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ABSTRACT 1. INTRODUCTION

Prefetching data ahead of use has the potential to tolerate the growhe demise of Moore’s law has been greatly exaggerated and pro-
ing processor-memory performance gap by overlapping longessor speed continues to double every 18 months. By comparison,
latency memory accesses with useful computation. While sophistimemory speed has been increasing at the relatively glacial rate of
cated prefetching techniques have been automated for limited0% per year. The unfortunate, though inevitable consequence of
domains, such as scientific codes that access dense arrays in lotdgese trends is a rapidly growing processor-memory performance
nests, a similar level of success has eluded general-purpose prgap. Computer architects have tried to mitigate the performance
grams, especially pointer-chasing codes written in languages suémpact of this imbalance with small high-speed cache memories
as C and C++. that store recently accessed data. This solution is effective only if

We address this problem by describing, implementing an ost of the data referenced by a program is available in the cache.

) ! X ) nfortunately, many general-purpose programs, which use
evaluating a dynamic prefetching scheme. Our technique runs Oy namic * pointer-based data structures, often suffer from high
stock hardware, is completely automatic, and works for general ' ;

X X - X ) ""cache miss rates, and are limited by their memory system perfor-
purpose programs, including pointer-chasing codes written i ance

weakly-typed languages, such as C and C++. It operates in three

phases. First, the profiling phase gathers a temporal data referenBgefetching data ahead of use has the potential to tolerate this
profile from a running program with low-overhead. Next, the processor-memory performance gap by overlapping long latency
profiling is turned off and a fast analysis algorithm extracts hot datanemory accesses with useful computation. Successful prefetching
streams, which are data reference sequences that frequently repé&ataccurate—correctly anticipating the data objects that will be
in the same order, from the temporal profile. Then, the systermaccessed in the future—and timely—fetching the data early enough
dynamically injects code at appropriate program points to detecso that it is available in the cache when required. Sophisticated
and prefetch these hot data streams. Finally, the process enters taetomatic prefetching techniques have been developed for
hibernation phase where no profiling or analysis is performed, andcientific codes that access dense arrays in tightly nested loops (for
the program continues to execute with the added prefetcte.g., [24]). They rely on static compiler analyses to predict the
instructions. At the end of the hibernation phase, the program is dggrogram’s data accesses and insert prefetch instructions at
optimized to remove the inserted checks and prefetch instructionsppropriate program points. However, the reference pattern of
and control returns to the profiling phase. For long-runninggeneral-purpose programs, which use dynamic, pointer-based data
programs, this profile, analyze and optimize, hibernate, cycle willstructures, is much more complex, and the same techniques do not
repeat multiple times. Our initial results from applying dynamic apply.

prefetching are promising, indicating overall execution time
improvements of 5-19% for several memory-performance-limited
SPECint2000 benchmarks running their largesf) (nputs.

If static analyses cannot predict the access patterns of general-
purpose programs, perhaps program data reference profiles may
suffice. Recent research has shown that programs possess a small

Categories and Subject Descriptors number of hot data streams, which are data reference sequences that
D.3.4 Programming Languaged: Processors -ode generation frequently repeat in the same order, and these account for_ around
obtihization run-time environménts ' 90% of program references and more than 80% of cache misses [8,

' ’ 28]. These hot data streams can be prefetched accurately since they
General Terms repeat frequently in the same order and thus are predictable. They
are long enough (1520 object references on average) so that they

Measurement, Performance. can be prefetched ahead of use in a timely manner.

Keywords In prior work, Chilimbi instrumented a program to collect the trace
dynamic profiling, temporal profiling, data reference profiling, of its data memory references; then used a compression algorithm
dynamic optimization, memory performance optimization, called Sequitur to process the trace off-line and extract hot data
prefetching. streams [8]. These hot data streams have been shown to be fairly
stable across program inputs and could serve as the basis for an off-
Permission to make digital or hard copies of all or part of this work for line static prefetching scheme [10]. On the other hand, for programs
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Figure 1. Dynamic prefetching overview

streams online with little overhead. This paper describes a dynamicgrammar representation of the traced data references. Once
framework for online detection of hot data streams and sufficient data references have been traced, profiling is turned off
demonstrates that this can be accomplished with extremely low- and the analysis and optimization phase begins. A fast analysis
overhead. Rather than collect the trace of all data references, ouralgorithm extracts hot data streams from the Sequitur grammar
dynamic framework uses sampling to collect a temporal data representation. The prefetching engine builds a stream prefix
reference profile. Unlike conventional sampling, we sample data matching DFSM for these hot data streams, and dynamically
reference bursts, which are short sequences of consecutive daténjects checks at appropriate program points to detect and prefetch
references. The framework uses Sequitur to process the tracehese hot data streams. Finally, the process enters the hibernation
online, and a novel algorithm for fast detection of hot data streams phase where no profiling or analysis is performed, and the program
from the temporal profile data. continues to execute with the added prefetch instructions. At the
end of the hibernation phase, the program is de-optimized to
o . remove the inserted checks and prefetch instructions, and control
Our hot data stream analysis is configured to only detect streams, ¢ 'ns to the profiling phase. For long-running programs this

that are sufficiently long to justify prefetching (i.e., containing ,ofije "analyze and optimize, hibernate cycle will repeat multiple
more than ten unique references). Once these streams have beet

detected, our prefetching engine dynamically injects checks in the 1mes.

