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Abstract
Research over the past five years has shown significant performance
improvements using a technique calledadaptive compilation. An
adaptive compiler uses a compile-execute-analyze feedback loop
to find the combination of optimizations and parameters that mini-
mizes some performance goal, such as code size or execution time.

Despite its ability to improve performance, adaptive compila-
tion has not seen widespread use because of two obstacles: the large
amounts of time that such systems have used to perform the many
compilations and executions prohibits most users from adopting
these systems, and the complexity inherent in a feedback-driven
adaptive system has made it difficult to build and hard to use.

A significant portion of the adaptive compilation process is
devoted to multiple executions of the code being compiled. We
have developed a technique calledvirtual executionto address
this problem. Virtual execution runs the program a single time
and preserves information that allows us to accurately predict the
performance of different optimization sequences without running
the code again. Our prototype implementation of this technique
significantly reduces the time required by our adaptive compiler.

In conjunction with this performance boost, we have developed
a graphical-user interface (GUI) that provides a controlled view of
the compilation process. By providing appropriate defaults, the in-
terface limits the amount of information that the user must provide
to get started. At the same time, it lets the experienced user exert
fine-grained control over the parameters that control the system.

Categories and Subject DescriptorsD.3.4 [Compilers; Opti-
mization]: Adaptive compilation in an optimizing compiler

General Terms Experimentation, Performance

Keywords Adaptive compilation
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1. The evolution of adaptivity
After decades of research into efficient methods of data-flow analy-
sis and the development of a plethora of transformations, we began
to ask the question: how effective are our compilers? The literature
is replete with evidence of the efficacy of individual transforma-
tions, but the issue of combining the correct set of optimizations
for a wide variety of input codes is a problem both recognized and
generally ignored. Reasoning about the interactions between trans-
formations is dauntingly complex, and the cost of measuring these
interactions quantitatively was, until recently, prohibitive. For ex-
ample, our first attempts to enumerate these interactions empiri-
cally required fourteen CPU months for a relatively small set of
optimizations. Some batch compilers, such as theV ISTA system
by Kulkarniet al., address the problem by repeatedly running their
entire suite of optimizations in a round-robin fashion until the code
stops changing [20].

The increases in processor speed have enabled experiments that
use the computer itself to explore different combinations and per-
mutations of optimization sequences. In short, these experiments
have shown that hand-picked optimization sequences do not con-
sistently use the compiler to its greatest advantage [8, 9, 25]. In-
deed, in theV ISTA system, Kulkarniet al. report improvements
over their fixed-order, round-robin compilation when they added
adaptivity into their system [19].

These results would be interesting even if they simply identified
a maximally performing sequence of optimizations, but these ex-
periments have also shown that different input codes benefit from
remarkably different sequences. This second result argues strongly
for a compiler that can change its behavior for each input program.

The compiler can adapt in two ways. First, it can analyze the
input code to detect features amenable to specific transformations
and invoke the corresponding optimizations [27, 28]. In the case of
opportunities across multiple transformations, however, this is cur-
rently beyond our capabilities: we do not yet know how to identify,
in general, the salient characteristics of the input code that con-
tribute to performance differences of sequences of transformations,
nor do we have a vocabulary to describe the interaction between
transformations which have markedly different effects on the code.

The second method to find a good optimization sequence is the
one we currently employ. Feedback-driven adaptive compilation
starts by compiling the code with some sequence of optimizations.
The adaptive system then runs the code to produce a measurement.
It evaluates the measurement and instructs the compiler to recom-
pile the code using a modified sequence of optimizations. We have
experimented with different methods for guiding the compiler, in-
cluding genetic algorithms, greedy algorithms, hill-climbing algo-
rithms, and random probing. We have reduced the number of eval-
uations needed to find a good sequence from10, 000 in our initial

69



experiments to somewhat less than500, using different methods of
searching the space of sequences [8, 7, 15]. These methods pro-
duce consistent and significant improvements in code quality, and
our experiments in known subspaces suggest that the methods find
optimization sequences that are close to the best that can be found
for a given set of transformations.

Even with our success in identifying efficient search methods,
the expense is still prohibitive for most users.500 compilations and
executions can take hours for a moderate sized program.

ACME addresses the performance problem by reducing the
number of executions to a single profiling run at the start of the
adaptive compilation. We use the profiling data in the analysis
phase of the adaptive compiler to performvirtual execution(ex-
plained in Section 4), a method of performance estimation based
on instruction counts. We have usedACME to compare the runtime
of the compilation with and without virtual execution; Section 5
shows that virtual execution drastically reduces overall compila-
tion time in our adaptive system.

