
ro-
son,

of
of

ce
ce

ies
if

he.
se
gh
or-

this
cy
ing
e
gh

ted
for
(for
he

at
of

data
not

ral-
ay

mall
that

und
[8,

they
hey
they

e
thm
ata
irly
off-

ms
hat
his
nd

ata

Dynamic Hot Data Stream Prefetching for General-Purpose
Programs

Trishul M. Chilimbi
Microsoft Research
One Microsoft Way

Redmond, WA 98052

trishulc@microsoft.com

Martin Hirzel
Computer Science Dept.

University of Colorado
Boulder, CO 80309

martin.hirzel@colorado.edu
ABSTRACT
Prefetching data ahead of use has the potential to tolerate the grow-
ing processor-memory performance gap by overlapping long
latency memory accesses with useful computation. While sophisti-
cated prefetching techniques have been automated for limited
domains, such as scientific codes that access dense arrays in loop
nests, a similar level of success has eluded general-purpose pro-
grams, especially pointer-chasing codes written in languages such
as C and C++.

We address this problem by describing, implementing and
evaluating a dynamic prefetching scheme. Our technique runs on
stock hardware, is completely automatic, and works for general-
purpose programs, including pointer-chasing codes written in
weakly-typed languages, such as C and C++. It operates in three
phases. First, the profiling phase gathers a temporal data reference
profile from a running program with low-overhead. Next, the
profiling is turned off and a fast analysis algorithm extracts hot data
streams, which are data reference sequences that frequently repeat
in the same order, from the temporal profile. Then, the system
dynamically injects code at appropriate program points to detect
and prefetch these hot data streams. Finally, the process enters the
hibernation phase where no profiling or analysis is performed, and
the program continues to execute with the added prefetch
instructions. At the end of the hibernation phase, the program is de-
optimized to remove the inserted checks and prefetch instructions,
and control returns to the profiling phase. For long-running
programs, this profile, analyze and optimize, hibernate, cycle will
repeat multiple times. Our initial results from applying dynamic
prefetching are promising, indicating overall execution time
improvements of 5–19% for several memory-performance-limited
SPECint2000 benchmarks running their largest (ref) inputs.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors –code generation,
optimization, run-time environments.

General Terms
Measurement, Performance.

Keywords
dynamic profiling, temporal profiling, data reference profiling,
dynamic optimization, memory performance optimization,
prefetching.

1. INTRODUCTION
The demise of Moore’s law has been greatly exaggerated and p
cessor speed continues to double every 18 months. By compari
memory speed has been increasing at the relatively glacial rate
10% per year. The unfortunate, though inevitable consequence
these trends is a rapidly growing processor-memory performan
gap. Computer architects have tried to mitigate the performan
impact of this imbalance with small high-speed cache memor
that store recently accessed data. This solution is effective only
most of the data referenced by a program is available in the cac
Unfortunately, many general-purpose programs, which u
dynamic, pointer-based data structures, often suffer from hi
cache miss rates, and are limited by their memory system perf
mance.

Prefetching data ahead of use has the potential to tolerate
processor-memory performance gap by overlapping long laten
memory accesses with useful computation. Successful prefetch
is accurate—correctly anticipating the data objects that will b
accessed in the future—and timely—fetching the data early enou
so that it is available in the cache when required. Sophistica
automatic prefetching techniques have been developed
scientific codes that access dense arrays in tightly nested loops
e.g., [24]). They rely on static compiler analyses to predict t
program’s data accesses and insert prefetch instructions
appropriate program points. However, the reference pattern
general-purpose programs, which use dynamic, pointer-based
structures, is much more complex, and the same techniques do
apply.

If static analyses cannot predict the access patterns of gene
purpose programs, perhaps program data reference profiles m
suffice. Recent research has shown that programs possess a s
number of hot data streams, which are data reference sequences
frequently repeat in the same order, and these account for aro
90% of program references and more than 80% of cache misses
28]. These hot data streams can be prefetched accurately since
repeat frequently in the same order and thus are predictable. T
are long enough (15–20 object references on average) so that
can be prefetched ahead of use in a timely manner.

In prior work, Chilimbi instrumented a program to collect the trac
of its data memory references; then used a compression algori
called Sequitur to process the trace off-line and extract hot d
streams [8]. These hot data streams have been shown to be fa
stable across program inputs and could serve as the basis for an
line static prefetching scheme [10]. On the other hand, for progra
with distinct phase behavior, a dynamic prefetching scheme t
adapts to program phase transitions may perform better. In t
paper, we explore a dynamic software prefetching scheme a
leave a comparison with static prefetching for future work.

A dynamic prefetching scheme must be able to detect hot d

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PLDI’02, June 17-19, 2002, Berlin, Germany.
Copyright 2002 ACM 1-58113-463-0/02/0006...$5.00.

nce
off
sis
ar
fix
lly
tch
tion

am
the
to
trol
is
le

g

hat
en
d

is
of
00

for
ral
ast
ral

,

oral
of

ral
he
streams online with little overhead. This paper describes a dynamic
framework for online detection of hot data streams and
demonstrates that this can be accomplished with extremely low-
overhead. Rather than collect the trace of all data references, our
dynamic framework uses sampling to collect a temporal data
reference profile. Unlike conventional sampling, we sample data
reference bursts, which are short sequences of consecutive data
references. The framework uses Sequitur to process the trace
online, and a novel algorithm for fast detection of hot data streams
from the temporal profile data.

The hot data streams consist of a sequence of <pc, addr> pairs.
Our hot data stream analysis is configured to only detect streams
that are sufficiently long to justify prefetching (i.e., containing
more than ten unique references). Once these streams have been
detected, our prefetching engine dynamically injects checks in the
program to match stream prefixes, followed by prefetch
instructions for the remaining stream addresses. For example,
given a hot data streamabacdce, once the addressesa.addr, b.addr,
a.addr are detected by checks inserted ata.pc, b.pc, a.pc
respectively, prefetches are issued for the addresses,c.addr, d.addr,
e.addr. The hot data stream prefix length that must match before
prefetching is initiated needs to be set carefully. A prefix that is too
short may hurt prefetching accuracy, and too large a prefix reduces
the prefetching opportunity and incurs additional stream matching
overhead.

Conceptually, one can think of the prefix-matching mechanism for
a hot data stream as corresponding to a deterministic finite state
machine (DFSM), where the states correspond to possible stream
prefixes, and transitions are implemented by inserted prefix-match
checks. To avoid redundant checks, and efficiently orchestrate
matches for all hot data streams, our prefetching engine constructs
a single DFSM that keeps track of matching prefixes for all hot
data streams simultaneously (see Section 3.1). The prefetching
engine uses a dynamic implementation of Vulcan [32] (a binary
editing tool for the x86, similar to ATOM [31]), to insert checks
into the running program that implement the stream prefix
matching DFSM. In addition, it adds prefetch instructions that
target the remaining data stream addresses, on successful stream
prefix matches.