program to match stream prefixes, followed by prefetch The paper makes the following contributions:
instructions for the remaining stream addresses. For example,
given a hot data streaabacdce once the addressasaddr, b.addr, )
a.addr are detected by checks inserted afpc, b.pc, a.pc
respectively, prefetches are issued for the addresssidr, d.addr, ~ « |t describes an automatic, dynamic prefetching scheme that
e.addr The hot data stream prefix length that must match before works for general-purpose programs. The prefetching is driven

prefetching is initiated needs to be set carefully. A prefix that is too by the hot data streams supplied by the online profiling and

short may hurt prefetching accuracy, and too large a prefix reduces  analysis framework (see Section 3).

the prefetching opportunity and incurs additional stream matching B ) ) o

overhead. » It presents empirical evidence that dynamic prefetching is
) ] ) ) effective, producing overall execution time improvements of

Conceptually, one can think of the prefix-matching mechanism for 51994 for several memory performance limited SPECint2000

a hot data stream as corresponding to a deterministic finite state  penchmarks (see Section 4).

machine (DFSM), where the states correspond to possible stream

prefixes, and transitions are implemented by inserted prefix-match 2. DYNAMIC DATA REFERENCE PROFIL-
checks. To avoid redundant checks, and efficiently orchestrate|NG AND ANALYSIS

matches for all hot data streams, our prefetching engine constructs_ ) ) .

a single DFSM that keeps track of matching prefixes for all hot ThiS section discusses our online, low-overhead framework for
data streams simultaneously (see Section 3.1). The prefetchingdetécting hot data streams. The framework first collects a temporal
engine uses a dynamic implementation of Vulcan [32] (a binary data reference profile with low-overhead, and then uses a fast
editing tool for the x86, similar to ATOM [31]), to insert checks ~ analysis algorithm to extract hot data streams from this temporal
into the running program that implement the stream prefix Profile.

matching DFSM. In addition, it adds prefetch instructions that .

target thge remaining data stream addrgsses, on successful strear%'l Bursty Tracmg Fram_e_work for Low-Over-
prefix matches. head Temporal Profiling

A data referenca is a load or store of a particular address,
represented as a pair.pc,r.add). The sequence of all data
references during execution is the data reference trace. A temporal
data reference profile captures not only the frequencies of
individual data references in the trace, but also temporal
relationships between them. For example, it would distinguish the
tracescdeabcdeabfgand abcdefabcdegeven though all  data

The hot data streams consist of a sequencepaf adde pairs.

It presents a dynamic, low-overhead framework for detecting
hot data streams (see Section 2).

Figure 1 provides an overview of our dynamic prefetching process
that operates in three phases—profiling, analysis and optimization,
and hibernation. First, the profiling phase collects a temporal data
reference profile from a running program with low-overhead. This
is accomplished using bursty tracing [15], which is an extension of
Arnold and Ryder’s low-overhead profiling technique [3]. The
Sequitur compression algorithm incrementally builds an online
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Figure 2. Instrumentation for low-overhead temporal profiling Figure 3. Profiling timeline.

references have the same frequencies in both of them. In theburst length of 100 dynamic checks. We ten@hecl+ninstr
second trace, the subsequerafgcdeis a hot data stream and dynamic checks a burst-period (see Figure 3).

resents a prefetching opportunity. . L .
P P gopp ¥ For online optimization, we extended the bursty tracing framework

Our framework must collect a temporal data reference profile with to alternate between two phases, awake and hibernating. The
low overhead, because the slow-down from profiling has to be profiler starts out awake and stays that way fwake burst-
recovered by the speed-up from optimization. A common way t0 periods, yieldingnAwakg®ninstr, checks's worth of traced data
reduce the overhead of profiling is sampling: instead of recording yeferences. Then, the online optimizer performs the optimizations:
all data references, sample a small, but representative fraction Ofafter that. the pro,filer hibernates. This is done by settiiieck '
them. Our profiler obtains a temporal profile with low overhead by ' ' .
sampling bursts of data references, which are subsequences of thé0 nChecb+nInstro -1 anq ninstr to 1 for the nexnHibernateg
burst-periods, wherenHibernatgy >> nAwakg. When the

reference trace.

. " o hibernating phase is over, the profiler is woken up by resetting
We use the bursty tracing profiling framework [15], which is an  ncheck andninstry to their old values (see Figure 3).
extension of the Arnold-Ryder framework [3]. The code of each

procedure is duplicated (see Figure 2). Both versions of the codeWhile the profiler is hibernating, it traces next to no data

contain the original instructions, but only one version is references and hence incurs only the basic overhead of executing
instrumented to also profile data references. Both versions of thechecks. We designed the hibernation extension so that burst-
code periodically transfer control to checks at procedure entries or periods correspond to the same time (measured in executed

loop back-edges. The checks use a pair of counteZeckand checks) in either phase (see Figure 3). This makes it easy to control
ninstr, to decide in which version of the code execution should the relative length of the awake and hibernating phases using the
continue. countersnAwakeg andnHibernatg. Note that with our extension,

bursty tracing is still deterministic. Since our optimization is also
deterministic, executions of deterministic benchmarks are
repeatable, which helps testing. Whadibernatey>> nAwakeg >>

1 andnChecking >> ninstrp >>1 the sampling rate approximates

At startup,nCheckis nCheck andnlnstris zero. Most of the time,

the checking code is executed, ardheckis decremented at every
check. When it reaches zera)nstr is initialized with ninstry

