
RETROSPECTIVE:

A Retrospective on
“An Evaluation of Staged Run-Time Optimizations in DyC”

Brian Grant, Matthai Philipose, Markus Mock,
Craig Chambers, and Susan J. Eggers

Department of Computer Science and Engineering
University of Washington

Box 352350
Seattle, WA 98195-2350 USA

fgrant,matthai,mock,chambers,eggersg@cs.washington.edu

1. RETROSPECTIVE
This paper presented a summary and empirical evaluation of the
final version of the DyC system. DyC (pronounced “dicey”) is a
staged, selective run-time compiler for C programs: it performs
the final stage of compilation of user-selected parts of C programs
at run-time, exploiting information of run-time values by treating
them as (run-time-)compile-time constants. The key challenge for
this kind of system is to keep run-time compilation overhead low
while achieving good-quality compiled code. In DyC, both selec-
tivity and staging work to reduce run-time costs. By compiling only
those parts of the program that benefit most from run-time compila-
tion, the extra cost of run-time compilation is limited to the selected
parts. By preplanning during the static-compile-time stage the pos-
sible actions and results of the run-time optimizer (which we call
staging the optimization), the run-time compiler stage can focus on
the work that couldn’t be precomputed statically, i.e., that depends
on the run-time computed “constants.” Staged run-time compil-
ers differ greatly from “just-in-time” (JIT) run-time compilers, be-
cause the latter delay most if not all compilation until run-time, and
hence incur much greater run-time overhead and/or produce much
less optimized code.

DyC’s approach to staging builds on many of the ideas developed
in the partial evaluation (PE) community (for an overview of partial
evaluation, see [13]). For best effectiveness on real-world C pro-
grams, DyC incorporated a number of advanced PE techniques, in-
cluding polyvariant, program-point-specific specialization and di-
vision. Among other things, these techniques allowed loops over
run-time computed array and graph data structures to be fully un-
rolled at run-time. DyC also included automatic techniques for
managing a cache of specialized versions of selected code regions,
plus techniques for automatically selecting the appropriate version
each time the code region was entered. Empirical measurements
on substantial application programs demonstrated both good over-
all speed-ups and significant value for each of DyC’s techniques on
at least one benchmark.

DyC [2, 10, 9, 11] was one of several projects exploring selec-
tive or staged run-time compilation. Keppel [14] explored manual
techniques for constructing staged run-time optimizers. Engler’s
DCG [8] and VCODE [6] systems presented more advanced and
efficient, but still manual, systems. Fabius [16, 15] produced the
first automatic system, applying run-time specialization to curried

20 Years of the ACM/SIGPLAN Conference on Programming Language
Design and Implementation (1979-1999): A Selection, 2003.
Copyright 2003 ACM 1-58113-623-4 ...$5.00.

functions in a side-effect-free subset of ML; it also was the first to
apply PE ideas to the construction of staged optimizers. Tempo [5,
12, 20, 4, 17] adapted a compile-time partial evaluator for C to also
work as a run-time optimizer. ‘C [7, 23, 22] allowed users to write
programs that create and combine program templates at run-time;
this approach both allows and requires users to implement any run-
time optimizations.

With the exception of Fabius (which only handled a limited,
purely functional language), all of these systems required user in-
tervention or annotation to identify where run-time compilation
should be applied. Moreover, the correctness of the optimized pro-
grams depended on the correctness of the user’s annotations. An
important follow-on to DyC is Calpa [18, 19], a system that uses
value profile information and static alias analysis to automatically
generate the annotations driving DyC. Calpa uses a cost/benefit
analysis to decide the most profitable annotations to insert into the
most frequently executed parts of programs. Calpa also ensures
that the transformations performed by DyC preserve the behavior
of the program.

DyC’s staged versions of optimizations were constructed by hand,
at great effort. To ease the construction of staged optimizers, and
enable staging to be applied to a wider range of optimizations, we
have been developing techniques for mechanizing the construction
of staged optimizers from descriptions of regular, unstaged ones.
SCF [21] takes an implementation (in a purely functional subset
of ML) of a pipeline of optimizers, plus a partial description of
the program that will be compiled at run-time, and produces a spe-
cialized optimization pipeline for compiling that program. Current
work is developing extensions that are more appropriate for earlier
compiler stages. Eventually, we hope to develop an entire multi-
stage compilation system based on automatically generated staged
optimizations [3].

2. ACKNOWLEDGEMENTS
Brian Grant is now at Transmeta. Matthai Philipose is now at In-
tel Research, Seattle. Markus Mock is now at the Department of
Computer Science, University of Pittsburgh.

The DyC research project was supported by ONR contract N00014-
96-1-0402, ARPA contract N00014-94-1-1136, NSF Young Inves-
tigator Award CCR-9457767, and an Intel Graduate Fellowship.

REFERENCES
[1] Proceedings of the ACM SIGPLAN ’96 Conference on

Programming Language Design and Implementation, May

ACM SIGPLAN 656 Best of PLDI 1979-1999

1996.
[2] Joel Auslander, Matthai Philipose, Craig Chambers, Susan J.

Eggers, and Brian N. Bershad. Fast, effective dynamic
compilation. In Proceedings of the ACM SIGPLAN ’96
Conference on Programming Language Design and
Implementation [1], pages 149–159.

[3] Craig Chambers. Staged compilation. In Proceedings of the
2002 ACM SIGPLAN Symposium on Partial Evaluation and
Semantics-Based Program Manipulation, pages 1–8,
Portland, OR, January 2002.

