Lecture 20
Memory Hierarchy Optimizations

Caches: A Quick Review

- How do they work?
- Why do we care about them?
- What are typical configurations today?
- What are some important cache parameters that will affect performance?

Optimizing Cache Performance

- Things to enhance:
 - temporal locality
 - spatial locality
- Things to minimize:
 - conflicts (i.e. bad replacement decisions)

What can the compiler do to help?

Two Things We Can Manipulate

- Time:
 - When is an object accessed?
- Space:
 - Where does an object exist in the address space?

How do we exploit these two levers?
Time: Reordering Computation

- What makes it difficult to know *when* an object is accessed?
- How can we predict a better time to access it?
 - What information is needed?
- How do we know that this would be safe?

Space: Changing Data Layout

- What do we know about an object's location?
 - scalars, structures, pointer-based data structures, arrays, code, etc.
- How can we tell what a better layout would be?
 - how many can we create?
- To what extent can we safely alter the layout?

Types of Objects to Consider

- Scalars
- Structures & Pointers
- Arrays

Scalars

- Locals
  ```c
  int x;
  double y;
  foo(int a){
      int i;
      ...
      x = a*i;
      ...
  }
  ```
- Globals
- Procedure arguments
- Is cache performance a concern here?
 - If so, what can be done?
Structures and Pointers

• What can we do here?
 • within a node
 • across nodes

struct {
 int count;
 double velocity;
 double inertia;
 struct node *neighbors[N];
} node;

• What limits the compiler's ability to optimize here?

Arrays

double A[N][N], B[N][N];
...
for i = 0 to N-1
 for j = 0 to N-1
 A[i][j] = B[j][i];

• usually accessed within loops nests
 • makes it easy to understand "time"
• what we know about array element addresses:
 • start of array?
 • relative position within array

Handy Representation: "Iteration Space"

for i = 0 to N-1
 for j = 0 to N-1
 A[i][j] = B[j][i];

• each position represents an iteration

Visitation Order in Iteration Space

for i = 0 to N-1
 for j = 0 to N-1
 A[i][j] = B[j][i];

• Note: iteration space ≠ data space
When Do Cache Misses Occur?

for \(i = 0 \) to \(N-1 \)
for \(j = 0 \) to \(N-1 \)
\[
A[i][j] = B[j][i];
\]

Optimizing the Cache Behavior of Array Accesses

- We need to answer the following questions:
 - when do cache misses occur?
 - use "locality analysis"
 - can we change the order of the iterations (or possibly data layout) to produce better behavior?
 - evaluate the cost of various alternatives
 - does the new ordering/layout still produce correct results?
 - use "dependence analysis"

Examples of Loop Transformations

- Loop Interchange
- Cache Blocking
- Skewing
- Loop Reversal
- ...

(we will briefly discuss the first two)
Loop Interchange

for i = 0 to N-1
for j = 0 to N-1
A[j][i] = i*j;

Impact on Visitation Order in Iteration Space

for i = 0 to N-1
for j = 0 to N-1
f(A[i],A[j]);

Cache Blocking (aka "Tiling")

for i = 0 to N-1
for j = 0 to N-1
f(A[i],A[j]);

Cache Blocking in Two Dimensions

for i = 0 to N-1
for j = 0 to N-1
for k = 0 to N-1
c[i,k] += a[i,j]*b[j,k];
Predicting Cache Behavior through "Locality Analysis"

Definitions:
- **Reuse:** accessing a location that has been accessed in the past
- **Locality:** accessing a location that is now found in the cache

Key Insights
- Locality only occurs when there is reuse!
- BUT, reuse does not necessarily result in locality.
 - why not?

Steps in Locality Analysis

1. **Find data reuse**
 - if caches were infinitely large, we would be finished
2. **Determine "localized iteration space"**
 - set of inner loops where the data accessed by an iteration is expected to fit within the cache
3. **Find data locality:**
 - reuse \& localized iteration space \implies locality

Types of Data Reuse/Locality

```plaintext
for i = 0 to 2
    for j = 0 to 100
        A[i][j] = B[j][0] + B[j+1][0];
```

Spatial

Temporal

Group

Reuse Analysis: Representation

```plaintext
for i = 0 to 2
    for j = 0 to 100
        A[i][j] = B[j][0] + B[j+1][0];
```

