The exam is closed book, closed notes. Most of the questions on the exam will be short-answer questions.

Regarding the material that will be covered in the exam, the lectures have been broken down into the following three categories:

1. **Lectures that may be covered in depth:**
 - Lecture 2: Local Optimizations
 - Lecture 4: Data Flow Analysis: Examples
 - Lecture 5: Data Flow Analysis: Theory
 - Lecture 6: Common Subexpressions, Constant Folding
 - Lecture 7: Loop Invariant Code Motion
 - Lecture 8: Induction Variables, Strength Reduction
 - Lecture 9: Partial Redundancy Elimination
 - Lecture 11: Region-Based Analysis
 - Lecture 14: Register Allocation: Coloring
 - Lecture 15: Register Allocation: Spilling
 - Lecture 17: List Scheduling, Global Scheduling
 - Lecture 21: Prefetching

2. **Lectures where you may see one or two high-level questions (to demonstrate that you understood some of the key high-level points of the lecture):**
 - Lecture 10: Lazy Code Motion
 - Lecture 12: Intro to Static Single Assignment (SSA)
 - Lecture 16: Intro to Instruction Scheduling
 - Lecture 18: Software Pipelining
 - Lecture 26: Array Dependence Analysis
 - Lecture 27: Pointer Analysis

3. **Lectures that will not be covered on the exam:**
 - Lecture 1: Overview of Optimizations
 - Lecture 3: The LLVM Compiler
• Lecture 13: SSA-Style Optimizations
• Lecture 19: Memory Hierarchy Optimizations
• Lecture 20: Locality Analysis
• Lecture 22: Recent Research on Optimization I
• Lecture 23: Recent Research on Optimization II
• Lecture 24: Recent Research on Optimization III
• Lecture 25: Dynamic Code Optimization
• Lecture 28: Thread-Level Speculation