Figure 1 provides an overview of our dynamic prefetching process
that operates in three phases—profiling, analysis and optimization,
and hibernation. First, the profiling phase collects a temporal data
reference profile from a running program with low-overhead. This
is accomplished using bursty tracing [15], which is an extension of
Arnold and Ryder’s low-overhead profiling technique [3]. The
Sequitur compression algorithm incrementally builds an online

grammar representation of the traced data references. O
sufficient data references have been traced, profiling is turned
and the analysis and optimization phase begins. A fast analy
algorithm extracts hot data streams from the Sequitur gramm
representation. The prefetching engine builds a stream pre
matching DFSM for these hot data streams, and dynamica
injects checks at appropriate program points to detect and prefe
these hot data streams. Finally, the process enters the hiberna
phase where no profiling or analysis is performed, and the progr
continues to execute with the added prefetch instructions. At
end of the hibernation phase, the program is de-optimized
remove the inserted checks and prefetch instructions, and con
returns to the profiling phase. For long-running programs th
profile, analyze and optimize, hibernate cycle will repeat multip
times.

The paper makes the following contributions:

• It presents a dynamic, low-overhead framework for detectin
hot data streams (see Section 2).

• It describes an automatic, dynamic prefetching scheme t
works for general-purpose programs. The prefetching is driv
by the hot data streams supplied by the online profiling an
analysis framework (see Section 3).

• It presents empirical evidence that dynamic prefetching
effective, producing overall execution time improvements
5–19% for several memory performance limited SPECint20
benchmarks (see Section 4).

2. DYNAMIC DATA REFERENCE PROFIL-
ING AND ANALYSIS
This section discusses our online, low-overhead framework
detecting hot data streams. The framework first collects a tempo
data reference profile with low-overhead, and then uses a f
analysis algorithm to extract hot data streams from this tempo
profile.

2.1 Bursty Tracing Framework for Low-Over-
head Temporal Profiling

A data referencer is a load or store of a particular address
represented as a pair (r.pc,r.addr). The sequence of all data
references during execution is the data reference trace. A temp
data reference profile captures not only the frequencies
individual data references in the trace, but also tempo
relationships between them. For example, it would distinguish t
tracescdeabcdeabfgand abcdefabcdeg, even though all data

p r o g r a m
im a g e

f in i te s ta te
m a c h in e

g r a m m a r

h o t d a ta
s t r e a m s

d a ta r e fe r e n c e
s e q u e n c e

e x e c u t io n w ith
p r o f i l in g S e q u itu r

a n a ly s is

s ta te s p a c e
e x p lo r a tio n

c o d e
in je c t io n

e x e c u t io n w ith
p r e fe tc h in g

d e o p tim iz a t io n

p r o f i l in g

a n a ly s is a n d
o p t im iz a tio n

h ib e r n a t io n

Figure 1. Dynamic prefetching overview

rk
The

ns;

ng

a
ting
rst-
ted
trol
the

o
re

ust
references have the same frequencies in both of them. In the
second trace, the subsequenceabcde is a hot data stream and
presents a prefetching opportunity.

Our framework must collect a temporal data reference profile with
low overhead, because the slow-down from profiling has to be
recovered by the speed-up from optimization. A common way to
reduce the overhead of profiling is sampling: instead of recording
all data references, sample a small, but representative fraction of
them. Our profiler obtains a temporal profile with low overhead by
sampling bursts of data references, which are subsequences of the
reference trace.

We use the bursty tracing profiling framework [15], which is an
extension of the Arnold-Ryder framework [3]. The code of each
procedure is duplicated (see Figure 2). Both versions of the code
contain the original instructions, but only one version is
instrumented to also profile data references. Both versions of the
code periodically transfer control to checks at procedure entries or
loop back-edges. The checks use a pair of counters,nCheckand
nInstr, to decide in which version of the code execution should
continue.

At startup,nCheckis nCheck0 andnInstr is zero. Most of the time,
the checking code is executed, andnCheckis decremented at every
check. When it reaches zero,nInstr is initialized with nInstr0
(wherenInstr0<<nCheck0) and the check transfers control to the
instrumented code. While in the instrumented code,nInstr is
decremented at every check. When it reaches zero,nCheck is
initialized with nCheck0 and control returns back to the checking
code.

The bursty tracing profiling framework does not require operating
system or hardware support and is deterministic. We implemented
it using Vulcan [32], (an executable-editing tool for x86, similar to
ATOM [31]), and hence it does not require access to program
source code or recompilation. The profiling overhead is easy to
control: there is a basic overhead for the checks, and beyond that
the overhead is proportional to the sampling rater = nInstr0/
(nCheck0+nInstr0). Via nCheck0 andnInstr0, we can freely chose
the burst length and the sampling rate.

2.2 Extensions for Online Optimization
The countersnCheck0 and nInstr0 of the bursty tracing profiling
framework control its overhead and the amount of profiling
information it generates. For example, settingnCheck0 to 9900 and
nInstr0 to 100 results in a sampling rate of 100/10000=1% and a

burst length of 100 dynamic checks. We termnCheck0+nInstr0
dynamic checks a burst-period (see Figure 3).

For online optimization, we extended the bursty tracing framewo
to alternate between two phases, awake and hibernating.
profiler starts out awake and stays that way fornAwake0 burst-
periods, yieldingnAwake0*nInstr0 checks's worth of traced data
references. Then, the online optimizer performs the optimizatio
after that, the profiler hibernates. This is done by settingnCheck0
to nCheck0+nInstr0 - 1 andnInstr0 to 1 for the nextnHibernate0
burst-periods, wherenHibernate0 >> nAwake0. When the
hibernating phase is over, the profiler is woken up by resetti
nCheck0 andnInstr0 to their old values (see Figure 3).

While the profiler is hibernating, it traces next to no dat
references and hence incurs only the basic overhead of execu
checks. We designed the hibernation extension so that bu
periods correspond to the same time (measured in execu
checks) in either phase (see Figure 3). This makes it easy to con
the relative length of the awake and hibernating phases using
counters,nAwake0 andnHibernate0. Note that with our extension,
bursty tracing is still deterministic. Since our optimization is als
deterministic, executions of deterministic benchmarks a
repeatable, which helps testing. WhennHibernate0 >> nAwake0 >>
1 andnChecking0 >> nInstr0 >>1 the sampling rate approximates
to

(nAwake0*nInstr0)/((nAwake0+nHibernate0)*(nInstr0+nCheck0)).

2.3 Fast Hot Data Stream Detection
Bursty tracing collects a temporal data reference profile. This m

A

B

A

B

A’

B’
checking
code

instrumented
code

back-
edge
check

entry-
check

modified procedure (bursty tracing)
original
procedure

(a) (b)

Figure 2. Instrumentation for low-overhead temporal profiling

awakephase hibernatingphase unit:
burst
period

unit:
phase

nAwake0 nHiberbate0

unit:
dynamic
check

nCheck0 nInstr0 nCheck0+nInstr0–1 1
checking profiling checking

time

Figure 3. Profiling timeline.

S

B

C

A

a b c

S -> AaBB

A -> ab

B-> CC

C -> Ac

abaabcabcabcabc

Input string

SEQUITUR
grammar

DAG representation

Figure 4. Sequitur grammar for w=abaabcabcabcabc.

es

the

n-

als

m,
s
on-
ds
t if
art
he

me

in

de
be analyzed to find hot data streams. Our online profiling and
analysis framework first uses the Sequitur algorithm [23] to
compress the profile and infer its hierarchical structure. Each
observed data reference can be viewed as a symbol, and the
concatenation of the profiled bursts as a stringw of symbols.
Sequitur constructs a context-free grammar for the language{w}
consisting of exactly one word, the stringw. Sequitur runs in time
O(w.length). It is incremental (we can append one symbol at a
time) and deterministic. The grammar is a compressed
representation of the trace, it is unambiguous and acyclic in the
sense that no non-terminal directly or indirectly defines itself.
Figure 4 shows a Sequitur grammar forw=abaabcabcabcabc, and
its representation as a multi-dag.