(wherenlinstrp<<nChecl) and the check transfers control to the
instrumented code. While in the instrumented codistr is

decremented at every check. When it reaches ze@heckis (nAwakeg* ninstrp)/((nAwakg+nHibernatg)*( ninstry+nCheck)).
initialized with nChecl and control returns back to the checking .
code. 2.3 Fast Hot Data Stream Detection

The bursty tracing profiling framework does not require operating Bursty tracing collects a temporal data reference profile. This must

system or hardware support and is deterministic. We implemented

it using Vulcan [32], (an executable-editing tool for x86, similar to S

ATOM [31]), and hence it does not require access to program abaabcabcabcabc S -> AaBB

source code or recompilation. The profiling overhead is easy to  Input string A->ab B
control: there is a basic overhead for the checks, and beyond that

the overhead is proportional to the sampling rate ninstry B->CC

(nCheck+nlnstrg). Via nCheck andninstr, we can freely chose C->Ac C

the burst length and the sampling rate. A

2.2 Extensions for Online Optimization 35%{1';%

The countersCheck and ninstry of the bursty tracing profiling a b [
framework control its overhead and the amount of profiling DAG representation

information it generates. For example, settigheclg to 9900 and

ninstrg to 100 results in a sampling rate of 100/10000=1% and a Figure 4. Sequitur grammar for w=abaabcabcabcabc.



/[find reverse post-order numbering for non-terminals
int next = nRules;
function doNumbering = lambda(NonTerminal A){
if(have not yet visited A){
for(each child B of A)
doNumbering(B);
next--;
A.index = next;

}
doNumbering(S);
/ffind uses for non-terminals, initialize coldUses to uses
for(each non-terminal A)
A.uses = A.coldUses = O0;
S.uses = S.coldUses = 1;
for(each non-terminal A, ascending order of A.index)
for(each child B or A)
B.uses = B.coldUses = (B.uses + A.uses);
/[find hot non-terminals
for(each non-terminal A, ascending order of A.index){
A.heat = w plength * A.coldUses;
fHot = minLen<=A.length<=maxLen && H<=A.heat;
if(fHot)
reportHotDataStream(w A Aheat);
subtract = fHot ? A.uses : (A.uses-A.coldUses);
for(each child B of A)
B.coldUses = B.coldUses - subtract;

}
Figure 5. Algorithm for fast approximation of hot data streams.

be analyzed to find hot data streams. Our online profiling and
analysis framework first uses the Sequitur algorithm [23] to
compress the profile and infer its hierarchical structure. Each
observed data reference can be viewed as a symbol, and th
concatenation of the profiled bursts as a strimgof symbols.
Sequitur constructs a context-free grammar for the lang§age
consisting of exactly one word, the strimg Sequitur runs in time
O(w.length. It is incremental (we can append one symbol at a
time) and deterministic. The grammar is a compressed
representation of the trace, it is unambiguous and acyclic in the
sense that no non-terminal directly or indirectly defines itself.
Figure 4 shows a Sequitur grammar ferabaabcabcabcahand

its representation as a multi-dag.

Before describing our online analysis for finding hot data streams
from this Sequitur grammar, we review some definitions from [8].

A hot data stream is a data reference subsequence whose

regularity magnitude exceeds a predetermined heat thresHold,
Given a data reference subsequencave define its regularity
magnitude as.heat= v.length*v.frequencywherev.frequencyis

the number of non-overlapping occurrences of the trace. Larus
describes an algorithm for finding a set of hot data streams from a

Sequitur grammar [21]; we use a faster, less precise algorithm that

relies more heavily on the ability of Sequitur to infer hierarchical
structure.

Our analysis algorithm uses the observation that each non-terminal

A of a Sequitur grammar generates a langua@® = {wx} with
just one wordw,. We define the regularity magnitude of a non-
terminal A asA.heat= wy.length*A.coldUseswhereA.coldUsess
the number of time& occurs in the (unique) parse tree of the

complete grammar, not counting occurrences in sub-trees
belonging to hot non-terminals other thAnA non-terminalA is

hot iff minLen<= A.length<= maxLenandH <= A.heat whereH

is the predetermined heat threshold. The result of the analysis is the
set{w, | A is a hot non-terminalpf hot data streams.

Figure 5 shows pseudo-code for the analysis. We call a non-
terminal B, a child of another non-termind, if it occurs on the
right-hand side of the grammar rule fétx We assume that we
already havew,.length for each non-terminah; this is easy to

maintain in Sequitur. The analysis first numbers the non-terminals
such that wheneveB is a child of A, we haveA.index< B.index

This important property guarantees that in the rest of the algorithm,
we never visit a non-terminal before having visited all its
predecessors. Then, the algorithm finds how often each non-
terminal is used in the parse-tree of the grammar. Finally, it finds
hot non-terminals such that a non-terminal is only considered hot if
it accounts for enough of the trace on its own, where it is not part
of the expansion of other non-terminals. The running time of the
algorithm is linear in the size of the grammar.

Consider, for example, the grammar shown in Figure 4. Assume
the heat threshold;l = 8, and the length restrictions am@nLen=

2, maxLen= 7. The values computed by the analysis are shown in
Figure 6 and Table 1. Note that the non-termi@ak completely
subsumed by the hot non-termirialand therefore not considered
hot. Note that even though the non-termiAalso appears outside

of the parse trees of hot non-terminals, its regularity magnitude
A.heat= 2 does not exceed the heat threshidldn this example,

we would find just one hot data streamg = abcabcwith heat 12

that accounts for 12/15=80% of all data references.

