Lecture 4
Introduction to Data Flow Analysis

I. Structure of data flow analysis
II. Example 1: Reaching definition analysis
III. Example 2: Liveness analysis
IV. Generalization

What is Data Flow Analysis?

- Local analysis (e.g., value numbering)
 - analyze effect of each instruction
 - compose effects of instructions to derive information from beginning of basic block to each instruction

- Data flow analysis
 - analyze effect of each basic block
 - compose effects of basic blocks to derive information at basic block boundaries
 - from basic block boundaries, apply local technique to generate information on instructions

What is Data Flow Analysis? (Cont.)

- Data flow analysis:
 - Flow-sensitive: sensitive to the control flow in a function
 - intraprocedural analysis
- Examples of optimizations:
 - Constant propagation
 - Common subexpression elimination
 - Dead code elimination

Value of x?
Which "definition" defines x?
Is the definition still meaningful (live)?

Static Program vs. Dynamic Execution

- Statically: Finite program
- Dynamically: Can have infinitely many possible execution paths
- Data flow analysis abstraction:
 - For each point in the program
 - combines information of all the instances of the same program point.
- Example of a data flow question:
 - Which definition defines the value used in statement "b = a"?
Effects of a Basic Block

- Effect of a statement: \(a = b + c \)
 - Uses variables \((b, c) \)
 - Kills an old definition (old definition of \(a \))
 - New definition (\(a \))
- Compose effects of statements -> Effect of a basic block
 - A locally exposed use in a b.b. is a use of a data item which is not preceded in the b.b. by a definition of the data item
 - Any definition of a data item in the basic block kills all definitions of the same data item reaching the basic block.
- A locally available definition = last definition of data item in b.b.

\[
\begin{align*}
 t_1 &= r_1 + r_2 \\
 t_2 &= t_1 \\
 t_3 &= t_2 + r_1 \\
 r_1 &= t_3 \\
 r_2 &= t_3 \\
 \text{if } r_2 > 100 \text{ goto } L1
\end{align*}
\]

II. Reaching Definitions

- Every assignment is a definition
 - A definition \(d \) reaches a point \(p \) if there exists path from the point immediately following \(d \) to \(p \) such that \(d \) is not killed (overwritten) along that path.
- Problem statement:
 - For each point in the program, determine if each definition in the program reaches the point
 - A bit vector per program point, vector-length = \#defs

Reaching Definitions: Another Example

\[
\begin{align*}
 d0: & \quad a = x \\
 L1: & \quad \text{if input}() \ \text{GOTO } L2 \\
 d1: & \quad b = a \\
 d2: & \quad a = y \\
 \text{GOTO } L1
\end{align*}
\]

Data Flow Analysis Schema

- Build a flow graph (nodes = basic blocks, edges = control flow)
- Set up a set of equations between \(\text{in}[b] \) and \(\text{out}[b] \) for all basic blocks \(b \)
 - Effect of code in basic block:
 - Transfer function \(f_b \), relates \(\text{in}[b] \) and \(\text{out}[b] \), for same \(b \)
 - Effect of flow of control:
 - Relates \(\text{out}[b_1], \text{in}[b_2] \) if \(b_1 \) and \(b_2 \) are adjacent
- Find a solution to the equations
Data Flow Analysis Schema

- Build a flow graph (nodes = basic blocks, edges = control flow)
- Set up a set of equations between in[b] and out[b] for all basic blocks b
 - Effect of code in basic block:
 - Transfer function \(f_b \) relates \(\text{in}[b] \) and \(\text{out}[b] \), for same b
 - Effect of flow of control:
 - relates \(\text{out}[b_1], \text{in}[b_2] \) if \(b_1 \) and \(b_2 \) are adjacent
- Find a solution to the equations