A second hindrance to widespread adoption of adaptive compi-
lation is the complexity of the interface. Our system,ACME, can
be invoked from the command line. It enables four different search
algorithms with different sets of parameters, sixteen different opti-
mizations,etc. As such, a single invocation ofACME can require as
many as fourteen different parameters.

We believe an adaptive system is unlikely to gain widespread
use if the interface is not designed around the users’ needs, regard-
less of the practicality of adaptation. We address the complexity of
running the compiler with an easy-to-use interface that experience
suggests provides correct levels of information to novices and more
experienced users alike.

2. Related work
Cooperet al. used genetic algorithms to find a good ordering of
compiler optimizations to minimize executable size in1999 [8].
Since then, there has been a great deal of research into using adap-
tive techniques in compilers to produce better executables. Several
researchers have continued to examine the problem of ordering op-
timizations [1, 9, 20, 19, 25]. Understanding of the problem has in-
creased, and adaptive compilation has led to the production of sig-
nificantly faster executables. Adaptive compilation has also been
successfully used to improve the performance of individual opti-
mizations via parameter selection [17, 24, 28].

Despite the success of this research, adaptive compilation has
not been widely adopted. Adaptive compilation’s use has been lim-
ited by the time required to find a good solution and the usabil-
ity of the system – the two issues thatACME addresses. Other re-
searchers have also investigated how to make adaptive compila-
tion more practical. Dr. Options is an automatic system that recom-
mends options for the PA-RISC compiler [14]. Dr. Options com-
bines profile information, heuristics, and user input to simplify the
process of selecting options. However, the system does not use re-
peated compilation and evaluation to improve results.

The V ISTA system is an interactive system which concentrates
on reducing the compilation time, similar toACME [19]. V ISTA re-
duces the number of executions needed by storing a representation
of each compilation and only executing code which has never been
seen before. In their results, they run the code only about15% of
the time. Virtual execution takes a radically different approach, ex-
ecuting the code once1 and thereafter producing a close estimate of

1 In reality, ACME runs the code twice, once with no optimization to get
profiling data for virtual execution, and the second time with our compiler’s
default sequence of optimizations to get a performance baseline. Clearly,
this second run is not necessary for virtual execution.

Figure 1. ACME Interface

the execution cost for variant versions of the code from data gath-
ered during the single execution.

V ISTA also uses a number of techniques to weed out compila-
tion sequences that probably will not change the code – this avoids
unnecessary invocations of the compiler. This sophisticated analy-
sis solves the other half of the performance problem: in our system,
about26% of the time is spent transforming the code, with the re-
maining time devoted to linking and running the code.ACME ad-
dresses the execution bottleneck, whileV ISTA’s techniques could
be used symbiotically to address the compilation bottleneck.

3. ACME design
The design ofACME flows from our experience running tens of
millions of compilations and includes both insights into the inter-
face controls and engineering enhancements like virtual execution.
Our goal has been to make the adaptive system both easier to use
and more efficient.

3.1 Interface

An adaptive system should let the user ignore as many of the
implementation-dependent details as possible. Obviously, some of
the inputs must be entered by the user, but much of the control
can either use default behavior or be hidden from the novice user.
To that end, a GUI seems an obvious choice for an interface,
since it can both show the user the necessary information and
organize levels of information hierarchically, according to the skill
or requirements of the user.

Figure 1 showsACME’s interface. The user must enter the name
of the directory containing the code to be compiled, andACME
supplies default values for the rest of the parameters. The user can
change any of the default parameters, including the search method,
parameters for that method,etc. An advanced user may also wish
to control such features as the set of optimizations, the random-
number seed, and so on; these controls are found in the “Advanced”
window, shown in Figure 2. Working through the interface, the
following is a list of the notable features ofACME:

1. Stop. The stop button halts the search algorithm and returns the
best result thatACME found. In conjunction with support for
restarting a search from its last compilation (so the user doesn’t
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Figure 2. Advanced window

cause harm by accidentally pressing this button), the stop button
may be the most important part of the user interface, because it
gives manual control over a process that can run indefinitely
long.