S5 G115
B B OB 51 B26 OBZ:B
C/\C C[:\C C C?2 C 43 C 03
A A7A A7A A A3 AS2 Al2
MMAMNA
abaabcabcabcabcganmer reverse  wses:  colduses:

(omitting  postorder  word
terminals) nubering length

word

tree length

Figure 6. Hot data stream analysis example.

X | Child Length Index Use cold- Heat Report?
Use
S| AB 15 0 1 1 15| no, start
,B
A - 2 3 5 1 2 no, cold
Cc.C 6 1 2 2 12 yes
C| A 3 2 4 0 0 no, cold

Table 1: Computed values for hot data stream analysis.



a.pc: if(accessing a.addr){

20

v.seen = 3;

if(v.seen ==

prefetch c.addr,a.addr,d.addr,e.addr;
telse{
v.seen = 1;
}
Jelsef{
v.seen = 0;
}
b.pc: if(accessing b.addr)

if(v.seen == 1)
v.seen = 2;
else
v.seen = 0;
else
v.seen = 0;

Figure 7. Inserted prefetching code for stream abacadae.

2.4 Discussion
Our online profiling and analysis framework implementation

batches and sends traced data references to Sequitur, as soon

Our prefetching optimizer matches hot data stream prefixes, and
then issues prefetches for the remaining data stream addresses. For
example, given the hot data streaimacadaewhen the optimizer
detects the data referencaba it prefetches from the addresses
c.addr,a.addr,d.addr,e.addideally, the data from these addresses
will be cache resident by the time the data referercztaetake
place, avoiding cache misses and speeding up the program.

Figure 1 shows an overview of our optimizer. It profiles the
program to find hot data streams. When it has collected enough
profiling information, it stops profiing and injects code for
detecting prefixes and prefetching suffixes of hot data streams.
Then it continues running the optimized program. For long-
running applications, it may repeat these steps later. We use
dynamic Vulcan [32], which is an executable editing tool similar to
ATOM [31], to edit the binary of the currently executing program.

3.1 Generating Detection and Prefetching
Code

After the profiling and analysis phase finds the hot data streams,
the optimizer must match their prefixes and prefetch their suffixes.
The optimizer uses a fixed constamtadLento divide each hot
data streanv = viV,...Vjy jength} INt0 @ headr.head= v1V,...\headLen

and a tailv.tail = ViheadLen+1¥{headLen+2}--Yvlengthy ~When it
detects the data references whead, it prefetches from the
g,_gdresses of tail.

they are collected, rather than at the end of the awake phase. ThiConsider how we might match and prefetch wheadLers 3 and
is possible since Sequitur constructs the grammar representationthere is only one hot data stream= abacadae The detection/
incrementally. During the hibernation phase, our online profiler matching code makes use of a counteseenthat keeps track of
enters the instrumented code once per burst period (see Figure 3)how much ofv.headhas been matched. Wherseen= 0 nothing
These data references traced during hibernation are ignored byhas been matched, wherseen= 1, we have a partial match,
Sequitur to avoid trace contamination and unnecessary additionalwhenv.seere 2, we have a partial matdb, and wherv.seere 3

trace analysis overhead.

3. DYNAMIC PREFETCHING

we have a complete match fehead= abg and prefetch from the
addresses inv.tail, i.e. from addresses.addr, a.addr, d.addr,
e.addr To drivev.seenwe need to insert detection and prefetching

Prior work has shown that the data references of programs have acode at the pc's of.headthat make comparisons to the addresses

high degree of regularity [8]. A data referencis a load or store of
a particular address, represented as a paic,(.addi). Most data

references of a program take place in only a few hot data streams
which are sequences of data references that repeat frequently, an
these account for most of the program’s cache misses [8]. For
example, ifabacadads a hot data stream, then the program often

performs a data accessapcfrom address.addr, followed by a
data access &tpcfrom addres®.addr and so on.

of v.headand the variable.seenFigure 7 shows pseudo-code for
this.

’&Iote in Figure 7 that we have exploited the fact that the same
Symbol a occurs multiple times whead= aba Also note that we
treat the cases of initial, failed, and complete matches specially.
The initial match of data reference a works regardless of how much
of v.headwe have seen. A failed match resetseento 0. A

{[v.2],[w,1]} {[v.3],[v.,1]}

{{w.1]}

{[w,3]}

Figure 8. Prefix-matching DFSM for hot data streams v=abacadae and w=bbghij.



complete match, besides drivingseen prefetches the addresses
in v.tail. Finally, note that it is possible thatpc==b.pg in which
case the if(accessing b.addr) clause would appear ia.pcs
instrumentation.

Now that we know how to detect the head and prefetch the tail of a
single hot data stream, there is a straight-forward way to do it for
multiple hot data streams. We could introduce one variglsieen

for each hot data streamy and inject the code independently.
While this simple approach works, it may lead to a lot of redundant
work. Consider, for example, the hot data streams abacadae
andw = bbghij. Whenv.seer= 2, we know thatv.seen== 1, so

we could save some work by combining the matching ahdw.

This even holds inside one hot data stream: wihveseer== 2 and

we observe another b, we should keepeen- 2.