Effects of a Statement

- \(f_s \): A transfer function of a statement
 - abstracts the execution with respect to the problem of interest
- For a statement \(s \) (\(d: x = y + z \))
 \(\text{out}[s] = f_s(\text{in}[s]) = \text{Gen}[s] \cup (\text{in}[s] - \text{Kill}[s]) \)
 - \(\text{Gen}[s] \): definitions generated: \(\text{Gen}[s] = (d) \)
 - \(\text{Propagated} \) definitions: \(\text{in}[s] - \text{Kill}[s] \)
 where \(\text{Kill}[s] \)-set of all other defs to \(x \) in the rest of program

Effects of a Basic Block

- \(\text{out}[B] = f_B(\text{in}[B]) = \text{Gen}[B] \cup (\text{in}[B] - \text{Kill}[B]) \)
 - \(\text{Gen}[B] \): locally exposed definitions (available at end of bb)
 - \(\text{Kill}[B] \): set of definitions killed by \(B \)

Example

- A transfer function \(f_b \) of a basic block \(B \):
 \(\text{OUT}[B] = f_b(\text{IN}[B]) \)
 incoming reaching definitions \(\rightarrow \) outgoing reaching definitions
- A basic block \(B \)
 - generates definitions: \(\text{Gen}[B] \)
 - set of locally available definitions in \(B \)
 - kills definitions: \(\text{in}[B] - \text{Kill}[B] \)
 where \(\text{Kill}[B] \)-set of defs (in rest of program) killed by defs in \(B \)
 - \(\text{out}[B] = \text{Gen}[B] \cup (\text{in}[B] - \text{Kill}[B]) \)
Effects of the Edges (acyclic)

- \(\text{out}[b] = f_b(\text{in}[b]) \)
- Join node: a node with multiple predecessors
- **meet** operator:
 \(\text{in}[b] = \text{out}[p_1] \cup \text{out}[p_2] \cup \ldots \cup \text{out}[p_n] \), where
 \(p_1, \ldots, p_n \) are all predecessors of \(b \)

Cyclic Graphs

\[
\begin{align*}
\text{out} & : 1 \to 2 \to 1 \\
\text{in} & : 1 \to 2 \to 3 \\
\text{out} & : 2 \to 1 \to 3 \\
\text{in} & : 3 \to 2 \to 3 \\
\text{out} & : 3 \to 1 \to 2 \\
\end{align*}
\]

- Equations still hold
 - \(\text{out}[b] = f_b(\text{in}[b]) \)
 - \(\text{in}[b] = \text{out}[p_1] \cup \text{out}[p_2] \cup \ldots \cup \text{out}[p_n] \), \(p_1, \ldots, p_n \) are all predecessors of \(b \)
- Find: fixed point solution

Reaching Definitions: Iterative Algorithm

Input: control flow graph \(\text{CFG} = (N, E, \text{Entry}, \text{Exit}) \)

1. **Boundary condition**
 - \(\text{out}[\text{Entry}] = \emptyset \)

2. **Initialization for iterative algorithm**
 - For each basic block \(B \) other than \(\text{Entry} \)
 - \(\text{out}[B] = \emptyset \)

3. **Iterate**
 - While (Changes to any \(\text{out}[\cdot] \) occur)
 - For each basic block \(B \) other than \(\text{Entry} \)
 - \(\text{in}[B] = \bigcup \{ \text{out}[p] \}, \) for all predecessors \(p \) of \(B \)
 - \(\text{out}[B] = f_B(\text{in}[B]) \) // \(\text{out}[B] = \text{gen}[B] \cup (\text{in}[B] - \text{kill}[B]) \)

Reaching Definitions: Worklist Algorithm

Input: control flow graph \(\text{CFG} = (N, E, \text{Entry}, \text{Exit}) \)

1. **Initialize**
 - \(\text{out}[\text{Entry}] = \emptyset \) // can set out[Entry] to special def
 - \(\text{out}[i] = \emptyset \) // if reaching then undefined use
 - \(\text{ChangesNodes} = N \)