Before describing our online analysis for finding hot data streams
from this Sequitur grammar, we review some definitions from [8].
A hot data stream is a data reference subsequence whose
regularity magnitude exceeds a predetermined heat threshold,H.
Given a data reference subsequencev, we define its regularity
magnitude asv.heat= v.length*v.frequency, wherev.frequencyis
the number of non-overlapping occurrences ofv in the trace. Larus
describes an algorithm for finding a set of hot data streams from a
Sequitur grammar [21]; we use a faster, less precise algorithm that
relies more heavily on the ability of Sequitur to infer hierarchical
structure.

Our analysis algorithm uses the observation that each non-terminal
A of a Sequitur grammar generates a languageL(A) = {wA} with
just one wordwA. We define the regularity magnitude of a non-
terminalA asA.heat= wA.length*A.coldUses, whereA.coldUsesis
the number of timesA occurs in the (unique) parse tree of the

complete grammar, not counting occurrences in sub-tre
belonging to hot non-terminals other thanA. A non-terminalA is
hot iff minLen<= A.length<= maxLenandH <= A.heat, whereH
is the predetermined heat threshold. The result of the analysis is
set{wA | A is a hot non-terminal}of hot data streams.

Figure 5 shows pseudo-code for the analysis. We call a no
terminal B, a child of another non-terminalA, if it occurs on the
right-hand side of the grammar rule forA. We assume that we
already havewA.length for each non-terminalA; this is easy to
maintain in Sequitur. The analysis first numbers the non-termin
such that wheneverB is a child ofA, we haveA.index< B.index.
This important property guarantees that in the rest of the algorith
we never visit a non-terminal before having visited all it
predecessors. Then, the algorithm finds how often each n
terminal is used in the parse-tree of the grammar. Finally, it fin
hot non-terminals such that a non-terminal is only considered ho
it accounts for enough of the trace on its own, where it is not p
of the expansion of other non-terminals. The running time of t
algorithm is linear in the size of the grammar.

Consider, for example, the grammar shown in Figure 4. Assu
the heat threshold,H = 8, and the length restrictions areminLen=
2, maxLen= 7. The values computed by the analysis are shown
Figure 6 and Table 1. Note that the non-terminalC is completely
subsumed by the hot non-terminalB and therefore not considered
hot. Note that even though the non-terminalA also appears outside
of the parse trees of hot non-terminals, its regularity magnitu
A.heat= 2 does not exceed the heat thresholdH. In this example,
we would find just one hot data streamwB = abcabcwith heat 12
that accounts for 12/15=80% of all data references.

//find reverse post-order numbering for non-terminals

int next = nRules;

function doNumbering = lambda(NonTerminal A){

if(have not yet visited A){

for(each child B of A)

doNumbering(B);

next--;

A.index = next;

}

}

doNumbering(S);

//find uses for non-terminals, initialize coldUses to uses

for(each non-terminal A)

A.uses = A.coldUses = 0;

S.uses = S.coldUses = 1;

for(each non-terminal A, ascending order of A.index)

for(each child B or A)

B.uses = B.coldUses = (B.uses + A.uses);

//find hot non-terminals

for(each non-terminal A, ascending order of A.index){

A.heat = w A.length * A.coldUses;

fHot = minLen<=A.length<=maxLen && H<=A.heat;

if(fHot)

reportHotDataStream(w A, A.heat);

subtract = fHot ? A.uses : (A.uses-A.coldUses);

for(each child B of A)

B.coldUses = B.coldUses - subtract;

}

Figure 5. Algorithm for fast approximation of hot data streams.

S

A

B

C

B

abaabcabcabcabc

C CC

AA AA

parsetree

S

B

C

A

grammar
(omitting
terminals)

S

B

C

A

S

B

C

A

S

B

C

A

reverse
postorder
numbering

0

1

2

3

uses:
word
length

1:15

2:6

4:3

5:2

colduses:
word
length

1:15

2:6

0:3

1:2

Figure 6. Hot data stream analysis example.

X Child Length Index Use cold-
Use

Heat Report?

S A,B
,B

15 0 1 1 15 no, start

A - 2 3 5 1 2 no, cold

B C,C 6 1 2 2 12 yes

C A 3 2 4 0 0 no, cold

Table 1: Computed values for hot data stream analysis.

nd
. For

s
s

e
gh

s.
g-

se
o
.

s,
s.

g
es
r

e

lly.
ch
2.4 Discussion
Our online profiling and analysis framework implementation
batches and sends traced data references to Sequitur, as soon as
they are collected, rather than at the end of the awake phase. This
is possible since Sequitur constructs the grammar representation
incrementally. During the hibernation phase, our online profiler
enters the instrumented code once per burst period (see Figure 3).
These data references traced during hibernation are ignored by
Sequitur to avoid trace contamination and unnecessary additional
trace analysis overhead.

3. DYNAMIC PREFETCHING
Prior work has shown that the data references of programs have a
high degree of regularity [8]. A data referencer is a load or store of
a particular address, represented as a pair (r.pc,r.addr). Most data
references of a program take place in only a few hot data streams,
which are sequences of data references that repeat frequently, and
these account for most of the program’s cache misses [8]. For
example, ifabacadaeis a hot data stream, then the program often
performs a data access ata.pc from addressa.addr, followed by a
data access atb.pcfrom addressb.addr, and so on.

Our prefetching optimizer matches hot data stream prefixes, a
then issues prefetches for the remaining data stream addresses
example, given the hot data streamabacadae, when the optimizer
detects the data referencesaba, it prefetches from the addresse
c.addr,a.addr,d.addr,e.addr. Ideally, the data from these addresse
will be cache resident by the time the data referencescadaetake
place, avoiding cache misses and speeding up the program.

Figure 1 shows an overview of our optimizer. It profiles th
program to find hot data streams. When it has collected enou
profiling information, it stops profiling and injects code for
detecting prefixes and prefetching suffixes of hot data stream
Then it continues running the optimized program. For lon
running applications, it may repeat these steps later. We u
dynamic Vulcan [32], which is an executable editing tool similar t
ATOM [31], to edit the binary of the currently executing program

3.1 Generating Detection and Prefetching
Code

After the profiling and analysis phase finds the hot data stream
the optimizer must match their prefixes and prefetch their suffixe
The optimizer uses a fixed constantheadLento divide each hot
data streamv = v1v2...v{v.length} into a headv.head= v1v2...vheadLen
and a tailv.tail = v{headLen+1}v{headLen+2}...v{v.length}. When it
detects the data references ofv.head, it prefetches from the
addresses ofv.tail.

