Lecture 10
Region-Based Analysis

I. Basic Idea
II. Algorithm
III. Optimization and Complexity
IV. Comparing region-based analysis with iterative algorithms

Reading: ALSU 9.7

Motivation for Studying Region-Based Analysis

- Exploit the structure of block-structured programs in data flow
- Tie in several concepts studied:
 - Use of structure in induction variables, loop invariant
 - motivated by nature of the problem
 - Iterative algorithm for data flow
 - This lecture: an alternative algorithm
 - Reducibility
 - all retreating edges of DFST are back edges
 - reducible graphs converge quickly
 - This lecture: algorithm exploits & requires reducibility
- Usefulness in practice
 - Faster for "harder" analyses
 - Useful for analyses related to structure
- Theoretically interesting: better understanding of data flow

Basic Idea

- In Iterative Analysis:
 - DEFINITION: Transfer function F_B: summarize effect from beginning to end of basic block B

- In Region-Based Analysis:
 - DEFINITION: Transfer function $F_{R,B}$: summarize effect from beginning of R to end of basic block B
 - Recursively construct a larger region R from smaller regions
 - construct $F_{R,B}$ from transfer functions for smaller regions until the program is one region
 - Let P be the region for the entire program, and v be initial value at entry node
 - $\text{out}(B) = F_{P,B}(v)$
 - $\text{in}(B) = \land \text{out}[B']$, where B' is a predecessor of B
II. Algorithm

1. Operations on transfer functions
2. How to build nested regions?
3. How to construct transfer functions that correspond to the larger regions?

1. Operations on Transfer Functions

- Example: Reaching Definitions
 \[F(x) = Gen \cup (x - Kill) \]
 \[F_2(F_1(x)) = Gen_2 \cup (F_1(x) - Kill_2) \]
 \[= Gen_2 \cup (Gen_1 \cup (x - Kill_1)) - Kill_2 \]
 \[= Gen_2 \cup (Gen_1 - Kill_2) \cup (x - (Kill_1 \cup Kill_2)) \]

- \[F_1(x) \land F_2(x) = Gen_1 \cup (x - Kill_1) \cup Gen_2 \cup (x - Kill_2) \]
 \[= (Gen_1 \cup Gen_2) \cup (x - (Kill_1 \cap Kill_2)) \]

- \[F^*(x) \leq F^n(x), \forall n \geq 0 \]
 \[= x \cup F(x) \cup F(F(x)) \cup \ldots \]
 \[= x \cup (Gen \cup (x - Kill)) \cup (Gen \cup (Gen \cup (x - Kill)) - Kill) \cup \ldots \]
 \[= Gen \cup (x - \emptyset) \]

2. Structure of Nested Regions (An Example)

- A region in a flow graph is a set of nodes that
 - includes a header, which dominates all other nodes in a region
- T1-T2 rule (Hecht & Ullman)
 - T1: Remove a loop
 If n is a node with a loop, i.e. an edge n-m, delete that edge
 - T2: Remove a vertex
 If there is a node n that has a unique predecessor, m,
 then m may consume n by deleting n and making all successors of n be successors of m.

Example

- In reduced graph:
 - each vertex represents a subgraph of original graph (a region).
 - each edge represents an edge in original graph
- Limit flow graph: result of exhaustive application of T1 and T2
 - independent of order of application.
 - if limit flow graph has a single vertex \Rightarrow reducible
- Can define larger regions (e.g. Allen&Cocke's intervals)
 - simple regions \Rightarrow simple composition rules for transfer functions
Transfer Functions for T2 Rule

- Transfer function \(F_{R,B} \): summarizes the effect from beginning of \(R \) to end of \(B \)
- \(F_{R,(H2)} \): summarizes the effect from beginning of \(R \) to beginning of \(H2 \)
 - Unchanged for blocks \(B \) in region \(R1 \) (\(F_{R,B} = F_{R1,B} \))
 - \(F_{R,(H2)} = \bigwedge P \ F_{R,P} \), where \(p \) is a predecessor of \(H2 \)
 - For blocks \(B \) in region \(R2 \): \(F_{R,B} = F_{R2,B} \cdot F_{R,(H2)} \)