2. **Iterate**
 - While \(\text{ChangesNodes} \neq \emptyset \)
 - Remove \(i \) from \(\text{ChangesNodes} \)
 - \(\text{in}[i] = \bigcup \{ \text{out}[p] \}, \) for all predecessors \(p \) of \(i \)
 - \(\text{out}[i] = f_i(\text{in}[i]) \) // \(\text{out}[i] = \text{gen}[i] \bigcup (\text{in}[i] - \text{kill}[i]) \)
 - If \(\text{oldout} \neq \text{out}[i] \)
 - For all successors \(s \) of \(i \)
 - Add \(s \) to \(\text{ChangesNodes} \)

III. Live Variable Analysis

- Definition
 - A variable v is live at point p if
 - the value of v is used along some path in the flow graph starting at p.
 - Otherwise, the variable is dead.

- Motivation
 - e.g. register allocation

    ```
    for i = 0 to n
    \text{...}
    \text{...}
    i \text{...}
    \text{...}
    ```

- Problem statement
 - For each basic block
 - determine if each variable is live in each basic block
 - Size of bit vector: one bit for each variable

Effects of a Basic Block (Transfer Function)

- Insight: Trace uses backwards to the definitions
 - an execution path
 - control flow
 - example

      ```
      \text{def} \quad \text{IN}[b] = f_b(\text{OUT}[b])
      \text{def} \quad b \quad f_b
      \text{use} \quad \text{OUT}[b] \quad d3: a = 1
      \text{def} \quad d4: b = 1
      \text{def} \quad d5: c = a
      \text{def} \quad d6: a = 4
      ```

- A basic block b can
 - generate live variables: \text{Use}[b]
 - set of locally exposed uses in b
 - propagate incoming live variables: \text{OUT}[b] \cdot \text{Def}[b]
 - where \text{Def}[b] = set of variables defined in b
 - transfer function for block b:
 \text{in}[b] = \text{Use}[b] \cup (\text{out}(b) - \text{Def}[b])
Liveness: Iterative Algorithm

input: control flow graph CFG = (N, E, Entry, Exit)

// Boundary condition
in[Exit] = ∅

// Initialization for iterative algorithm
For each basic block B other than Exit
in[B] = ∅

// iterate
While (Changes to any in[]) occur {
For each basic block B other than Exit
out[B] = ∪(in[s]), for all successors s of B
in[B] = f_B(out[B]) // in[B]=Use[B] ∪(out[B]-Def[B])
}

Example

![Example Diagram with basic blocks B1 to B4 and operations d1 to d7]

IV. Framework

<table>
<thead>
<tr>
<th>Reaching Definitions</th>
<th>Live Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain</td>
<td>Sets of definitions</td>
</tr>
<tr>
<td>Direction</td>
<td>forward: out[b] = f_B(in[b]) in[b] = ∨ out[pred(b)]</td>
</tr>
<tr>
<td>Transfer function</td>
<td>f_B(x) = Gen_B(x) ∪ (x - Kill_B)</td>
</tr>
<tr>
<td>Meet Operation (-)</td>
<td>⊔</td>
</tr>
<tr>
<td>Boundary Condition</td>
<td>out[entry] = ∅</td>
</tr>
<tr>
<td>Initial interior points</td>
<td>out[b] = ∅</td>
</tr>
</tbody>
</table>

Thought Problem 1. "Must-Reach" Definitions

- A definition D (a = b+c) must reach point P iff
 - D appears at least once along on all paths leading to P
 - a is not redefined along any path after last appearance of D and before P
- How do we formulate the data flow algorithm for this problem?
Problem 2: A legal solution to (May) Reaching Def?

- Will the worklist algorithm generate this answer?

Questions

- Correctness
 - equations are satisfied, if the program terminates.

- Precision: how good is the answer?
 - is the answer ONLY a union of all possible executions?

- Convergence: will the analysis terminate?
 - or, will there always be some nodes that change?

- Speed: how fast is the convergence?
 - how many times will we visit each node?