Consider how we might match and prefetch whenheadLen= 3 and
there is only one hot data stream,v = abacadae. The detection/
matching code makes use of a counterv.seen, that keeps track of
how much ofv.headhas been matched. Whenv.seen= 0 nothing
has been matched, whenv.seen= 1, we have a partial matcha,
whenv.seen= 2, we have a partial matchab, and whenv.seen= 3
we have a complete match forv.head= abc, and prefetch from the
addresses inv.tail, i.e. from addressesc.addr, a.addr, d.addr,
e.addr. To drivev.seen, we need to insert detection and prefetchin
code at the pc's ofv.headthat make comparisons to the address
of v.headand the variablev.seen. Figure 7 shows pseudo-code fo
this.

Note in Figure 7 that we have exploited the fact that the sam
symbol a occurs multiple times inv.head= aba. Also note that we
treat the cases of initial, failed, and complete matches specia
The initial match of data reference a works regardless of how mu
of v.headwe have seen. A failed match resetsv.seento 0. A

a.pc: if(accessing a.addr){

if(v.seen == 2){

v.seen = 3;

prefetch c.addr,a.addr,d.addr,e.addr;

}else{

v.seen = 1;

}

}else{

v.seen = 0;

}

b.pc: if(accessing b.addr)

if(v.seen == 1)

v.seen = 2;

else

v.seen = 0;

else

v.seen = 0;

Figure 7. Inserted prefetching code for stream abacadae.

s 0

s 1

s 2

s 3

s 4

s 5

s 6

a

b

a

a

a
a

b
a

b
b

b
b

g

b

a

{ }

{ [v , 1] } { [v , 2] , [w , 1] } { [v , 3] , [v , 1] }

{ [w , 1] } { [w , 2] } { [w , 3] }

Figure 8. Prefix-matching DFSM for hot data streams v=abacadae and w=bbghij.

n
:

g
the

et

en
o
is

n
2].
ry
For
he
s
py.

to

of
he
al
at
k at
d

complete match, besides drivingv.seen, prefetches the addresses
in v.tail. Finally, note that it is possible thata.pc== b.pc, in which
case the if(accessing b.addr) clause would appear ina.pc's
instrumentation.

Now that we know how to detect the head and prefetch the tail of a
single hot data stream, there is a straight-forward way to do it for
multiple hot data streams. We could introduce one variablev.seen,
for each hot data streamv, and inject the code independently.
While this simple approach works, it may lead to a lot of redundant
work. Consider, for example, the hot data streamsv = abacadae
andw = bbghij. Whenv.seen== 2, we know thatw.seen== 1, so
we could save some work by combining the matching ofv andw.
This even holds inside one hot data stream: whenw.seen== 2 and
we observe another b, we should keepw.seen= 2.

Conceptually, each hot data streamv corresponds to a deterministic
finite state machine (DFSM)v.dfsm, where the states are
represented byv.seenand the detection code implements the
transitions. Instead of driving one DFSM per hot data stream, we
would like to drive just one DFSM that keeps track of matching for
all hot data streams simultaneously. By incurring the one-time cost
of constructing the DFSM, we make the frequent detection and
prefetching of hot data streams faster.

Figure 8 illustrates a prefix-matching DFSM that simultaneously
tracks hot data streamsabacadaeandbbghij. Before we describe
how to come up with a DFSM that matches all hot data streams
simultaneously, let us consider how we would generate code to
drive it. Without loss of generality, letS = {0,...,m} be the set of
states and letA be the set of data references (symbols) that appear
in prefixes of hot data streams. The transition functiond:S*A-->S
indicates that when you are in a states and observe the data
referencea, you drive the state tos' = d(s,a). In other words,a.pc
has instrumentation of the form

a.pc: if((accessing a.addr) && (state==s))

state = s';

Additionally, some statess in Swould be annotated with prefetches
s.prefetches, for the suffixes of the streams that have been
completely matched when states is reached. Thus, the
instrumentation would become

a.pc: if((accessing a.addr) && (state==s)){

state = s';

prefetch s'.prefetches;

}

We again treat the cases of initial, failed, and complete matches
specially as indicated in Figure 7. Note that besides combining
matches for the same address, but different states under the same
outer if branch, we can sort the if-branches in such a way that more
likely cases come first. This further reduces the work for detecting
prefixes of hot data streams.

Now let us examine how to construct a DFSM that matches all hot
data streams simultaneously. A state is a set of state elements,
where state elemente is a pair of a hot data stream
e.hotDataStreamand an integere.seen. If the current state is
s={[v,2],[w,1]} this means the prefix matcher has seen the first two
data accesses of the hot data streamv, and the first data access of
hot data streamw, and no data accesses of any other hot data
streams. States0 = {} is the start state where nothing has been
matched.

Let s be a state anda be a data reference. The transition functio
d:S*A-->A yields a target state (set of state elements) as follows

d(s,a) ={ [v,n+1] | n<headLen && [v,n] in s && a==v {n+1}}

union{ [w,1] | a==w 1}

We construct the DFSM with a lazy work-list algorithm startin
from s0. We represent the DFSM as a directed graph, where
nodes are reachable states and a transitiond(a,s) is stored as an
edge froms to d(a,s)labelled witha. We do not explicitly represent
any edges to the start state. Figure 9 shows the pseudo-code. Ln
be the number of hot data streams, andn <= 100 if H is set such
that each hot data stream covers at least 1% of the profile. Th
there areheadLen*n different state elements and thus up t
2(headLen*n)=O(2n) different states. We have never observed th
exponential blow-up; we usually find close toheadLen*n+1states.

3.2 Injecting Detection and Prefetching Code
Our online optimizer uses dynamic Vulcan to inject the detectio
and prefetching code into the running benchmark image [3
Dynamic Vulcan stops all running program threads while bina
modifications are in progress and restarts them on completion.
every procedure that contains one or more pc’s for which t
optimizer wants to inject code, it does the following. First, it make
a copy of the procedure. Second, it injects the code into the co
Third, it overwrites the first instruction of the original with an
unconditional jump to the copy. When the optimizer wants
deoptimize later, it need only remove those jumps.

Note that we do not patch any pointers to the original code
optimized procedures in the data of the program. In particular, t
return addresses on the stack still refer to the origin
procedures. Hence, we will return to original procedures for
most as many times as there were activation records on the stac
optimization time. This is safe, but may lead to a few misse

add {} to the workList;

while(!workList.isEmpty){

take state s out of workList;

function addTransition = lambda(Symbol a){

if(s doesn't yet have a transition for a){

s' = {[v,n+1] | n<headLen && [v,n] in s &&

a==v {n+1} } union {[w,1] | a==w 1}

if(s' doesn't yet exist){

add s' to the states of the DFSM;

add s' to the workList;

}

if(s' != {})

introduce the transition (a,s') for s;

}

}

for(each state element e in s)

if(e.seen < headLen)

addTransition(e.hotDataStream e.seen+1);

for(each symbol a for which there

exists a hot data stream v with v 1==a)

addTransition(a);

}

Figure 9. Algorithm for prefetching FSM construction.

ed
r at

lt of
ad
ents
th

00
ut
s.

sis

.

to
er-
his
er
the
is
r

o-
tion

tle
to
ral
al
he
ef-
ms

ery
r-
t at

the
d
to
ot
ater
r-
prefetching opportunities.

Figure 10 shows how our system uses Vulcan. Before execution,
static Vulcan modifies the x86 binary of the benchmark to
implement the bursty tracing framework from Section 2.1. The
resulting modified binary is linked with the runtime system of our
dynamic optimizer, which includes code for the algorithms
described in Section 2.3 and Section 3.1.