2. Existing Database. WheneverACME runs, it stores the results
of all compilation-string/execution-result pairs in a database.
This database is stored in the “Destination Directory” along
with any temporary files the compiler needs to create. It can be
reused for subsequent invocations ofACME on the same piece
of code. This enables the user, for example, to use his machine
to compile overnight, stop the compilation in the morning, and
then restart the compilation the next evening when he leaves.
To take another example, the user can stop the compilation,
run the code to see if it meets his needs, and then resume the
compilation in the same place if it does not.

3. Search Algorithms. In [1], we show that different search al-
gorithms have different cost/benefit tradeoffs.ACME currently
supports four search algorithms: a greedy constructive algo-
rithm, a genetic algorithm, a randomized impatient-descent al-
gorithm (a hill climber), and random-probing search of the
space. These give an expert user a high degree of flexibility,
while the default hill-climber algorithm should give the novice
user a good result quickly.

4. Transforms. ACME defaults to using all of the transformations
available in the compiler, but the user may want to specify only
a subset of these transformations, because they believe that the
code may either not require a certain optimization pass (e.g., if
the code contains no loops, there is no reason to include loop-
oriented transformations), or the pass may simply take too long
(or be experimental or unreliable).

5. Number of Passes. This control allows the user to choose the
length of the optimization sequence. We find that the default
value of ten produces good results for our benchmarks (and
serves our the experimental purposes), but an expert user may
want to change this value; we have no quantitative data relating
number of passes to quality of solution.

6. Execution Percentage. In benchmarks with many routines, it is
often true that only a small number of the routines account for
most of the work done during execution. The “execution per-
centage” variable tellsACME to start by profiling the code and
recording the set of routines that account for the “percentage”
of execution time as set by the user. Only this set of routines
will be considered by the search algorithm; the infrequently ex-
ecuted routines can simply be ignored. IfACME is set to use
virtual execution, the infrequently executed routines are simply
ignored.

7. Max Evaluations. Some of the search routines (notably, the hill
climber and the greedy constructor) will run for an unknown

Figure 3. The progress of three successive runs of the genetic
algorithm onadpcm-decoder

number of compilations. By setting this field, the user can
bound the number of total compilationsACME performs, while
leaving the field blank tellsACME to let the search algorithm
run to completion.

8. Progress Information. Our experience in using our own system
convinces us that feedback is critical. We start by compiling
and executing the code using our standard optimization string.
We then compare successive results during the search against
this baseline. As better results are found, the “Best Sequence”,
“Best Counts” (the instruction-count measurement), and “Ratio
to Base” fields are updated. The “Evaluations” field is a count of
how many compilations and evaluations have occurred, to give
the user a feel for the work being done. Lastly, the “Progress”
graph shows the user how the results have improved over time.

Experience shows that this data is particularly important,
as exemplified by the graph in Figure 3. We performed an
experiment in which we ran the genetic algorithm three times
(i.e., with three different random seeds) on theadpcm-decoder
benchmark. The settings were generations of size50, an elite
set of 10 per generation, and50 generations. These settings
require2050 compilations. In all three runs, we found the best
answer by about the650th compilation, so that the rest of the
time was wasted. This feature lets the user halt a search that
has stopped making progress. The user can try again with a
different seed or different search algorithm, or the user can
choose to accept the solution. Because the database can be
reused, redundancies across these restarts are avoided.

9. Virtual Execution mode(in theAdvancedwindow). As we ex-
plain in Section 4.2, our current implementation of the virtual
execution algorithm relies on an estimator. The estimator de-
tects and reports cases in which it cannot give an accurate esti-
mation of execution count. The default behavior in these diffi-
cult cases is to run the code to give accurate results. However,
our experiments (shown in Figure 6) suggest that it may not hurt
the solution quality to simply throw those compilations away.

10. Random Seed(in the Advancedwindow). All of the search
algorithms rely to some extent on the generation of random
numbers, and the generation of random numbers relies directly
on the seed used to start the generator. In order to provide
repeatability for our experiments,ACME defaults to using the
same number as a seed to the search algorithms. The choice
of random seed is transparent to the user who just wants to
compile his code and then use it, but a researcher may want
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c Sparse conditional constant propagation[26]
d Dead code eliminationbased onSSA-form [11, 10]
g Optimistic value numbering[2]
l Partial redundancy elimination[22]
m Renamingbuilds the name space needed by the implemen-

tations ofl andz. The compiler inserts it automatically
beforel or z.

n Useless control-flow elimination[10]
o Peephole optimizationof logically adjacent operations [12]
p Peelthe first iteration of each innermost loop
r Algebraic reassociation[5]
s Register-to-register copy coalescing[6]
t Operator strength reduction[10]
u Local value numbering[10]
v Optimistic global value numbering[23]
x Dominator-tree value numbering[10]
y Extended-basic-block value numbering[10]
z Lazy code motion[18]

Table 1. Optimization passes included inACME (the letters shown
are used in the GUI to represent the transformations)

to have control over this value to be able to replicate a set
of experiments or ensure that different runs produce different
results.