- Map \(n \) loop indices into \(d \) array indices via array indexing function:

\[
j' = Hj + c
\]

- \(A[i][j] = A \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} \)
- \(B[j][0] = B \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} \)
- \(B[j+1][0] = B \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} \)
Finding Temporal Reuse

- Temporal reuse occurs between iterations \mathbf{i}_1 and \mathbf{i}_2 whenever:
 \[H\mathbf{i}_1 + \mathbf{c} = H\mathbf{i}_2 + \mathbf{c} \]
 \[H(\mathbf{i}_1 - \mathbf{i}_2) = \mathbf{0} \]
- Rather than worrying about individual values of \mathbf{i}_1 and \mathbf{i}_2
 we say that reuse occurs along direction vector \mathbf{c} when:
 \[H(r) = \mathbf{0} \]
- Solution: compute the nullspace of H

Temporal Reuse Example

for $i = 0$ to 2
for $j = 0$ to 100
$A[i][j] = B[j][0] + B[j+1][0];$

- Reuse between iterations (i_1,j_1) and (i_2,j_2) whenever:
 \[
 \begin{bmatrix}
 0 & 1 \\
 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 i_1 \\
 j_1
 \end{bmatrix}
 +
 \begin{bmatrix}
 0 & 1 \\
 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 i_2 \\
 j_2
 \end{bmatrix}
 =
 \begin{bmatrix}
 0 \\
 0
 \end{bmatrix}
 \]
- True whenever $j_1 = j_2$, and regardless of the difference between i_1 and i_2.
 - i.e. whenever the difference lies along the nullspace of
 \[
 \begin{bmatrix}
 0 & 1 \\
 0 & 0
 \end{bmatrix}
 \]
 which is $\text{span}((1,0))$ (i.e. the outer loop).

More Complicated Example

for $i = 0$ to $N-1$
for $j = 0$ to $N-1$
$A[i+j][0] = i*j;$

- Nullspace of \[
 \begin{bmatrix}
 1 & 1 \\
 0 & 0
 \end{bmatrix}
 \]
 is $\text{span}((1,-1))$.

Computing Spatial Reuse

- Replace last row of H with zeros, creating H_s
- Find the nullspace of H_s
- Result: vector along which we access the same row
Computing Spatial Reuse: Example

For $i = 0$ to 2
For $j = 0$ to 100
\[A[i][j] = B[j][0] + B[j+1][0]; \]

- $H_s = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
- Nullspace of $H_s = \text{span}\{(0,1)\}$
 - i.e. access same row of $A[i][j]$ along inner loop

Computing Spatial Reuse: More Complicated Example

For $i = 0$ to $N-1$
For $j = 0$ to $N-1$
\[A[i+j] = i*j; \]

- $H_s = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
- Nullspace of $H_s = \text{span}\{(1,0),(0,1)\}$
- Nullspace of $H = \text{span}\{(1,-1)\}$

Group Reuse

For $i = 0$ to 2
For $j = 0$ to 100
\[A[i][j] = B[j][0] + B[j+1][0]; \]

- Only consider "uniformly generated sets"
 - index expressions differ only by constant terms
- Check whether they actually do access the same cache line
- Only the "leading reference" suffers the bulk of the cache misses

Localized Iteration Space

- Given finite cache, when does reuse result in locality?

For $i = 0$ to 2
For $j = 0$ to 8
\[A[i][j] = B[j][0] + B[j+1][0]; \]

Localized: both i and j loops
(i.e. $\text{span}\{(1,0),(0,1)\})$

For $i = 0$ to 2
For $j = 0$ to 100000
\[A[i][j] = B[j][0] + B[j+1][0]; \]

Localized: j loop only
(i.e. $\text{span}\{(0,1)\})$

- Localized if accesses less data than effective cache size
Computing Locality

- Reuse Vector Space \(\cap \) Localized Vector Space \(\Rightarrow \) Locality Vector Space

- Example:

  ```
  for i = 0 to 2  
  for j = 0 to 100  
  A[i][j] = B[j][0] + B[j+1][0];
  ```

- If both loops are localized:
 - span((1,0)) \(\cap \) span((1,0),(0,1)) \(\Rightarrow \) span((1,0))
 - i.e. temporal reuse does result in temporal locality

- If only the innermost loop is localized:
 - span((1,0)) \(\cap \) span((0,1)) \(\Rightarrow \) span()
 - i.e. no temporal locality