4. EXPERIMENTAL EVALUATION
This section evaluates our online profiling and analysis framework
and investigates the performance impact of dynamic prefetching.

4.1 Experimental Methodology
The programs used in this study include several of the memory-
performance-limited SPECint2000 benchmarks, andboxsim, a
graphics application that simulates spheres bouncing in a box. We
applied our dynamic prefetching framework to these benchmarks
and used theprefetcht0instruction supplied on the Pentium III to
prefetch data into both levels of the cache hierarchy. The following
framework settings were used for all experiments, unless men-
tioned otherwise. The bursty tracing sampling rate was set at 0.5%
during the active profiling period, with profiling bursts extending
through 60 dynamic checks (i.e.,nCheck0=11,940 andnInstr0=
60). The online optimization controls were set to actively profile
and analyze 1 second of every 50 seconds of program execution,
where active periods are 50 burst periods long (i.e.,nAwake0 = 50,

nHibernate0 = 2,450). The hot data stream analysis detect
streams that contain more than 10 references, and account fo
least 1% of the collected trace. These settings are not the resu
careful tuning; rather our experience indicates that a fairly bro
range of reasonable settings performs equivalently. Measurem
were performed on a uniprocessor 550 Mhz Pentium III PC wi
512 MB of memory, 256 KB, 8-way L2, and 16KB, 4-way L1 data
cache, both with 32 byte cache blocks, running Windows 20
Server. The SPEC benchmarks were run with their largest inp
data set (ref).boxsimwas used to simulate 1000 bouncing sphere
All measurements report the average of five runs.

4.2 Evaluating the Online Profiling and Analy-
sis Framework

Figure 11 reports the overhead of our online profiling and analy
infrastructure. TheBasic bar indicates the overhead of just the
dynamic checks without (virtually) any data reference profiling
This is measured by settingnCheck0 to an extremely large value
and nInstr0 to 1. We applied the techniques described in [15]
reduce this dynamic check overhead. It is important that this ov
head be small since any dynamic optimization must overcome t
to produce performance improvements. In addition, unlike oth
sampling-related overhead, this cannot be reduced by changing
framework’s counter settings. As Figure 11 shows, this overhead
reasonably low, ranging from around 2.5% for boxsim to 6% fo
parser. TheProf bar indicates the overhead of collecting the temp
ral data reference trace at the counter settings discussed in Sec
4.1. Data reference profiling at this sampling rate adds very lit
additional overhead, which ranges from almost nothing for mcf
1.6% overhead for vortex. Thus, we can collect sampled tempo
data reference profiles for all our benchmarks with a maxim
overhead of only 6.5%, in the case of twolf and parser. Finally, t
Hdsbar indicates the overhead of collecting the temporal data r
erence profiles and analyzing them to detect hot data strea
according to the parameters in Section 4.1. Again, this adds v
little overhead; vortex at 1.4% incurs the largest additional ove
head. Considering all three contributors to overhead, we see tha
the current sampling rate most of the overhead arises from
dynamic checks. The overall overhead of our online profiling an
analysis is reasonably low, and ranges from around 3% for mcf
7% for parser and vortex. Any dynamic optimization based on h
data streams, that operates in our framework must produce gre
improvements than this to positively impact overall program pe
formance.

original
binary

modified
binary

instrument
for profiling

inject detection
and prefetching
code

dynamic
optimizer
runtime

dynamic
Vulcan

original
benchmark self-optimizing benchmark

Figure 10. Dynamic Injection of Prefetching Code.

Figure 11. Overhead of online profiling and analysis.

0

1

2

3

4

5

6

7

8

9

10

vpr mcf twolf parser vortex boxsim

%
ov

er
he

ad Base

Prof

Hds

e
hes

am
ially
the
tch

mic
ted.
has

5%
ch.
nge

ic
ta

net
is
e to
s to
t

nual
not
ing
our
4.3 Dynamic Prefetching Evaluation
Figure 12 shows the overall impact of our dynamic prefetching
scheme on program performance, normalized to the execution time
of the original unoptimized program. The Y axis measures
percentage overhead; positive values indicate performance
degradation, and negative values indicate speedups. TheNo-pref
bars report the cost of performing all the profiling, analysis and hot
data stream prefix matching, yet not inserting prefetches. This
measures the overhead of our dynamic prefetching analysis, which
must be overcome by effective prefetching to yield net
performance gains. The prefix-match checks add an additional
0.5% (mcf, parser) to 4% (boxsim) overhead compared with the
hot data stream analysis (compareNo-prefwith Hdsbar in Figure
11), for a configuration that matched the first two references of a
hot data stream prior to initiating prefetching. Changing this to
match a single data stream element before initiating prefetching
lowered this overhead, but at the cost of less effective prefetching,
yielding a net performance loss. Matching the first three data
stream elements before initiating prefetching increased this
overhead without providing any corresponding benefit in
prefetching accuracy, resulting in a net performance loss as well..
In addition, our current implementation makes no attempt to
schedule prefetches (they are triggered as soon as the prefix
matches). More intelligent prefetch scheduling could produce
larger benefits.

The Seq-prefbars measures the benefit of a prefetching schem
that uses the hot data stream analysis to insert dynamic prefetc
at appropriate program points, but ignores the data stre
addresses. Instead, it prefetches cache blocks that sequent
follow the last prefix-matched hot data stream reference (i.e.,
stream reference, which when matched, causes the prefe
sequence to be initiated). This scheme is equivalent to our dyna
prefetching scheme if hot data streams are sequentially alloca
The data indicates that with the sole exception of parser, which
several sequentially allocated hot data streams and runs around
faster overall, none of the benchmarks benefit from this approa
The other benchmarks suffer performance degradations that ra
from 7% (mcf) to 12% (twolf), which indicates that these
prefetches pollute the cache.

Finally, theDyn-prefbars reports the performance of our dynam
prefetching implementation (achieved by setting the hot da
stream prefix matching length to 2). Prefetching produces a
performance improvement of 5% (vortex) to 19% (vpr). This
despite the 4–8% overhead that the prefetching has to overcom
show net performance improvements. Comparing these result
the Seq-prefnumbers highlights the importance of using the ho
data streams addresses as prefetch targets. In addition, ma
examination of the hot data addresses indicates that many will
be successfully prefetched using a simple stride-based prefetch
scheme. However, a stride-based prefetcher could complement

Figure 12. Performance impact of dynamic prefetching.

-20

-15

-10

-5

0

5

10

15

20

vpr
m

cf
tw

olf

parse
r

vo
rte

x

boxs
im%

ov
er

he
ad No-pref

Seq-pref

Dyn-Pref

Table 2: Detailed dynamic prefetching characterization

Benchmark
of opt.
cycles

of traced refs
(per cycle avg.)

of hds
(per cycle avg.)

of DFSM states,
transitions (per cycle avg.)

of procs. modified
(per cycle avg.)

vpr 17 83,231 41 <79 states, 68 checks> 7

mcf 36 72,537 37 <75 states, 74checks> 6

twolf 55 87,981 25 <42 states, 41checks> 11

parser 4 73,244 21 <43 states, 42 checks> 9

vortex 3 67,852 14 <29 states, 28 checks> 12

boxsim 19 87,818 23 <40 states, 36 checks> 7

In
ads

and
been
r
ard
e a
ch
ght
ble

rs is
ns
ved,
this
v-
ved
an

xed
by

es
on
ry

t is
mic
re
ture
ned
nd
ss
its

of
el's
],

on
ey
nly

led
tem
am
try
f
hat
n
to
e
ck
mo
tly
e
ss
on

n
the
he
scheme by prefetching data address sequences that do not qualify
as hot data streams.