Transfer Functions for T1 Rule

- Transfer function \(F_{R,B} \):
 - \(F_{R,(H)} = (\bigwedge P \ F_{R1,P})^* \), where \(p \) is a predecessor of \(H \) in \(R \)
 - \(F_{R,B} = F_{R1,B} \cdot F_{R,(H)} \)

First Example

<table>
<thead>
<tr>
<th>R</th>
<th>(T_1, T_2)</th>
<th>(R)</th>
<th>(F_{R,(B3)})</th>
<th>(F_{R,B1})</th>
<th>(F_{R,B2})</th>
<th>(F_{R,B3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R1)</td>
<td>(T_2)</td>
<td>(B_2)</td>
<td>(F_{R,B2})</td>
<td>(F_{R,B1})</td>
<td>(F_{R,B2})</td>
<td>(F_{R,B3})</td>
</tr>
<tr>
<td>(R2)</td>
<td>(T_2)</td>
<td>(B_1)</td>
<td>(F_{R,B1})</td>
<td>(F_{R,B1})</td>
<td>(F_{R,B2})</td>
<td>(F_{R,B3})</td>
</tr>
<tr>
<td>(R3)</td>
<td>(T_1)</td>
<td>(R1)</td>
<td>(F_{R,B1})</td>
<td>(F_{R,B1})</td>
<td>(F_{R,B2})</td>
<td>(F_{R,B3})</td>
</tr>
<tr>
<td>(R4)</td>
<td>(T_2)</td>
<td>(B_4)</td>
<td>(F_{R,B4})</td>
<td>(F_{R,B2})</td>
<td>(F_{R,B2})</td>
<td>(F_{R,B3})</td>
</tr>
</tbody>
</table>

- \(R \): region name
- \(R' \): region whose header will be subsumed
III. Complexity of Algorithm

- Optimization

 - Let \(m \) = number of edges, \(n \) = number of nodes
 - Ideas for optimization
 - If we compute \(F_{RB} \) for every region \(B \) is in, then it is very expensive
 - We are ultimately only interested in the entire region \((E) \)
 - We need to compute only \(F_{RB} \) for every \(B \)
 - There are many common subexpressions between \(F_{RB} \), \(F_{R'B} \), ...
 - Number of \(F_{RB} \) calculated = \(m \)
 - Also, we need to compute \(F_{RB} \) for region whose header is subsumed.
 - Number of \(F_{RB} \) calculated, where \(R \) is not final = \(n \)
 - Total number of \(F_{RB} \) calculated: \((m + n) \)
 - Data structure keeps "header" relationship
 - Practical algorithm: \(O(m \log n) \)
 - Complexity: \(O(m \alpha(m,n)) \), \(\alpha \) is inverse Ackermann function

- Reducibility

 - If no \(T1, T2 \) is applicable before graph is reduced to single node, then split node and continue
 - Worst case: exponential
 - Most graphs (including GOTO programs) are reducible

- IV. Comparison with Iterative Data Flow

 - Applicability
 - Definitions of \(F^* \) can make technique more powerful than iterative algorithms
 - Backward flow: reverse graph is not typically reducible
 - Requires more effort to adapt to backward flow than iterative algorithm
 - More important for interprocedural optimization
 - Speed
 - Irreducible graphs
 - Iterative algorithm can process irreducible parts uniformly
 - "Irreducibility" can be slow with region-based analysis
 - Reducible graph & Cycles do not add information (common)
 - Iterative: (depth + 2) passes
 - Depth is 2.75 average, independent of code length
 - Region-based analysis: Theoretically almost linear, typically \(O(m \log n) \)
 - Reducible & Cycles add information
 - Iterative takes longer to converge
 - Region-based analysis remains the same