Lecture 19
Software Pipelining

I. Introduction
II. Problem Formulation
III. Algorithm

I. Example of DoAll Loops

- Machine:
 - Per clock: 1 read, 1 write, 1 (2-stage) arithmetic op, with hardware loop op and auto-incrementing addressing mode.
- Source code:
 - For \(i = 1 \) to \(n \)
 - \(D[i] = A[i] \times B[i] + c \)
- Code for one iteration:
 1. LD R5,0(R1++)
 2. LD R6,0(R2++)
 3. MUL R7,R5,R6
 4. ADD R8,R7,R4
 5. ST 0(R3++),R8

- Loop Unrolling
 - Schedule after unrolling by a factor of 4
 - Let \(u \) be the degree of unrolling:
 - Length of \(u \) iterations = \(7 + 2(u-1) \)
 - Execution time per source iteration = \((7+2(u-1))/u = 2 + 5/u \)

- Software Pipelined Code
 - Unlike unrolling, software pipelining can give optimal result.
 - Locally compacted code may not be globally optimal
 - DOALL: Can fill arbitrarily long pipelines with infinitely many iterations
Example of DoAcross Loop

Loop:
\[\text{Sum} = \text{Sum} + A[i]; \]
\[B[i] = A[i] \times c; \]

1. LD
2. MUL
3. ADD
4. ST

Software Pipelined Code
1. LD
2. MUL
3. ADD LD
4. ST MUL
5. ADD
6. ST

Doacross loops
• Recurrences can be parallelized
• Harder to fully utilize hardware with large degrees of parallelism

II. Problem Formulation

Goals:
– maximize throughput
– small code size

Find:
– an identical relative schedule \(S(n) \) for every iteration
– a constant initiation interval \(T \)
such that
– the initiation interval is minimized

Complexity:
– NP-complete in general

Impact of Resources on Bound on Initiation Interval

• Example: Resource usage of 1 iteration
 – (assume machine can execute 1 LD, 1 ST, 2 ALU per clock)
 \[\text{LD, LD, MUL, ADD, ST} \]
 • Lower bound on initiation interval?
 for all resource \(i \),
 number of units required by one iteration: \(n_i \)
 number of units in system: \(R_i \)
 \[\text{Lower bound due to resource constraints: } \max \left(\frac{n_i}{R_i} \right) \]

Scheduling Constraints: Resources

• \(RT \): resource reservation table for single iteration
• \(RT^* \): modulo resource reservation table
\[RT[i] = \sum (t \mod T \rightarrow i) RT[t] \]
Scheduling Constraints: Precedence

for (i = 0; i < n; i++) {
 *(p++) = *(q++) + c
}

- Minimum initiation interval?
- S(n): schedule for n with respect to the beginning of the schedule
- Label edges with δ, d
 - δ = iteration difference, d = delay
 - $\delta \times T + S(n_2) - S(n_1) \geq d$

Minimum Initiation Interval

For all cycles c, $\max \left(\frac{\text{CycleLength}(c)}{\text{IterationDifference}(c)} \right)$

III. Example: An Acyclic Graph
Algorithm for Acyclic Graphs

- Find lower bound of initiation interval: T_0
 - based on resource constraints
- For $T = T_0, T_0+1, \ldots$ until all nodes are scheduled
 - For each node n in topological order
 - $s_0 = \text{earliest } n \text{ can be scheduled}$
 - for each $s = s_0, s_0 +1, \ldots, s_0 + T -1$
 - if NodeScheduled(n, s) break;
 - if n cannot be scheduled break;
- NodeScheduled(n, s)
 - Check resources of n at s in modulo resource reservation table
- Can always meet the lower bound if:
 - every operation uses only 1 resource, and
 - no cyclic dependencies in the loop

Cyclic Graphs

- No such thing as "topological order"
- $b \rightarrow c; c \rightarrow b$
 \[S(c) - S(b) \geq 1 \]
 \[T + S(b) - S(c) \geq 2 \]
- Scheduling b constrains c, and vice versa
 \[S(b) + 1 \leq S(c) \leq S(b) - 2 + T \]
 \[S(c) - 2 \leq S(b) \leq S(c) - 1 \]

Strongly Connected Components

- A strongly connected component (SCC)
 - Set of nodes such that every node can reach every other node
- Every node constrains all others from above and below
 - Finds longest paths between every pair of nodes
 - As each node scheduled, find lower and upper bounds of all other nodes in SCC
- SCCs are hard to schedule
 - Critical cycle: no slack
 - Backtrack starting with the first node in SCC
 - increases T, increases slack
- Edges between SCCs are acyclic
 - Acyclic graph: every node is a separate SCC

Algorithm Design

- Find lower bound of initiation interval: T_0
 - based on resource constraints and precedence constraints
- For $T = T_0, T_0+1, \ldots$ until all nodes are scheduled
 - E^*: longest path between each pair
 - For each SCC c in topological order
 - $s_0 = \text{Earliest } c \text{ can be scheduled}$
 - for each $s = s_0, s_0 +1, \ldots, s_0 + T -1$
 - if SCCScheduled(c, s) break;
 - if c cannot be scheduled return false;
 - return true;
Scheduling a Strongly Connected Component (SCC)

- **SCCScheduled(c, s)**
 - Schedule first node at s, return false if fails
 - For each remaining node n in c:
 - \(s_l \) = lower bound on n based on \(E^* \)
 - \(s_u \) = upper bound on n based on \(E^* \)
 - For each \(s = s_l, s_l + 1, \ldots, \min(s_u - T + 1, s_l) \)
 - If NodeScheduled(n, s) break;
 - If n cannot be scheduled return false;
 - return true;

Modulo Variable Expansion

1. LD R5,0(R1++)
2. LD R6,0(R1++)
3. MUL R7,R5,R6
4. LD R6,0(R1++)
5. MUL R7,R5,R6
6. ADD R8,R7,R7

L:7. MUL R7,R5,R6
8. ST ADD LD BL L
9. MUL R7,R5,R6
10. ST ADD LD
11. ST ADD MUL
12. ST ADD
13. ST ADD
14. ST ADD

Algorithm

- Normally, every iteration uses the same set of registers
 - introduces artificial anti-dependences for software pipelining
- **Modulo variable expansion algorithm**
 - schedule each iteration ignoring artificial constraints on registers
 - calculate life times of registers
 - degree of unrolling = max(\(\frac{\text{lifetime}}{T} \))
 - unroll the steady state of software pipelined loop to use different registers
- **Code generation**
 - generate one pipelined loop with only one exit
 - at beginning of steady state
 - generate one unpipelined loop to handle the rest
 - code generation is the messiest part of the algorithm!
Conclusions

• Numerical Code
 – Software pipelining is useful for machines with a lot of pipelining and instruction level parallelism
 – Compact code
 – Limits to parallelism: dependences, critical resource