Table 2 provides a more detailed characterization of our dynamic
prefetching implementation. The second column indicates the
number of prefetch optimization cycles performed during program
execution. Longer running programs produce a greater number of
these optimization cycles. The next three columns show the
number of traced references, hot data streams detected, and the size
of the DFSMs used for prefix matching, all averaged on a per
optimization cycle basis. The last column contain the number of
procedures modified to insert prefix-match checks or prefetches,
again averaged on a per cycle basis. The results indicate that the
prefetching benefits arise from targeting a small set of program hot
data streams.

5. RELATED WORK
This section discusses related work on prefetching and software
dynamic optimization.

5.1 Prefetching
Prefetching is a well known optimization that attempts to hide
latency resulting from poor reference locality. We are concerned
with data prefetching (as opposed to instruction prefetching) into
the processor cache. Prefetching mechanisms can be classified as
software prefetching (using non-blocking load instructions
provided by most modern processors) and hardware prefetching
(extending the memory management subsystem architecture).
Prefetching mechanisms can also be characterized by the kind of
regularity they require of the target program and by their degree of
automation. We review only the most closely related techniques
here; a survey of prefetching techniques is [35].

Early prefetching techniques mainly focused on improving the
performance of scientific codes with nested loops that access dense
arrays. Both software and hardware techniques exist for such
regular codes. The software techniques use program analysis to
determine the data addresses needed by future loop iterations, and
employ program transformations, such as loop unrolling and
software pipelining to exploit that information [20, 24]. Hardware
prefetching techniques include stride prefetchers and stream
buffers. Stride prefetchers learn if load address sequences are
related by a fixed delta and then exploit this information to predict
and prefetch future load addresses [7]. Stream buffers can fetch
linear sequences of data and avoid polluting the processor cache by
buffering the data [17]. These techniques are mostly limited to
programs that make heavy use of loops and arrays, producing
regular access patterns.

Jump pointers are a software technique for prefetching linked data
structures, overcoming the array-and-loop limitation. Artificial
jump pointers are extra pointers stored into an object that point to
an object some distance ahead in the traversal order. On future
traversals of the data structure, the targets of these extra pointers
are prefetched. Natural jump pointers are existing pointers in the
data structure used for prefetching. For example, greedy
prefetching makes the assumption that when a program uses an
object o, it will use the objects that o points to, in the near future,
and hence prefetches the targets of all pointer fields. These
techniques were introduced by Luk and Mowry in [22] and refined
in [5, 18]. Stoutchinin et al. describe a profitability analysis for
prefetching with natural jump pointers [33]. A limitation of these
techniques is that their static analyses are restricted to regular
linked data structures accessed by local regular control structures.

Various hardware techniques, related to greedy prefetching, have

been proposed for prefetching linked data structures.
dependence-based prefetching, producer-consumer pairs of lo
are identified, and a prefetch engine speculatively traverses
prefetches them [26]. Dependence-based prefetching has also
combined with artificial jump-pointer prefetching in software o
hardware [27]. In dependence-graph precomputation, a backw
slice of instructions in the instruction fetch queue is used to chos
few instructions to execute speculatively to compute a prefet
address [1]. And in content-aware prefetching, data that is brou
in to satisfy a cache miss is scanned for values that may resem
addresses, and those addresses are used for prefetching [12].

The hardware technique that best corresponds to history-pointe
correlation-based prefetching. As originally proposed, it lear
digrams of a key and prefetch addresses: when the key is obser
the prefetch is issued [6]. Joseph and Grunwald generalized
technique by using a Markov predictor [16]. Nodes in the Marko
model are addresses, and the transition probabilities are deri
from observed digram frequencies. Upon a data cache miss to
address that has a node in the Markov model, prefetches for a fi
number of transitions from that address are issued, prioritized
their probabilities.

Our techniques differs from prior software prefetching techniqu
in at least three ways. First, it is profile-based and does not rely
static analysis. Second, being profile-based it works for arbitra
data structure traversals. Finally, it is a dynamic technique tha
capable of adaptation as the program executes. Our dyna
prefetching is most similar to correlation-based hardwa
prefetching in that it observes past data accesses to predict fu
accesses. Unlike the correlation-based prefetchers mentio
above, it is a software technique that can be easily configured a
tuned for a particular program, performs more global acce
pattern analysis, and is capable of using more context for
predictions than digrams of data accesses.

5.2 Software Dynamic Optimization
Common examples of software dynamic optimizers are some
the more sophisticated Java virtual machines such as Int
Microprocessor Research Lab VM [11], Sun's HotSpot VM [25
and IBM's Jikes RVM [2]. All of these contain just-in-time
compilers and use runtime information to concentrate optimizati
efforts on frequently executing methods. Unlike our system, th
do not focus on memory hierarchy optimizations, and possess o
limited cross-procedure optimization capabilities.

Recently, some dynamic optimizers that operate on compi
object code have been proposed. The Wiggins/Redstone sys
uses hardware performance counters to profile a progr
executing on the Alpha processor, and optimizes single-en
multiple-exit regions of hot basic blocks [13]. The University o
Queensland Dynamic Binary Translator translates an program t
is compiled for one architecture just in time for execution o
another architecture, and collects a full edge-weight profile
identify groups of connected hot blocks for optimization [34]. Th
Dynamo system interprets a program to collect a basic blo
profile. Once a basic block reaches a heat threshold, Dyna
considers the linear sequence of blocks executed direc
afterwards as a hot path, which it then optimizes [4]. All of thes
systems optimize code in hot control paths that may cro
procedure boundaries. Unlike our system, they do not focus
memory hierarchy optimizations.

A few dynamic memory hierarchy optimizers implemented i
software do exist. Saavedra and Park dynamically adapt
prefetch distance of array-and-loop software prefetching to t

k-

ry

-

ff-

In

-

changing latencies of a NUMA architecture [29]. They also discuss
adaptive profiling: when profiling information changes, the
profiler starts polling more frequently. This idea may be a useful
extension to our simpler hibernation approach. Chilimbi and Larus
use a copying generational garbage collector to improve reference
locality by clustering heap objects according to their observed data
access patterns [9]. Harris performs dynamic adaptive pretenuring
for Java programs by identifying allocation sites that often allocate
long-lived objects [14]. His system modifies these allocations to
directly place objects into the old generation of a generational
garbage collector, saving the work of repeatedly scanning them in
the young generation. Kistler and Franz reorder fields in objects so
fields accessed together reside in the same cache block, and
discuss how this can be done during copying garbage collection
[19].

