Lecture 14
Register Allocation

I. Introduction
II. Abstraction and the Problem
III. Algorithm

Reading: ALSU 8.8.4

I. Motivation

• Problem
 – Allocation of variables (pseudo-registers) to hardware registers in a procedure

• Perhaps the most important optimization
 – Directly reduces running time
 – (memory access \(\rightarrow\) register access)
 – Useful for other optimizations
 • e.g. CSE assumes old values are kept in registers.

Goals

• Find an allocation for all pseudo-registers, if possible.
• If there are not enough registers in the machine, choose registers to spill to memory

Example
II. An Abstraction for Allocation & Assignment

- Intuitively
 - Two pseudo-registers *interfere* if at some point in the program they cannot both occupy the same register.

- Interference graph: an undirected graph, where
 - nodes = pseudo-registers
 - there is an edge between two nodes if their corresponding pseudo-registers interfere

- What is not represented
 - Extent of the interference between uses of different variables
 - Where in the program is the interference

Register Allocation and Coloring

- A graph is *n-colorable* if:
 - every node in the graph can be colored with one of the *n* colors such that two adjacent nodes do not have the same color.

- Assigning *n* register (without spilling) = Coloring with *n* colors
 - assign a node to a register (color) such that no two adjacent nodes are assigned the same register (color)

- Is spilling necessary? = Is the graph *n*-colorable?

- To determine if a graph is *n*-colorable is NP-complete, for *n>*2
 - Too expensive
 - Heuristics

III. Algorithm

Step 1. Build an interference graph
- refining notion of a node
- finding the edges

Step 2. Coloring
- use heuristics to try to find an *n*-coloring
 - Success:
 - colorable and we have an assignment
 - Failure:
 - graph not colorable, or
 - graph is colorable, but it is too expensive to color

Step 1a. Nodes in an Interference Graph

A = ...
B = ... \(IF \) A goto L1
D = B + D
L1: C = ...
D = A
A = 2
D = D + C
= A

Carnegie Mellon
15-745: Register Allocation
5
Todd C. Mowry
Live Ranges and Merged Live Ranges

- **Motivation:** to create an interference graph that is easier to color
 - Eliminate interference in a variable's "dead" zones.
 - Increase flexibility in allocation:
 - can allocate same variable to different registers
- A live range consists of a definition and all the points in a program (e.g. end of an instruction) in which that definition is live.
- How to compute a live range?
- Two overlapping live ranges for the same variable must be merged

![Diagram of live ranges merging](image)

Merging Live Ranges

- **Merging definitions into equivalence classes**
 - Start by putting each definition in a different equivalence class
 - For each point in a program:
 - if (i) variable is live, and (ii) there are multiple reaching definitions for the variable, then:
 - merge the equivalence classes of all such definitions into one equivalence class
- From now on, refer to merged live ranges simply as live ranges
 - merged live ranges are also known as "webs"

Example (Revisited)

- Live Variables
 - Reaching Definitions

![Example diagram](image)

Step 1b. Edges of Interference Graph

- Intuitively:
 - Two live ranges (necessarily of different variables) may interfere if they overlap at some point in the program.
- Algorithm:
 - At each point in the program:
 - enter an edge for every pair of live ranges at that point.
- An optimized definition & algorithm for edges:
 - Algorithm:
 - check for interference only at the start of each live range
 - Faster
 - Better quality
Step 2. Coloring

- **Reminder:** coloring for $n > 2$ is NP-complete

- **Observations:**
 - A node with degree $< n$ \(\Rightarrow \)
 - Can always color it successfully, given its neighbors' colors
 - A node with degree $= n$ \(\Rightarrow \)
 - A node with degree $> n$ \(\Rightarrow \)

Coloring Algorithm

- **Algorithm:**
 - Iterate until stuck or done
 - Pick any node with degree $< n$
 - Remove the node and its edges from the graph
 - If done (no nodes left)
 - Reverse process and add colors
- **Example ($n = 3$):**

- **Note:** Degree of a node may drop in iteration
- Avoids making arbitrary decisions that make coloring fail

What Does Coloring Accomplish?

- **Done:**
 - Colorable, also obtained an assignment
- **Stuck:**
 - Colorable or not?
What if Coloring Fails?

- Use heuristics to improve its chance of success and to spill code

 Build interference graph

 Iterative until there are no nodes left
 If there exists a node v with less than n neighbors
 place v on stack to register allocate
 else
 v = node chosen by heuristics
 (least frequently executed, has many neighbors)
 place v on stack to register allocate (mark as spilled)
 remove v and its edges from graph

 While stack is not empty
 Remove v from stack
 Reinsert v and its edges into the graph
 Assign v a color that differs from all its neighbors
 (guaranteed to be possible for nodes not marked as spilled)

Summary

- Problems:
 - Given n registers in a machine, is spilling avoided?
 - Find an assignment for all pseudo-registers, whenever possible.

- Solution:
 - Abstraction: an interference graph
 - nodes: live ranges
 - edges: presence of live range at time of definition
 - Register Allocation and Assignment problems
 - equivalent to n-colorability of interference graph
 \Rightarrow NP-complete
 - Heuristics to find an assignment for n colors
 - successful: colorable, and finds assignment
 - not successful: colorability unknown & no assignment