3.2 Underlying design

The engine upon whichACME sits is theiloc compiler we have
described in a number of other papers such as [4]. The list of
optimizations included in the compiler is shown in Table 1. Each
of the optimization passes is designed as a standalone Unix filter,
which gives us the ability to easily reorder them arbitrarily. When
a transformation sequence has been applied, we feed the code into
our backend, which converts theiloc intermediate representation
to C, which we compile using a nativeC compiler. This design
allows us to instrument the code and run it as if it were on a virtual
machine, independent of the actual architecture that we are using.
This lets us run experiments on a variety of physical architectures
and consolidate the results.

Further, measuring performance with instruction counts does
not vary from run to run, in contrast to the timing measurements
on our Unix systems. Timing measurements on a preemptive multi-
tasking system vary enough to change the paths taken by the search
methods, making it very difficult to get repeatability. Using instruc-
tion counts based on a virtual machine as our standard of measure-
ment has proven to be controversial: the obvious objection is that
the performance on modern architectures is heavily dependent on
the behavior of the memory subsystem. However, none of the opti-
mizations in our compiler specifically target memory performance
in the same way as higher-level optimizations like loop transforma-
tions designed to improve data locality[21]. We have compared run-
time measurements against instruction counts for the larger codes
in our test suite using different optimization sequences, and they
tend to correlate; that is, the instruction count measurements using
different sequences tend to be separated by the same proportion as
the runtime measurements of those sequences.

A second concern relates to the question of whether a single
set of input data can correctly predict performance on arbitrary
data. In our test suite of benchmarks, we have several codes with
both training data that is used during adaptive compilation and test
data that can be used to check the performance of the code. We
tested for training bias by measuring the performance of the best
version (obtained from the training data) on the testing data. In
these experiments, we saw no systematic bias in the results – the
performance improvement of the benchmark using the testing data

was within1 to 2% of the performance improvement of the training
data.

The search algorithms are also implemented as C programs.
They coordinate the running of the compiler and execution of the
resultant code. They provide all of the bookkeeping, manage tem-
porary files, and log results. To simplify the bookkeeping, test pro-
grams must maintain a strict design, too: they must reside in sep-
arate directories, and each program must have a configuration file
containing some basic information such as the source-file names
and input data to test the executable. The configuration files are
easy to set up.

4. Eliminating the executions
In this section, we look at the theoretical and practical application
of virtual execution. Virtual execution allows us to drastically re-
duce or completely eliminate the cost of the many executions that
adaptive compilation normally requires.

4.1 Virtual execution

The concept of virtual execution relies on a simple premise: given
optimizations which change only the code (but not theCFG – for
example, loop-invariant code motion), two different versions of
the same code produced from two different optimization sequences
will always execute the same blocks for a given input. Virtual exe-
cution first counts each block’s execution frequency with a profile
of the unoptimized code. After this, any sequence of optimizations
that adds, removes, or relocates instructions can be modeled by
computing the sum over all the blocks of each block’s frequency
count multiplied by the number of instructions that end up in that
block, and this measure should be precise2.

The situation becomes more complicated whenACME includes
optimization passes thatdochange theCFG. For example, consider
loop peeling, an example of which is shown in Figure 4. This
enabling optimization does nothing more than peel the first iteration
of every loop in the program. In the figure, the clone of block A is
denoted A′.

To update the execution-frequency counts forB andC, it is not
correct to simply subtract one fromB andC ’s frequency counts
and setB′ andC′’s counts to one. Only one side of the conditional
is taken on the first iteration of the loop, so the other side’s block
count should be set to zero, not one. Thus, we need something more
from the initial profile than just the blocks’ frequency counts if we
are to handle optimization passes which modify theCFG. We need
an actual path profile to handle this case – in fact, all of theCFG-
changing passes in our compiler require this kind of information.
While this can be expensive to gather, keep, and manipulate, the
research in this area is extensive, and we feel confident that it is
feasible [3, 13].

Of course, the optimization passes themselves must be aug-
mented to maintain the path information as they make their re-
spective changes to theCFG. While these changes should be fairly
straightforward to implement, doing so may well be time consum-
ing.