5.3 State Machine Predictor Generation
Sherwood and Calder propose an algorithm that generates FSM
predictors from temporal profiling data [30]. In their case study,
the profile is a trace of branch executions. Each FSM is driven by
the global branch direction bitstring, and predicts whether a
particular branch is taken or not taken. While we also generate an
FSM predictor from temporal profiling data, there are some
fundamental differences to the Sherwood-Calder approach. First of
all, Sherwood and Calder generate FSM predictors in hardware for
special-purpose processors, while we use a dynamic software
approach. They restrict FSMs to be driven by bitstrings and predict
a single bit (one step of their FSM generation algorithm represents
the predictor by a boolean formula), while we predict sets of
prefetch addresses. They use fixed-sized histories, while our hot
data streams are variable-length. They drive several FSMs in
parallel, while we combine all FSMs into one.

6. CONCLUSIONS
This paper describes a dynamic software prefetching framework
for general-purpose programs. The prefetching scheme runs on
stock hardware, is completely automatic, and can handle codes that
traverse pointer-based data structures. It targets a program’s hot
data streams, which are consecutive data reference sequences that
frequently repeat in the same order. We show how to detect hot
data streams online with low-overhead, using a combination of
bursty tracing and a fast hot data stream analysis algorithm. Our
experimental results demonstrate that our prefetching technique is
effective, providing overall execution time improvements of 5–
19% for several memory-performance-limited SPECint2000
benchmarks running their largest (ref) inputs.

7. REFERENCES
[1] M. Annavaram, J. Patel, and E. Davidson. “Data prefetching by

dependence graph precomputation.”InInternational Sympo-
sium on Computer Architecture (ISCA), 2001.

[2] M. Arnold et al. “Adaptive optimization in the Jalapeno JVM”,
In Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), 2000.

[3] M. Arnold, and B. Ryder. “A Framework for Reducing the Cost
of Instrumented Code.” InACM SIGPLAN’01 Conference on
Programming Languages Design and Implementation (PLDI),
2001.

[4] V. Bala, E. Duesterwald, and S. Banerjia. “Dynamo: A transpar-
ent dynamic optimization system.” InACM SIGPLAN’00 Con-
ference on Programming Languages Design and
Implementation (PLDI), 2000.

[5] B. Cahoon, and K. McKinley. “Data flow analysis for software
prefetching linked data structures in Java.” InInternational
Conference on Parallel Architectures and Compilation Tech-
niques (PACT), 2001.

[6] M. Charney, and A. Reeves. “Generalized correlation based
hardware prefetching.”Tech report EE-CEG-95-1, Cornell
University, 1995.

[7] T. Chen, and J. Baer.” Reducing memory latency via non-bloc
ing and prefetching caches.”InArchitectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS),1992.

[8] T.M. Chilimbi. “Efficient Representations and Abstractions for
Quantifying and Exploiting Data Reference Locality.” InPro-
ceedings of the ACM SIGPLAN’01 Conference on Program-
ming Language Design and Implementation, June 2001

[9] T. M. Chilimbi, and J. R. Larus. “Using generational garbage
collection to implement cache-conscious data placement.” In
Proceedings of the 1998 International Symposium on Memo
Management, Oct. 1998.

[10] T. M. Chilimbi. “On the stability of temporal data reference
profiles.” In International Conference on Parallel Architec-
tures and Compilation Techniques (PACT), 2001.

[11] M. Cierniak, G. Lueh, and J. Stichnoth. “Practicing JUDO:
Java under dynamic optimizations.” InACM SIGPLAN’00
Conference on Programming Languages Design and Imple-
mentation (PLDI), 2000.

[12] R. Cooksey, D. Colarelli, and D. Grunwald, “Content-based
prefetching: Initial results”, InWorkshop on Intelligent Memo-
ry Systems, 2000.

[13] D. Deaver, R. Gorton, and N. Rubin, ”Wiggins/Redstone: An
online program specializer.”, InHot Chips, 1999.

[14] T. Harris. “Dynamic adaptive pre-tenuring.” InInternational
Symposium on Memory Management (ISMM), 2000.

[15] M. Hirzel and T. Chilimbi. “ Bursty Tracing: A Framework for
Low-Overhead Temporal Profiling”, InWorkshop on Feed-
back-Directed and Dynamic Optimizations (FDDO), 2001.

[16] D. Joseph and D. Grunwald. “ Prefetching using Markov pre
dictors”, In International Symposium on Computer Architec-
ture (ISCA), 1997.

[17] N. Jouppi. “Improving direct-mapped cache performance by
the addition of a small fully associative cache and prefetch bu
ers”, In International Symposium on Computer Architecture
(ISCA), 1990.

[18] M. Karlsson, F. Dahlgren, and P. Stenstrom. “A Prefetching
Technique for Irregular Accesses to Linked Data Structures,
High Performance Computer Architectures (HPCA), 1999.

[19] T. Kistler and M. Franz. “Automated data-member layout of
heap objects to improve memory-hierarchy performance.” In
Transactions on Programming Languages and Systems (TO
PLAS), 2000.

[20] A. Klaiber and H. Levy. “An architecture for software-con-
trolled data prefetching.” InInternational Symposium on Com-
puter Architecture (ISCA), 1991.

[21] J. R. Larus. “Whole program paths.” InProceedings of the
ACM SIGPLAN’99 Conference on Programming Language
Design and Implementation, pages 259-269, May 1999.

ft-

-

e

-

-

[22] C. K. Luk, and T. Mowry. “Compiler-based prefetching for re-
cursive data structures.” InArchitectural Support for Program-
ming Languages and Operating Systems (ASPLOS), 1996

[23] C. G. Nevill-Manning and I. H. Witten. “Linear-time, incre-
mental hierarchy inference for compression.” InProceedings of
the Data Compression Conference (DCC’97), 1997.

[24] T. Mowry, M. Lam, and A. Gupta. “Design and Analysis of a
Compiler Algorithm for Prefetching.”, InArchitectural Support
for Programming Languages and Operating Systems (ASP-
LOS), 1992.

[25] M. Paleczny, C. Vick, and C. Click. “The Java HotSpot server
compiler.”, InUSENIX Java Virtual Machine Research and
Technology Symposium (JVM), 2001.

[26] A. Roth, A. Moshovos, and G. Sohi. “Dependence based
prefetching for linked data structures.” InArchitectural Support
for Programming Languages and Operating Systems (ASP-
LOS), 1998.

[27] A. Roth and G. Sohi. “Effective jump pointer prefetching for
linked data structures.” InInternational Symposium on Com-
puter Architecture (ISCA), 1999.

[28]S. Rubin, R. Bodik, and T. Chilimbi. “An Efficient Profile-
Analysis Framework for Data-Layout Optimizations.” InPrin-
ciples of Programming Languages, POPL’02,Jan 2002.

[29] R. Saavedra and D. Park. “Improving the effectiveness of so
ware prefetching with adaptive execution.” InInternational
Conference on Parallel Architectures and Compilation Tech
niques (PACT), 1996.

[30] T. Sherwood and B. Calder. “Automated design of finite stat
machine predictors for customized processors.” InInternation-
al Symposium on Computer Architecture (ISCA), 2001.

[31] A. Srivastava and A. Eustace. “ATOM: A system for building
customized program analysis tools.” InProceedings of the
ACM SIGPLAN’94 Conference on Programming Language
Design and Implementation, pages 196-205, May 1994.

[32] A. Srivastava, A. Edwards, and H. Vo. “Vulcan: Binary trans
formation in a distributed environment.”, InMicrosoft Re-
search Tech Report, MSR-TR-2001-50, 2001.