[4] C. Consel, L. Hornof, R. Marlet, G. Muller, S. Thibault, and
E.-N. Volanschi. Tempo: specializing systems applications
and beyond. ACM Computing Surveys, 30(3es):19–es,
September 1998.

[5] C. Consel and F. Noël. A general approach for run-time
specialization and its application to C. In Symposium on
Principles of Programming Languages, pages 145–156,
January 1996.

[6] Dawson R. Engler. VCODE: A retargetable, extensible, very
fast dynamic code generation system. In Proceedings of the
ACM SIGPLAN ’96 Conference on Programming Language
Design and Implementation [1], pages 160–170.

[7] Dawson R. Engler, Wilson C. Hsieh, and M. Frans
Kaashoek. ‘C: A language for high-level, efficient, and
machine-independent dynamic code generation. In
Conference Record of the 23rd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages
131–144, January 1996.

[8] Dawson R. Engler and Todd A. Proebsting. DCG: An
efficient, retargetable dynamic code generation system. In
Proceedings of the Sixth International Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 263–272, October 1994.

[9] B. Grant, M. Mock, M. Philipose, C. Chambers, and S.J.
Eggers. DyC: An expressive annotation-directed dynamic
compiler for C. Theoretical Computer Science,
248(1-2):147–199, October 2000.

[10] Brian Grant, Markus Mock, Matthai Philipose, Craig
Chambers, and Susan Eggers. Annotation-directed run-time
specialization in C. In Proceedings of the 1997 ACM
SIGPLAN Symposium on Partial Evaluation and
Semantics-Based Program Manipulation, pages 163–178,
Amsterdam, the Netherlands, June 1997.

[11] Brian Grant, Markus Mock, Matthai Philipose, Craig
Chambers, and Susan J. Eggers. The benefits and costs of
DyC’s run-time optimizations. ACM Transactions on
Programming Languages and Systems, 22(5), 2000.

[12] L. Hornof, J. Noyé, and C. Consel. Effective specialization
of realistic programs via use sensitivity. In Proceedings of
the Fourth International Symposium on Static Analysis,
number 1302 in Lecture Notes in Computer Science, pages
293–314. Springer-Verlag, September 1997.

[13] Neil D. Jones, Carstein K. Gomarde, and Peter Sestoft.
Partial Evaluation and Automatic Program Generation.
Prentice Hall, New York, NY, 1993.

[14] David Keppel. Runtime Code Generation. PhD thesis,
University of Washington, 1996.

[15] Peter Lee and Mark Leone. Optimizing ML with run-time
code generation. In Proceedings of the ACM SIGPLAN ’96
Conference on Programming Language Design and
Implementation [1], pages 137–148.

[16] M. Leone and P. Lee. Lightweight run-time code generation.

In Proceedings of the Symposium on Partial Evaluation and
Semantics-Based Program Manipulation (Technical Report
94/9, Department of Computer Science, University of
Melbourne), pages 97–106, Orlando, Florida, June 1994.

[17] Renaud Marlet, Charles Consel, and Philippe Boinot.
Efficient incremental run-time specialization for free. In
Proceedings of the ACM SIGPLAN ’99 Conference on
Programming Language Design and Implementation, pages
281–292, May 1999.

[18] M. Mock, M. Berryman, C. Chambers, and S.J. Eggers.
Calpa: A tool for automating dynamic compilation. In 2nd
Workshop on Feedback-Directed Optimization, November
1999.

[19] Markus Mock, Craig Chambers, and Susan J. Eggers. Calpa:
A tool for automating selective dynamic compilation. In
Proceedings of the 33rd Annual International Symposium on
Microarchitecture, Monterey, CA, December 2000.

[20] F. Noël, L. Hornof, C. Consel, and J. L. Lawall. Automatic,
template-based run-time specialization: Implementation and
experimental study. In International Conference on
Computer Languages, pages 132–142, May 1998.

[21] Matthai Philipose, Craig Chambers, and Susan Eggers.
Towards automatic construction of staged compilers. In
Conference Record of the 29th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages,
January 2002.

[22] M. Poletto, D. R. Engler, W.C. Hsieh, and M. F. Kaashoek.
‘C and tcc: A language and compiler for dynamic code
generation. Transactions on Programming Languages and
Systems, 21(2):324–369, March 1999.

[23] Massimiliano Poletto, Dawson R. Engler, and M. Frans
Kaashoek. tcc: A system for fast, flexible, and high-level
dynamic code generation. In Proceedings of the ACM
SIGPLAN ’97 Conference on Programming Language
Design and Implementation, pages 109–121, June 1997.

ACM SIGPLAN 657 Best of PLDI 1979-1999

ACM SIGPLAN 658 Best of PLDI 1979-1999

ACM SIGPLAN 659 Best of PLDI 1979-1999

ACM SIGPLAN 660 Best of PLDI 1979-1999

ACM SIGPLAN 661 Best of PLDI 1979-1999

ACM SIGPLAN 662 Best of PLDI 1979-1999

ACM SIGPLAN 663 Best of PLDI 1979-1999

ACM SIGPLAN 664 Best of PLDI 1979-1999

ACM SIGPLAN 665 Best of PLDI 1979-1999

ACM SIGPLAN 666 Best of PLDI 1979-1999

ACM SIGPLAN 667 Best of PLDI 1979-1999

ACM SIGPLAN 668 Best of PLDI 1979-1999

ACM SIGPLAN 669 Best of PLDI 1979-1999