We should note one point. The underlying premise of virtual
execution is that the order and frequency of execution of the basic
blocks in a program need only be measured once, and any trans-
formation which changes theCFG can likewise update the origi-
nal counts to maintain accuracy. This premise relies on a restricted
space of optimizations. For example, the premise may not hold
when we extend our set of optimizations to include higher-level
ones such as unroll-and-jam.

2 This design has the additional advantage that it naturally takes into account
varying instruction weights to allow us to consider different architectural
features.
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Figure 4. Example of loop peeling

4.2 Estimated virtual execution

The implementation of virtual execution requires updating any op-
timization pass which can change theCFG to simultaneously up-
date the profiling data. This may well be an impediment to an ex-
isting compiler infrastructure, as it would necessitate considerable
regression testing. As an alternative, we have developed a modified
version of the virtual execution idea that we callestimated virtual
execution(EVE). It is implemented as a separate pass inserted into
the sequence after each invocation of aCFG-changing optimization
pass.

The concept behind EVE is simple: rather than modify each
pass that can change theCFG so that changes are accounted for
as they occur, we build one pass that can compare theCFGs.
Then, the compiler inserts this new pass after eachCFG-changing
transformation. The implementation works as follows. We run the
unoptimized code and record, in each block, a block-identifying
tagand an associated value showing the number of times the block
executed. EVE looks at the tags to deduce the graph changes and
update the execution counts of each block in the newCFG. It then
assigns each block in the newCFG a unique tag with the newly
updated count.

Consider again the loop-peeling example in Figure 4. After loop
peeling, some blocks will be cloned and EVE will encounter the
same tag in two blocks. The count that EVE will see in each of
those two blocks will be the original count, and EVE must use
other information to determine the new counts to associate with
each block. Assuming that the nesting depth of the loop is one, we
could deduce that the count of the block still in the loop is at most
one less than the original count, and the count of the peeled block is
at most one. We use the term “at most” carefully – only one side of
the conditional in the peeled loop will execute, so the other side’s
count should be zero, but it may be impossible to determine this
statically. The safe course is to assign both blocks in the peeled
conditional a range from zero to one.

This becomes more complicated if the loop is nested within
a second loop. When the inner loop is peeled, the number of
times either side of the conditional in the peeled loop executes is
impossible to know (if the outer loop runs ten times, it may be that
every odd iteration takes the left path, every even iteration the right
path, for example). Clearly, changes to theCFG can completely
destroy our ability to update the block counts. As a result, EVE
relies on a set of heuristics to deduce the counts of each block in
the newCFG.

EVE uses techniques similar to static estimation to chart the
changes in block execution frequency as theCFG changes, using
the following assumptions:

1. If a basic block has not been duplicated or moved to a different
nesting depth, its original frequency count remains unchanged.

2. If a basic block has been duplicated, the counts of the original
and its clone(s) add up to the original frequency count.

3. If a new basic block has been inserted into theCFG, it does not
affect other blocks’ counts.

The estimator starts with a set of(tag, count) pairs and a set of
flow edges from the originalCFGwith their frequencies. It exam-
ines the updatedCFG and predicts runtime block counts using the
heuristics shown below. It is an iterative process, since determining
a count for one block may make it possible to determine a count
for other blocks (either directly or through the updated bounds).
The heuristics use relationships of the blocks in theCFG such as
dominance, post-dominance, and the successor and predecessor re-
lationship and are as follows:

1. Tags with zero count: if any of the tags in a block has a zero
count associated with it, the block receives zero count. There
may be more than one tag if blocks have been merged.

2. Trivial blocks: if the loop nesting depth of blockB has not
changed, there are no other copies of this block with unde-
termined counts (no tag fromB occurs anywhere else in the
remaining blocks without counts), and all tags inB have the
same count, thenB receives that count.

3. Compare upper and lower bounds: compares the smallest and
largest possible counts for each basic block. If blockB’s lower
bound equals its upper bound, then the count forB is set to this
value. This is a powerful heuristic because of the aggressive
way that bounds are maintained.

4. Compare the count assigned to a tag to the sum of upper bounds
of all blocks containing this tag: if the sum of upper bounds of
blocks containing the same tagT is equal to the count assigned
to T , each of the blocks receives a count equal to its upper
bound.

5. Compare the count assigned to a tag to the sum of lower bounds
of all blocks containing this tag: same as the heuristic for deter-
mining the upper bound (above), but using the lower bounds.