[33] A. Stoutchinin et al. “Speculative prefetching of induction
pointers.” InInternational Conference on Compiler Construc-
tion (CC), 2001.

[34] D. Ung, and C. Cifuentes.”Opimising hot paths in a dynamic
binary translator.”InWorkshop on Binary Translation, 2000.

[35] S. VanderWiel, and D. Lilja. “Data prefetch mechanisms”, In
ACM Computing Surveys, 2000.

	Trishul M. Chilimbi
	Microsoft Research
	One Microsoft Way
	Redmond, WA 98052
	trishulc@microsoft.com

	Martin Hirzel
	Computer Science Dept.
	University of Colorado
	Boulder, CO 80309
	martin.hirzel@colorado.edu
	1. INTRODUCTION
	Figure 1. Dynamic prefetching overview

	2. DYNAMIC DATA REFERENCE PROFILING AND ANALYSIS
	2.1 Bursty Tracing Framework for Low-Overhead Temporal Profiling
	Figure 2. Instrumentation for low-overhead temporal profiling

	2.2 Extensions for Online Optimization
	Figure 3. Profiling timeline.
	Figure 4. Sequitur grammar for w=abaabcabcabcabc.

	2.3 Fast Hot Data Stream Detection
	Figure 5. Algorithm for fast approximation of hot data streams.
	Figure 6. Hot data stream analysis example.

	X
	Child
	Length
	Index
	Use
	coldUse
	Heat
	Report?
	S
	A,B ,B
	15
	0
	1
	1
	15
	no, start
	A
	-
	2
	3
	5
	1
	2
	no, cold
	B
	C,C
	6
	1
	2
	2
	12
	yes
	C
	A
	3
	2
	4
	0
	0
	no, cold
	2.4 Discussion
	Figure 7. Inserted prefetching code for stream abacadae.

	3. DYNAMIC PREFETCHING
	3.1 Generating Detection and Prefetching Code
	Figure 8. Prefix-matching DFSM for hot data streams v=abacadae and w=bbghij.
	Figure 9. Algorithm for prefetching FSM construction.

	3.2 Injecting Detection and Prefetching Code
	Figure 10. Dynamic Injection of Prefetching Code.

	4. EXPERIMENTAL EVALUATION
	4.1 Experimental Methodology
	Figure 11. Overhead of online profiling and analysis.

	4.2 Evaluating the Online Profiling and Analysis Framework
	4.3 Dynamic Prefetching Evaluation
	Figure 12. Performance impact of dynamic prefetching.
	Table 2: Detailed dynamic prefetching characterization

	vpr
	17
	83,231
	41
	<79 states, 68 checks>
	7
	mcf
	36
	72,537
	37
	<75 states, 74checks>
	6
	twolf
	55
	87,981
	25
	<42 states, 41checks>
	11
	parser
	4
	73,244
	21
	<43 states, 42 checks>
	9
	vortex
	3
	67,852
	14
	<29 states, 28 checks>
	12
	boxsim
	19
	87,818
	23
	<40 states, 36 checks>
	7
	5. RELATED WORK
	5.1 Prefetching
	5.2 Software Dynamic Optimization
	5.3 State Machine Predictor Generation

	6. CONCLUSIONS
	7. REFERENCES
	[1] M. Annavaram, J. Patel, and E. Davidson. “Data prefetching by dependence graph precomputation...
	[2] M. Arnold et al. “Adaptive optimization in the Jalapeno JVM”, In Object-Oriented Programming,...
	[3] M. Arnold, and B. Ryder. “A Framework for Reducing the Cost of Instrumented Code.” In ACM SIG...
	[4] V. Bala, E. Duesterwald, and S. Banerjia. “Dynamo: A transparent dynamic optimization system....
	[5] B. Cahoon, and K. McKinley. “Data flow analysis for software prefetching linked data structur...
	[6] M. Charney, and A. Reeves. “Generalized correlation based hardware prefetching.” Tech report ...
	[7] T. Chen, and J. Baer.” Reducing memory latency via non-blocking and prefetching caches.”In Ar...
	[8] T.M. Chilimbi. “Efficient Representations and Abstractions for Quantifying and Exploiting Dat...
	[9] T. M. Chilimbi, and J. R. Larus. “Using generational garbage collection to implement cache-co...
	[10] T. M. Chilimbi. “On the stability of temporal data reference profiles.” In International Con...
	[11] M. Cierniak, G. Lueh, and J. Stichnoth. “Practicing JUDO: Java under dynamic optimizations.”...
	[12] R. Cooksey, D. Colarelli, and D. Grunwald, “Content-based prefetching: Initial results”, In ...
	[13] D. Deaver, R. Gorton, and N. Rubin, ”Wiggins/Redstone: An online program specializer.”, In H...
	[14] T. Harris. “Dynamic adaptive pre-tenuring.” In International Symposium on Memory Management ...
	[15] M. Hirzel and T. Chilimbi. “ Bursty Tracing: A Framework for Low-Overhead Temporal Profiling...
	[16] D. Joseph and D. Grunwald. “ Prefetching using Markov predictors”, In International Symposiu...
	[17] N. Jouppi. “Improving direct-mapped cache performance by the addition of a small fully assoc...
	[18] M. Karlsson, F. Dahlgren, and P. Stenstrom. “A Prefetching Technique for Irregular Accesses ...
	[19] T. Kistler and M. Franz. “Automated data-member layout of heap objects to improve memory-hie...
	[20] A. Klaiber and H. Levy. “An architecture for software-controlled data prefetching.” In Inter...
	[21] J. R. Larus. “Whole program paths.” In Proceedings of the ACM SIGPLAN’99 Conference on Progr...
	[22] C. K. Luk, and T. Mowry. “Compiler-based prefetching for recursive data structures.” In Arch...
	[23] C. G. Nevill-Manning and I. H. Witten. “Linear-time, incremental hierarchy inference for com...
	[24] T. Mowry, M. Lam, and A. Gupta. “Design and Analysis of a Compiler Algorithm for Prefetching...
	[25] M. Paleczny, C. Vick, and C. Click. “The Java HotSpot server compiler.”, In USENIX Java Virt...
	[26] A. Roth, A. Moshovos, and G. Sohi. “Dependence based prefetching for linked data structures....
	[27] A. Roth and G. Sohi. “Effective jump pointer prefetching for linked data structures.” In Int...
	[28]S. Rubin, R. Bodik, and T. Chilimbi. “An Efficient Profile- Analysis Framework for Data-Layou...
	[29] R. Saavedra and D. Park. “Improving the effectiveness of software prefetching with adaptive ...
	[30] T. Sherwood and B. Calder. “Automated design of finite state machine predictors for customiz...
	[31] A. Srivastava and A. Eustace. “ATOM: A system for building customized program analysis tools...
	[32] A. Srivastava, A. Edwards, and H. Vo. “Vulcan: Binary transformation in a distributed enviro...
	[33] A. Stoutchinin et al. “Speculative prefetching of induction pointers.” In International Conf...
	[34] D. Ung, and C. Cifuentes.”Opimising hot paths in a dynamic binary translator.”In Workshop on...
	[35] S. VanderWiel, and D. Lilja. “Data prefetch mechanisms”, InACM Computing Surveys, 2000.

	Dynamic Hot Data Stream Prefetching for General-Purpose Programs