Conceptually, each hot data stremmworresponds to a deterministic
finite state machine (DFSM)v.dfsm where the states are
represented by.seenand the detection code implements the
transitions. Instead of driving one DFSM per hot data stream, we
would like to drive just one DFSM that keeps track of matching for
all hot data streams simultaneously. By incurring the one-time cost
of constructing the DFSM, we make the frequent detection and
prefetching of hot data streams faster.

Figure 8 illustrates a prefix-matching DFSM that simultaneously
tracks hot data streanabacadaeandbbghij. Before we describe
how to come up with a DFSM that matches all hot data streams
simultaneously, let us consider how we would generate code to
drive it. Without loss of generality, l1e5 = {0,...,m} be the set of
states and lef be the set of data references (symbols) that appear
in prefixes of hot data streams. The transition functio®*A-->S
indicates that when you are in a staeand observe the data
referencea, you drive the state te' = d(s,a) In other wordsa.pc

has instrumentation of the form

a.pc: if((accessing a.addr) && (state==s))
state = s';

Additionally, some statesin Swould be annotated with prefetches
s.prefetches for the suffixes of the streams that have been
completely matched when stats is reached. Thus, the
instrumentation would become

a.pc: if((accessing a.addr) && (state==s))
state = s';
prefetch s'.prefetches;

}

We again treat the cases of initial, failed, and complete matches

specially as indicated in Figure 7. Note that besides combining

matches for the same address, but different states under the sam
outer if branch, we can sort the if-branches in such a way that more

likely cases come first. This further reduces the work for detecting
prefixes of hot data streams.

Now let us examine how to construct a DFSM that matches all hot

add {} to the workList;

while(!workList.isEmpty){
take state s out of workList;
function addTransition = lambda(Symbol a){
if(s doesn't yet have a transition for a){
s' = {[v,n+1] | n<headLen && [v,n] in s &&
a==Vn4qy } union {[w1] | a==w 1}
if(s' doesn't yet exist){
add s' to the states of the DFSM;
add s' to the workList;

}
ifts' 1= ()

introduce the transition (a,s') for s;

}
for(each state element e in s)
if(e.seen < headLen)

addTransition(e.hotDataStream e.seen+l )i

for(each symbol a for which there
exists a hot data stream v with v 1==a)
addTransition(a);

}

Figure 9. Algorithm for prefetching FSM construction.

Let s be a state and be a data reference. The transition function
d:S*A-->A yields a target state (set of state elements) as follows:

d(s,a) ={ [wn+1] | n<headLen && [v,n] in s && a==V .13}
union{ [w,1] | a==w,}

We construct the DFSM with a lazy work-list algorithm starting
from s5. We represent the DFSM as a directed graph, where the
nodes are reachable states and a transdi@ans)is stored as an
edge fromsto d(a,s)labelled witha. We do not explicitly represent
any edges to the start state. Figure 9 shows the pseudo-code. Let
be the number of hot data streams, and= 100 if H is set such
that each hot data stream covers at least 1% of the profile. Then
there areheadLen*n different state elements and thus up to

2(headlen™—o " different states. We have never observed this
exponential blow-up; we usually find closetteadLen*n+1states.

3.2 Injecting Detection and Prefetching Code

Our online optimizer uses dynamic Vulcan to inject the detection
and prefetching code into the running benchmark image [32].
Dynamic Vulcan stops all running program threads while binary
modifications are in progress and restarts them on completion. For
8very procedure that contains one or more pc's for which the
optimizer wants to inject code, it does the following. First, it makes
a copy of the procedure. Second, it injects the code into the copy.
Third, it overwrites the first instruction of the original with an
unconditional jump to the copy. When the optimizer wants to

data streams simultaneously. A state is a set of state elementsgdeoptimize later, it need only remove those jumps.

where state elemene is a pair of a hot data stream
e.hotDataStreamand an integere.seen If the current state is
s={[v,2],[w,1]} this means the prefix matcher has seen the first two
data accesses of the hot data straaiend the first data access of
hot data streanw, and no data accesses of any other hot data
streams. Statey = {} is the start state where nothing has been

matched.

Note that we do not patch any pointers to the original code of
optimized procedures in the data of the program. In particular, the
return addresses on the stack still refer to the original
procedures. Hence, we will return to original procedures for at
most as many times as there were activation records on the stack at
optimization time. This is safe, but may lead to a few missed



nHibernatgy = 2,450). The hot data stream analysis detected
original modified streams that contain more than 10 references, and account for at
binary . binary least 1% of the collected trace. These settings are not the result of
'f"Str””f'.?m careful tuning; rather our experience indicates that a fairly broad
or profiling — . range of reasonable settings performs equivalently. Measurements
inject detection . f .
Qand prefetching were performed on a uniprocessor 550 Mhz Pentium Ill PC with
code 512 MB of memory, 256 KB, 8-way L2, and 16KB, 4-way L1 data
cache, both with 32 byte cache blocks, running Windows 2000
. . Server. The SPEC benchmarks were run with their largest input
dyn_amlc dynamic data set (ref)boxsimwas used to simulate 1000 bouncing spheres.
optltmlzer Vulcan All measurements report the average of five runs.
runtime
original — 4.2 Evaluating the Online Profiling and Analy-
benchmark self-optimizing benchmark sis Framework