6. Use counts for predecessors: if the counts for all predecessors
of block B (the setP made up ofB’s predecessors) have been
determined andB is the only successor each of them has, then
the count forB is the sum of counts of all predecessors. We
implement an extension of this idea by allowing the blocks from
P to have successors other thanB, but require that their counts
are already determined.

7. Use counts for successors: this is the same as using the counts
from a block’s predecessors (above), but applies to the succes-
sors.

8. Use counts for edges: if the count has been determined for
block B, the counts for outgoing edges are available, and their
sum is equal toB’s count, then any successorS with B as
its only predecessor receives the count of the edgeB → S.
(At present, we do not implement the symmetric heuristic that
inspects incoming edge counts.)

9. Use edges with zero counts: if a blockA has only one predeces-
sorB and the edgeB → A has a zero count associated with
it, thenA receives zero for its count. On the other hand, if all
edges leavingB, except forB → A, have a zero count and
the count forB is known, thenA receivesB’s count.

If at some point no heuristic is applicable, but the derivation is
incomplete, the estimator “guesses” the count for one of the blocks
(for example, to maximize current total instruction count) and re-
applies all heuristics. Sometimes this process leads to a reasonable
solution. We save the state of the estimator before it performs its
first guess: if it leads to contradictory counts or bounds we roll back
to that point and try another value or pick another basic block.
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The lower and upper bounds provide a range of possible runtime
counts for each basic block. To be useful, they must be as accurate
as possible. At the same time, the bounds may not be contradictory:
a block’s lower bound must be a non-negative value no larger
than its upper bound; if the count for a block has already been
determined, both lower and upper bounds must be equal to this
count; the upper- and lower-bound values must agree with the
counts and bounds for successors, predecessors, (post)dominators,
and (post)dominated blocks.

Our implementation updates the bounds values after any of the
blocks receives a count according to these observations:

• Already derived counts can be used as both lower and upper
bounds for the corresponding block and propagated to other
nodes in theCFG.

• A block cannot have a count larger than the count associated
with any tag in it.

• A block will execute at least once if it dominates or postdomi-
nates all of its copies and its original count is greater than zero.

• Lower bounds can be used to improve upper bounds and vice
versa.

To illustrate the last observation, consider a block B which has
been duplicated by a transformation. If the upper bounds indicate
that the maximum number of times all copies ofB may execute is
smaller than the original count forB (before the transformation),
thenB itself must account for at least the difference between the
original count and the sum of upper bounds of the copies ofB.

Similarly, the upper bound forB cannot be larger than the dif-
ference between its original count and the smallest possible number
of times all other copies ofB will execute (the sum of their lower
bounds). While the sum of upper bounds may be larger than the
original count, we always expect that the sum of the lower bounds
is smaller than the block’s original count. The lower bounds are
updated for each predecessor (successor) of a blockB to account
for the difference betweenB’s lower bound and maximum possible
counts for all other predecessors (successors). Note that we cannot
invert this observation to update upper bounds.

This third observation above is an instructive example of how
EVE can fail, because the observation itself does not always hold
true. On a few occasions, we discovered that two copies of a block
(one copy dominating the other) would never execute, although the
original count was greater than zero. A third copy of the same block
existed but had been removed from theCFG at some point by the
transformation, and EVE could not detect that.

Separate procedures implement the last observations, and we
alternate between them until no more changes in the bounds are
detected. Theoretically, the number of such alternations can be as
large as the difference between upper and lower bound values; to
limit such a circumstance, we interrupt this process after it repeats
a fixed number of times.

Like static estimation, a certain amount of error is inevitable,
because sometimes the technique either guesses wrong about the
flow of control, or fails completely to understand how the origi-
nal set of blocks are mapped into each newCFG. When theCFG
changes in such a way that EVE can no longer be confident in the
block-frequency counts,ACME can either run the code to obtain the
precise counts, or it can fail to produce a result for that compila-
tion. In general, the latter case just means that the search algorithm
may have to run more trials. It can be more serious whenACME’s
estimate is inaccurate, because it may cause the search algorithm
to make decisions based on erroneous data, meaning the solution
found may not be as good as possible. Our experiments in the next
section indicate that, despite the inaccuracies,ACME with EVE still
achieves excellent results.

