kill2})) \)
 - \(\text{out2} = \text{gen2} U (\text{gen1} - \text{kill2}) U (\text{in1} - (\text{kill2} U (\text{kill1} - \text{gen2}))) \)

- Result
 - gen = \(\text{gen2} U (\text{gen1} - \text{kill2}) \)
 - kill = \(\text{kill2} U (\text{kill1} - \text{gen2}) \)

II. Eliminating CSEs

- Available expressions (across basic blocks)
 - provides the set of expressions available at the start of a block

- Value Numbering (within basic block)
 - Initialize Values table with available expressions

- If CSE is an “available expression”, then transform the code
 - Original destination may be:
 - a temporary register
 - overwritten
 - different from the variables on other paths
 - One solution: Copy the expression to a new variable at each evaluation reaching the redundant use

III. Limitation: Textually Identical Expressions

- Commutative operations
 \[\text{add t1} = x, y \]
 \[\text{add t2} = y, x \]
 \[\rightarrow \text{sort the operands} \]

- Examples
 - Expressions with more than two operands
 \[\text{add t1} = x, y \]
 \[\text{add t2} = t1, z \]
 \[\text{add t3} = y, x \]
 \[\text{add t4} = t3, z \]
 \[\text{add t5} = x, y \]
 \[\text{add t6} = t5, z \]
 - Textually different expressions may be equivalent
 \[\text{add t1} = x, y \]
 \[\text{beq t1, t2, t1} \]
 \[\text{cpy z} = x \]
 \[\text{add t3} = z, y \]
Another Example

\[
x = 1 \\
y = 1 \\
x = x + 1 \\
y = y + 1
\]

III. Constant Propagation/Folding

- At every basic block boundary, for each variable \(v \)
 - determine if \(v \) is a constant
 - if so, what is the value?

\[
e = 1 \\
x = 2 \\
x = x + e \\
e = 3 \\
p = e + 4
\]
Equivalent Definition

- Meet Operation:

<table>
<thead>
<tr>
<th>v1</th>
<th>v2</th>
<th>v1 (\land) v2</th>
</tr>
</thead>
<tbody>
<tr>
<td>undef</td>
<td>undef</td>
<td>undef</td>
</tr>
<tr>
<td>c1</td>
<td>undef</td>
<td>c1</td>
</tr>
<tr>
<td>NAC</td>
<td>c2</td>
<td>NAC</td>
</tr>
<tr>
<td>NAC</td>
<td>undef</td>
<td>NAC</td>
</tr>
</tbody>
</table>

- Note: \(\text{undef} \land c2 = c2! \)

Example

\[
x = 2
\]

Transfer Function

- Assume a basic block has only 1 instruction
- Let \(\text{IN}[b,x], \text{OUT}[b,x] \)
 - be the information for variable \(x \) at entry and exit of basic block \(b \)
- \(\text{OUT}[\text{entry}, x] = \text{undef}, \text{for all } x \).
- Non-assignment instructions: \(\text{OUT}[b,x] = \text{IN}[b,x] \)
- Assignment instructions: (next page)

Constant Propagation (Cont.)

- Let an assignment be of the form \(x_3 = x_1 + x_2 \)
 - \(+ \) represents a generic operator
 - \(\text{OUT}[b,x] = \text{IN}[b,x], \text{if } x = x_1 \)

<table>
<thead>
<tr>
<th>(\text{IN}[b,x_i])</th>
<th>(\text{IN}[b,x_j])</th>
<th>(\text{OUT}[b,x_k])</th>
</tr>
</thead>
<tbody>
<tr>
<td>undef</td>
<td>undef</td>
<td>undef</td>
</tr>
<tr>
<td>c1</td>
<td>undef</td>
<td>NAC</td>
</tr>
<tr>
<td>NAC</td>
<td>c2</td>
<td>NAC</td>
</tr>
</tbody>
</table>

- Use: \(x \leq y \) implies \(f(x) \leq f(y) \) to check if framework is monotone
 - \([v_1, v_2, \ldots] \leq [v_1', v_2', \ldots], f([v_1, v_2, \ldots]) \leq f([v_1', v_2', \ldots]) \)
Distributive?

\[
\begin{align*}
x &= 2 \\
y &= 3 \\
z &= x + y
\end{align*}
\begin{align*}
x &= 3 \\
y &= 2 \\
z &= x + y
\end{align*}
\]

Summary of Constant Propagation

- A useful optimization
- Illustrates:
 - abstract execution
 - an infinite semi-lattice
 - a non-distributive problem

Other Optimizations

- **Copy Propagation:**

- **Dead Code Elimination:**