Figure 11 reports the overhead of our online profiling and analysis
infrastructure. TheBasic bar indicates the overhead of just the
prefetching opportunities. dynamic checks without (virtually) any data reference profiling.
This is measured by settingChecl to an extremely large value
'and ninstry to 1. We applied the techniques described in [15] to

reduce this dynamic check overhead. It is important that this over-
head be small since any dynamic optimization must overcome this
to produce performance improvements. In addition, unlike other
sampling-related overhead, this cannot be reduced by changing the
framework’s counter settings. As Figure 11 shows, this overhead is

4. EXPERIMENTAL EVALUATION reasonably low, ranging from around 2.5% for boxsim to 6% for

. . . - . parser. Thérof bar indicates the overhead of collecting the tempo-
This section evaluates our online profiling and analysis framework

di . h f - fd : fotchi ral data reference trace at the counter settings discussed in Section
and investigates the performance impact of dynamic pretetching. 4 1 pata reference profiling at this sampling rate adds very little

; additional overhead, which ranges from almost nothing for mcf to
4.1 EXpe”mental Methodology 1.6% overhead for vortex. Thus, we can collect sampled temporal
The programs used in this study include several of the memory- data reference profiles for all our benchmarks with a maximal
performance-limited SPECint2000 benchmarks, diaksim a overhead of only 6.5%, in the case of twolf and parser. Finally, the
graphics application that simulates spheres bouncing in a box. WeHds bar indicates the overhead of collecting the temporal data ref-
applied our dynamic prefetching framework to these benchmarks erence profiles and analyzing them to detect hot data streams
and used therefetchtOinstruction supplied on the Pentium Il to  according to the parameters in Section 4.1. Again, this adds very
prefetch data into both levels of the cache hierarchy. The following |ittle overhead; vortex at 1.4% incurs the largest additional over-
framework settings were used for all experiments, unless men- head. Considering all three contributors to overhead, we see that at
tioned otherwise. The bursty tracing sampling rate was set at 0.5%the current sampling rate most of the overhead arises from the
during the active profiling period, with profiling bursts extending  dynamic checks. The overall overhead of our online profiling and
through 60 dynamic checks (i.eaCheck=11,940 andninstig= analysis is reasonably low, and ranges from around 3% for mcf to
60). The online optimization controls were set to actively profile 7% for parser and vortex. Any dynamic optimization based on hot
and analyze 1 second of every 50 seconds of program executiondata streams, that operates in our framework must produce greater

Figure 10. Dynamic Injection of Prefetching Code.

Figure 10 shows how our system uses Vulcan. Before execution
static Vulcan modifies the x86 binary of the benchmark to

implement the bursty tracing framework from Section 2.1. The
resulting modified binary is linked with the runtime system of our

dynamic optimizer, which includes code for the algorithms

described in Section 2.3 and Section 3.1.

where active periods are 50 burst periods long (nAwake = 50, improvements than this to positively impact overall program per-
formance.
10
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Figure 11. Overhead of online profiling and analysis.
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Figure 12. Performance impact of dynamic prefetching.

4.3 Dynamic Prefetching Evaluation The Seq-prefbars measures the ben'efit qf a prefetchi_ng scheme
Figure 12 shows the overall impact of our dynamic prefetching that uses the hot data stream analysis to insert dynamic prefetches
scheme on program performance, normalized to the execution timea'fj dapproprlallte pr(cj)gr_am p;om:]s, but rl]gng:esk theh data strer_:lrrl}
of the original unoptimized program. The Y axis measures ?” restshesi r:steaf_, it Ft)r?] e(;chetsdcztac ? oc Sft at se?_uenif y
. " o ollow the last prefix-matched hot data stream reference (i.e., the
ercentage overhead; positive values indicate performance :
gegradat?on and negativg values indicate speeduszF\)rbHeref stream reference, which when matched, causes the prefetch
bars report the cost of performing all the profiling, analysis and hot seqfuenr?_e to b?] |n|t|at_fe(r1]). Tdh's scheme is equivalent to lcl)ur (Ijlynamlg
data stream prefix matching, yet not inserting prefetches. This prefetching scheme If hot data streams are sequentially allocated.

. . ; .~ The data indicates that with the sole exception of parser, which has
measures the overhead of our dy_namlc prefetc_hlng analy5|s, WhIChseveral sequentially allocated hot data streams and runs around 5%
must be overcome by effective prefetching to vyield net

performance gains. The prefix-match checks add an additional faster overall, none of the benchmarks benefit from ‘ghls approach.
0.5% (mcf, parser) to 4% (boxsim) overhead compared with the The other benchmarks suffer performance degradations that range
h. y : d . it from 7% (mcf) to 12% (twolf), which indicates that these

ot data stream analysis (comp&te-prefwith Hdsbar in Figure refetches pollute the cache
11), for a configuration that matched the first two references of a P P '
hot data stream prior to initiating prefetching. Changing this to Finally, theDyn-prefbars reports the performance of our dynamic
match a single data stream element before initiating prefetching prefetching implementation (achieved by setting the hot data
lowered this overhead, but at the cost of less effective prefetching, stream prefix matching length to 2). Prefetching produces a net
yielding a net performance loss. Matching the first three data performance improvement of 5% (vortex) to 19% (vpr). This is
stream elements before initiating prefetching increased this despite the 4-8% overhead that the prefetching has to overcome to
overhead without providing any corresponding benefit in show net performance improvements. Comparing these results to
prefetching accuracy, resulting in a net performance loss as well.. the Seqg-prefnumbers highlights the importance of using the hot
In addition, our current implementation makes no attempt to data streams addresses as prefetch targets. In addition, manual
schedule prefetches (they are triggered as soon as the prefixexamination of the hot data addresses indicates that many will not
matches). More intelligent prefetch scheduling could produce be successfully prefetched using a simple stride-based prefetching
larger benefits. scheme. However, a stride-based prefetcher could complement our