Code precise within 1% within 2% within 3%

fmin 34.5% 78.5% 89.2% 97.4%
zeroin 42.7% 68.5% 99.1% 100.0%
adpcm-c 39.1% 90.9% 96.1% 100.0%
adpcm-d 7.5% 100.0% 100.0% 100.0%
fpppp 24.2% 91.2% 95.5% 99.1%
nsieve 48.4% 81.6% 90.0% 94.7%
tomcatv 70.9% 93.3% 98.3% 99.8%
svd 50.8% 79.3% 88.7% 95.5%
ep 46.1% 66.9% 85.3% 99.1%
ft 80.7% 98.7% 99.3% 99.8%
is 64.8% 100.0% 100.0% 100.0%
mg 60.0% 93.7% 95.7% 97.4%
Mean 47.5% 86.9% 94.8% 98.6%

Table 2. The percentage of evaluations using estimated virtual
execution falling close to the actual execution counts

Figure 5. EVE success rate
5. Experimental Results
The techniques presented in this paper are designed to make the
use of adaptive compilation systems practical. This section demon-
strates that we can achieve results comparable to previous adaptive
systems in substantially less time usingACME.

We performed all of our experiments on a Sun Fire V210 server.
The server has two 1GHz processors, each with a 1MB cache,
and 2GB of main memory.ACME was evaluated using twelve
CPU-intensive applications taken from several different benchmark
suites.

5.1 Evaluating Estimated Virtual Execution

EVE provides a fast alternative to executing code when evaluating
optimization sequences in an adaptive system. However, since the
instruction counts provided by this technique are imprecise, we first
need to understand the degree of imprecision that is introduced and
how this impacts the results achieved through adaptive compilation.
It is also critical to understand the other aspect of this trade-off: the
speedup gained through the use of EVE.

A basic measure of EVE’s precision can be seen in Table 2. This
table shows that the margin of error introduced by EVE is small in
the vast majority of cases. As we said, we use instruction counts as
our metric rather than machine timings precisely because we need
both repeatability and accuracy in the adaptive searches. The data
in Table 2 shows that EVE closely approximates actual instruction
counts.

EVE is not always able to calculate an instruction count for
a new version of a program. Complicated changes to the control
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Figure 6. The quality ofACME’s solution, measured against the
default compilation sequence

flow of a program can cause EVE to fail. Figure 5 shows how
often EVE successfully calculates an instruction count. There is a
significant variation in the success rate across benchmarks. Several
of the benchmarks pose no problem for EVE. However, for three
of the benchmarks, EVE successfully understands the transformed
programs less than half of the time.

To understand the value of EVE, we need to evaluate how it im-
pacts the results we achieve throughACME. We usedACME to run
a randomized hill climber limited to500 total evaluations using ei-
ther EVE or the traditional method of executing each program vari-
ation. We further divided the experiment into two cases: when EVE
fails, we either just execute the code, or ignore the result and try
another sequence. We chose a hill climber because it has been the
most successful technique for finding good optimization sequences
at this level of effort (generally500 trials)[15]. At the same time,
the hill climber’s performance is the most sensitive to inaccurate
estimations, which might mean that EVE would fail to find good
solutions. The results, normalized against the performance of our
standard optimization sequence, are shown in Figure 6. Using EVE
in ACME provides performance close to the level of the standard
adaptive compilation system, but without the overhead of repeat-
edly executing the code. EVE’s inability to track the changes in
someCFGs through some optimization sequences does not prevent
ACME from ultimately finding a good sequence. The next section
demonstrates how EVE speeds up adaptive compilation inACME.

5.2 RunningACME

To determine the effects of EVE on the overall running time of
the ACME compiler, we ran the hill-climbing search algorithm
over our test suite with each ofACME’s three execution modes as
described in the previous section. Because each of the execution
modes can cause the search algorithm to follow different paths, we
set a cutoff of100 evaluations for each target3. We normalized the
times using EVE against the time without EVE. Because the search
algorithm relies on a random-number generator, we ran this entire
test multiple times using different values for the random seed to
explore different areas of the optimization space and give a better
picture of the benefits of EVE. The results, averaged across the
multiple runs for each benchmark, are shown in Figure 7.

The timing results for these tests vary considerably for a variety
of reasons. As we said above, the different execution modes will
produce different searches by the hill-climbing algorithm. Some
of the transformations take much longer to run than others, and

3 Ultimately,ACME ran a full100 evaluations for each execution mode.

Figure 7. Running times ofACME with virtual execution enabled,
normalized against full execution

these different searches employ different mixes of transformations,
sometimes causing a wide variance in running time. For exam-
ple, transformations based on data flow analysis such as partial-
redundancy elimination may take significantly longer than a pass
like our empty-basic-block cleaner4. Of course, if the code is exe-
cuted, the variation in that execution time will impact overall run-
ning time, as well.

