Lecture 10
Lazy Code Motion

I. Forms of redundancy (quick review)
• global common subexpression elimination
• loop invariant code motion
• partial redundancy

II. Lazy Code Motion Algorithm
• Mathematical concept: a cut set
• Basic technique (anticipation)
• 3 more passes to refine algorithm

Reading: Chapter 9.5

Overview
• Eliminates many forms of redundancy in one fell swoop
• Originally formulated as 1 bi-directional analysis
• Lazy code motion algorithm
 – formulated as 4 separate uni-directional passes
 • backward, forward, forward, backward

I. Common Subexpression Elimination

a = b + c

• A common expression may have different values on different paths!
• On every path reaching p,
 – expression b+c has been computed
 – b, c not overwritten after the expression

Loop Invariant Code Motion

a = b + c

• Given an expression (b+c) inside a loop,
 – does the value of b+c change inside the loop?
 – is the code executed at least once?
Partial Redundancy

\[a = b + c \]
\[d = b + c \]

- Can we place calculations of \(b+c \) such that no path re-executes the same expression
- Partial Redundancy Elimination (PRE)
 - subsumes:
 - global common subexpression (full redundancy)
 - loop invariant code motion (partial redundancy for loops)

II. Lazy Code Motion

- Key observation:
 - A bi-directional (!) data flow problem can be replaced with several unidirectional data flow problems \(\Rightarrow \) much easier
 - Better result as well!

Preparing the Flow Graph

- Definition: Critical edges
 - source basic block has multiple successors
 - destination basic block has multiple predecessors
- Modify the flow graph: (treat every statement as a basic block)
 - To keep algorithm simple: restrict placement of instructions to the beginning of a basic block
 - Add a basic block for every edge that leads to a basic block with multiple predecessors (not just on critical edges)

Full Redundancy: A Cut Set in a Graph

- Full redundancy at \(p \): expression \(a+b \) redundant on all paths
 - a cut set: nodes that separate entry from \(p \)
 - a cut set contains calculation of \(a+b \)
 - \(a, b \), not redefined
Partial Redundancy: Completing a Cut Set

- **Partial redundancy at p:** redundant on some but not all paths
 - Add operations to create a cut set containing a+b
 - Note: Moving operations up can eliminate redundancy
- **Constraint on placement:** no wasted operation
 - a+b is "anticipated" at B if its value computed at B will be used along ALL subsequent paths
 - a, b not redefined, no branches that lead to exit without use
- **Range where a+b is anticipated** → **Choice**

Pass 1: Anticipated Expressions

- **Backward pass:** Anticipated expressions
 - Anticipated[b].in: Set of expressions anticipated at the entry of b
 - An expression is anticipated if its value computed at point p will be used along ALL subsequent paths
 - First approximation:
 - place operations at the frontier of anticipation (boundary between not anticipated and anticipated)

Examples (1)

- See the algorithm in action

Examples (2)

- Cannot eliminate all redundancy
Examples (3)

- Do you know how the algorithm works without simulating it?
- Early Placement
 - earliest(b)
 - set of expressions added to block b under early placement
 - Place expression at the earliest point anticipated and not already available
 - earliest(b) = anticipated[b].in \(\cup \) available[b].in
 - Algorithm
 - For all basic block b, if \(xy \in \text{earliest}[b] \)
 - at beginning of b:
 - create a new variable \(t \)
 - replace every original \(xy \) by \(t \)

Pass 2: Place As Early As Possible

- First approximation: frontier between “not anticipated” & “anticipated”
- Complication: anticipation may oscillate
- Pretend we calculate expression \(e \) whenever it is anticipated
- \(e \) will be available at \(p \) if \(e \) has been “anticipated but not subsequently killed” on all paths reaching \(p \)

Available Expressions

<table>
<thead>
<tr>
<th>Domain</th>
<th>Sets of expressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direction</td>
<td>forward</td>
</tr>
<tr>
<td>Transfer Function</td>
<td>(f_b(x) = \text{anticipated}[b].in \cup x - \text{SEL}[b])</td>
</tr>
<tr>
<td>Boundary</td>
<td>out(entry) = (\emptyset)</td>
</tr>
<tr>
<td>Initialization</td>
<td>out(b) = { all expressions }</td>
</tr>
</tbody>
</table>

Pass 3: Lazy Code Motion

- Let’s be lazy without introducing redundancy.
- Delay creating redundancy to reduce register pressure
- An expression \(e \) is postponable at a program point \(p \) if
 - all paths leading to \(p \) have seen the earliest placement of \(e \) but not a subsequent use

Postponable Expressions

<table>
<thead>
<tr>
<th>Domain</th>
<th>Sets of expressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direction</td>
<td>forward</td>
</tr>
<tr>
<td>Transfer Function</td>
<td>(f_b(x) = \text{earliest}[b].in \cup x - \text{SEL}[b])</td>
</tr>
<tr>
<td>Boundary</td>
<td>out(entry) = (\emptyset)</td>
</tr>
<tr>
<td>Initialization</td>
<td>out(b) = { all expressions }</td>
</tr>
</tbody>
</table>
Latest: frontier at the end of “postponable” cut set

- \(\text{latest}[b] = (\text{earliest}[b] \cup \text{postponable.in}[b]) \land \left((EUse[b] \lor \neg \bigcap_{s \in \text{suc}[b]} (\text{earliest}[s] \cup \text{postponable.in}[s])) \right) \)
 - OK to place expression: earliest or postponable
 - Need to place at \(b \) if either
 - used in \(b \), or
 - not OK to place in one of its successors
- Works because of pre-processing step (an empty block was introduced to an edge if the destination has multiple predecessors)
 - if \(b \) has a successor that cannot accept postponement,
 - \(b \) has only one successor
 - The following does not exist:

\[x = a + b \]

OK to place

OK to place

not OK to place

Pass 4: Cleaning Up

Finally, this is easy, it is the finesse.

- Eliminate temporary variable assignments unused beyond current block
- Compute: \(\text{Used}.out[b] \): sets of used (live) expressions at exit of \(b \).

\[
\begin{align*}
\text{Domain} & : \text{sets of expressions} \\
\text{Direction} & : \text{backward} \\
\text{Transfer Function} & : f_b(x) = (EUse[b] \cup x) - \text{latest}[b] \\
\text{Boundary} & : \text{in}[\text{exit}] = \emptyset \\
\text{Initialization} & : \text{in}[b] = \emptyset
\end{align*}
\]

4 Passes for Partial Redundancy Elimination

- Heavy lifting: Cannot introduce operations not executed originally
 - Pass 1 (backward): Anticipation: range of code motion
 - Placing operations at the frontier of anticipation gets most of the redundancy
- Squeezing the last drop of redundancy: An anticipation frontier may cover a subsequent frontier
 - Pass 2 (forward): Availability
 - Earliest: anticipated, but not yet available
 - Squeezing the last drop of redundancy: As late as possible
 - Push the cut set out -- as late as possible
 - To minimize register lifetimes
 - Pass 3 (forward): Postponability: move it down provided it does not create redundancy
 - Latest: where it is used or the frontier of postponability
- Cleaning up
 - Pass 4: Remove temporary assignment
Remarks

• Powerful algorithm
 – Finds many forms of redundancy in one unified framework
• Illustrates the power of data flow
 – Multiple data flow problems