Table 2: Detailed dynamic prefetching characterization

Benchmark # of opt. | # of traced refg # of hds #_qf DFSM states, |# of procs. modified
cycles | (per cycle avg.) (per cycle avg.)transitions (per cycle avd.) (per cycle avg.)
vpr 17 83,231 41 <79 states, 68 checks> 7
mcf 36 72,537 37 <75 states, 74checks> 6
twolf 55 87,981 25 <42 states, 41checks> 11
parser 4 73,244 21 <43 states, 42 checks> 9
vortex 3 67,852 14 <29 states, 28 checks> 12
boxsim 19 87,818 23 <40 states, 36 chegks> 7




scheme by prefetching data address sequences that do not qualifpeen proposed for prefetching linked data structures. In
as hot data streams. dependence-based prefetching, producer-consumer pairs of loads
are identified, and a prefetch engine speculatively traverses and
prefetches them [26]. Dependence-based prefetching has also been
combined with artificial jump-pointer prefetching in software or

Table 2 provides a more detailed characterization of our dynamic
prefetching implementation. The second column indicates the

numbe_r of prefetch optimization cycles performed during program hardware [27]. In dependence-graph precomputation, a backward
execution. Longer running programs produce a greater number of !

h timizati | Th ¢ th I h th slice of instructions in the instruction fetch queue is used to chose a
€seé optimization cycles. the next three columns Show 1Ne gq, instryctions to execute speculatively to compute a prefetch

number of traced references, hot data streams detected, and the sizg oo [1]. And in content-aware prefetching, data that is brought

of the DFSMs used for prefix matching, all averaged on a per j, g satisfy a cache miss is scanned for values that may resemble

optimization cycle basis. The last column contain the number of ,jqreqses; and those addresses are used for prefetching [12].
procedures modified to insert prefix-match checks or prefetches,

again averaged on a per cycle basis. The results indicate that thélhe hardware technique that best corresponds to history-pointers is
prefetching benefits arise from targeting a small set of program hot correlation-based prefetching. As originally proposed, it learns

data streams. digrams of a key and prefetch addresses: when the key is observed,
the prefetch is issued [6]. Joseph and Grunwald generalized this
5. RELATED WORK technique by using a Markov predictor [16]. Nodes in the Markov-
This section discusses related work on prefetching and Softwaremodel are addresses, and the transition probabilities are derived
dynamic optimization. from observed digram frequencies. Upon a data cache miss to an
address that has a node in the Markov model, prefetches for a fixed
5.1 Prefetching number of transitions from that address are issued, prioritized by

Prefetching is a well known optimization that attempts to hide their probabilities.

latency resulting from poor reference locality. We are concerned Qur techniques differs from prior software prefetching techniques
with data prefetching (as opposed to instruction prefetching) into in at least three ways. First, it is profile-based and does not rely on
the processor cache. Prefetching mechanisms can be classified astatic analysis. Second, being profile-based it works for arbitrary
software prefetching (using non-blocking load instructions data structure traversals. Finally, it is a dynamic technique that is
provided by most modern processors) and hardware prefetchingcapable of adaptation as the program executes. Our dynamic
(extending the memory management subsystem arChiteC_ture)%prefetching is most similar to correlation-based hardware
Prefetching mechanisms can also be characterized by the kind ofprefetching in that it observes past data accesses to predict future
regularity they require of the target program and by their degree of gccesses. Unlike the correlation-based prefetchers mentioned
automation. We review only the most closely related techniques ahove, it is a software technique that can be easily configured and
here; a survey of prefetching techniques is [35]. tuned for a particular program, performs more global access
pattern analysis, and is capable of using more context for its

Early prefetching techniques mainly focused on improving the @redictions than digrams of data accesses.

performance of scientific codes with nested loops that access dens
arrays. Both software and hardware techniques exist for such ; . ;

regular codes. The software techniques use program analysis to5'2 Software Dynamlc Optlml_zatlo_n_

determine the data addresses needed by future loop iterations, an§ommon examples of software dynamic optimizers are some of
emp|oy program transformations, such as |00p unro"ing and the more SOphIStIC&ted Java virtual machines such as Intel's
software pipelining to exploit that information [20, 24]. Hardware Microprocessor Research Lab VM [11], Sun's HotSpot VM [25],
prefetching techniques include stride prefetchers and streamand IBM's Jikes RVM [2]. All of these contain just-in-time
buffers. Stride prefe’[chers learn if load address sequences aré:ompllers and use runtime information to concentrate optimization
related by a fixed delta and then exploit this information to predict €fforts on frequently executing methods. Unlike our system, they
and prefetch future load addresses [7]. Stream buffers can fetchdo not focus on memory hierarchy optimizations, and possess only
linear sequences of data and avoid polluting the processor cache byimited cross-procedure optimization capabilities.

buffering the data [17]. These techniques are mostly limited to
programs that make heavy use of loops and arrays, producing
regular access patterns.