EVE cuts the adaptive compile time in half for many of our
benchmarks and in several cases reduces the time to less than30%
of the time needed without it. Notable exceptions aresvd, fpppp,
andmg. As we showed in Figure 5, EVE fails a significant amount
of time on these programs, because some of the routines in these
programs have particularly complicated control flow. Interestingly,
ft also presents problems for the EVE analysis but still shows
a 50% decrease in overall compile time. The results are promising
in this normalized view, but it is instructive to examine actual wall-
clock time, as well.

The time required forACME to do100 evaluations ofnsieve
under the always-execute mode is approximately one hour. This
is the highest observed for our set of benchmarks, followed by
fpppp at 40 minutes,tomcatv at 18.5, andft at 18 minutes. If
we assume that it takes500 evaluations for the hill climber to find
an acceptable sequence, the time required for nsieve would be5
hours if we execute the code for every sequence. With EVE en-
gaged and discarding failed sequences, this wall time would drop to
under20 minutes. The next highest wall time isfpppp at just over
3.3 hours for500 evaluations without EVE. This time would drop
to under2 hours, a less dramatic improvement, but still significant.
For tomcatv, the total time would drop from approximately1.5
hours to11 minutes. Forft, 1.5 hours would drop to35 minutes.
While the degree of improvement varies, EVE certainly increases
the range of programs that can be feasibly compiled with an adap-
tive system.

Some of the variations in the normalized results are due to the
fact that virtual execution has no effect on the time it takes to
apply the compilation sequence to the target program. For example,
nsieve has a simple structure that allows the compilation sequence
to complete quickly, so the ratio between transformation time and
execution time is skewed toward execution time. As a result, virtual
execution has a proportionally large benefit in this case. As we said
in Section 2, other groups’ work that targets reducing the number

4 In fact, partial redundancy elimination and lazy code motion both require
the insertion of a renaming transformation that is not counted as a separate
pass.
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of compilations can be integrated with EVE to produce even better
results.

6. Future work
As expert users of our own system, we would like to enhanceACME
to handle hybrid search algorithms. For example, our experiments
show that the genetic algorithm can be very useful for quickly
finding a “good” solution, but it takes it a very long time after
that to find a “better” solution. On the other hand, the hill climber
will often find a “better” solution relatively quickly if it starts at
a “good” solution. Thus, we would like an automatic way to let
the genetic algorithm run for a short time, stop the compilation
when we see it make significant progress (or even when its progress
begins to level out, for example), and then restart the compilation
with the hill climber, seeded with the good results obtained by the
genetic algorithm[16].

Similarly, ACME could have an automatic mode, wherein it
performs some relatively small number of random probes of the
search space to empirically guess at the likelihood of many minima.
It could then choose a search technique that might do well in that
space, since the presence of fewer minima implies the necessity of
using heavier weight search algorithms.

We currently have implemented a cutoff that allows the user to
keepACME from running forever by setting the maximum number
of evaluationsACME can do. Some users may prefer a time limit
rather than a compilation limit, so that, for example,ACME will
search overnight for a compilation sequence, running as many
searches as the time allows and delivering the best result first thing
in the morning.

It may be that advanced users would prefer to see more detailed
data of the search as it progresses. For example, the user might
like to monitor the success rate of EVE. That data, combined with
data showing how long a single execution takes, might guide the
user as to what level of EVE to use – for short-running programs
with complicated control flow, it may be better to disable EVE or
execute the code when EVE fails.

Other suggestions from experienced users will undoubtedly
change the face ofACME without changing its fundamental struc-
ture.

7. Conclusion
We have presentedACME, a system designed to support adaptive
compilation. To overcome the steep learning curve of using a com-
piler of such complexity, we carefully designed a GUI that allows
a novice user to easily use the system, at the same time allowing an
advanced user to fine tune his compilation. Critical to its useabil-
ity is the feedback the underlying compiler provides, making the
compiler’s progress visible to the user so that he can interrupt or
redesign the adaptation if the need arises.

ACME includes four different search methods for the adaptation,
and relies on estimated virtual execution to make compilation fast,
sometimes an order of magnitude or more over actually executing
the code for each compilation in the search.

We believe thatACME should serve as a model for future adap-
tive compilation systems.
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