Recently, some dynamic optimizers that operate on compiled
object code have been proposed. The Wiggins/Redstone system
uses hardware performance counters to profile a program
Jump pointers are a software technique for prefetching linked dataexecuting on the Alpha processor, and optimizes single-entry
structures, overcoming the array-and-loop limitation. Artificial Multiple-exit regions of hot basic blocks [13]. The University of
jump pointers are extra pointers stored into an object that point to Queensland Dynamic Binary Translator translates an program that
an object some distance ahead in the traversal order. On futurelS compiled for one architecture just in time for execution on
traversals of the data structure, the targets of these extra pointer@nother architecture, and collects a full edge-weight profile to
are prefetched. Natural jump pointers are existing pointers in the identify groups of connected hot blocks for optimization [34]. The
data structure used for prefetching. For example, greedy Dynamo system interprets a program to collect a basic block
prefetching makes the assumption that when a program uses arProfile. Once a basic block reaches a heat threshold, Dynamo
object o, it will use the objects that o points to, in the near future, considers the linear sequence of blocks executed directly
and hence prefetches the targets of all pointer fields. Theseafterwards as a hot path, which it then optimizes [4]. All of these
techniques were introduced by Luk and Mowry in [22] and refined Systems optimize code in hot control paths that may cross
in [5, 18]. Stoutchinin et al. describe a profitability analysis for Procedure boundaries. Unlike our system, they do not focus on
prefetching with natural jump pointers [33]. A limitation of these memory hierarchy optimizations.

techniques is that their static analyses are restricted to regular, few dynamic memory hierarchy optimizers implemented in
linked data structures accessed by local regular control structures. software do exist. Saavedra and Park dynamically adapt the

Various hardware techniques, related to greedy prefetching, havePrefetch distance of array-and-loop software prefetching to the



changing latencies of a NUMA architecture [29]. They also discuss [5] B. Cahoon, and K. McKinley. “Data flow analysis for software
adaptive profiling: when profiling information changes, the prefetching linked data structures in Java.lhternational
profiler starts polling more frequently. This idea may be a useful Conference on Parallel Architectures and Compilation Tech-
extension to our simpler hibernation approach. Chilimbi and Larus niques (PACT,)2001.

use a copying generational garbage collector to improve reference,
locality by clustering heap objects according to their observed data X
access patterns [9]. Harris performs dynamic adaptive pretenuring har_dwar_e prefetching Tech report EE-CEG-95;Comell
for Java programs by identifying allocation sites that often allocate ~ JNiVersity, 1995.

long-lived objects [14]. His system modifies these allocations to [7]T. Chen, and J. Baer.” Reducing memory latency via non-block-
directly place objects into the old generation of a generational ing and prefetching caches.”rchitectural Support for Pro-

garbage CO”eCtOr, SaVing the Work Of repeatedly Scanning them n gramming Languages and Operating Systems (ASP’[LQ&
the young generation. Kistler and Franz reorder fields in objects so

fields accessed together reside in the same cache block, andg] T.M. Chilimbi. “Efficient Representations and Abstractions for

discuss how this can be done during copying garbage collection ~ Quantifying and Exploiting Data Reference Locality.”Rno-
[19]. ceedings of the ACM SIGPLAN’01 Conference on Program-

ming Language Design and Implementatidane 2001

[6] M. Charney, and A. Reeves. “Generalized correlation based

5.3 State Machine Predictor Generation [9] T. M. Chilimbi, and J. R. Larus. “Using generational garbage

Sherwood and Calder propose an algorithm that generates FSM " ¢ollection to implement cache-conscious data placement.” In

predictors from temporal profiling data [30]. In their case study, Proceedings of the 1998 International Symposium on Memory
the profile is a trace of branch executions. Each FSM is driven by ManagementOct. 1998.

the global branch direction bitstring, and predicts whether a o .

particular branch is taken or not taken. While we also generate an[10] T. M. Chilimbi. “On the stability of temporal data reference
FSM predictor from temporal profiling data, there are some profiles.” In International Conference on Parallel Architec-
fundamental differences to the Sherwood-Calder approach. Firstof ~ tures and Compilation Techniques (PACZ)O1.

all, S_herwood and Calder generate FSM predictors in hr_:lrdware for[11] M. Cierniak, G. Lueh, and J. Stichnoth. “Practicing JUDO:
special-purpose processors, while we use a dynamic software™ ™y, /5 nger dynamic optimizations.” ACM SIGPLAN'00
approach._ They restrict FSMs to be driven _by bltstn_ngs and predict Conference on Programming Languages Design and Imple-
a single bit (one step of their FSM generation algorithm represents mentation (PLDI) 2000.

the predictor by a boolean formula), while we predict sets of

prefetch addresses. They use fixed-sized histories, while our hot[12] R. Cooksey, D. Colarelli, and D. Grunwald, “Content-based
data streams are variable-length. They drive several FSMs in  prefetching: Initial results”, I'Workshop on Intelligent Memo-
parallel, while we combine all FSMs into one. ry Systems2000.

6. CONCLUSIONS [13] D. Deaver, R. Gorton, and N. Rubin, "Wiggins/Redstone: An

This paper describes a dynamic software prefetching framework online program specializer.”, IHot Chips 1999.

for general-purpose programs. The prefetching scheme runs on[14] T. Harris. “Dynamic adaptive pre-tenuring.” International
stock hardware, is completely automatic, and can handle codes that  Symposium on Memory Management (ISMR000.

traverse pointer-based data structures. It targets a program’s hoL& . I .
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experimental results demonstrate that our prefetching technique is' dictors”, InInternational Symposium on Computer Architec-

effective, providing overall execution time improvements of 5— ture (ISCA) 1997.
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