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1. RETROSPECTIVE
This paper presented a summary and empirical evaluation of the
final version of the DyC system. DyC (pronounced “dicey”) is a
staged, selective run-time compiler for C programs: it performs
the final stage of compilation of user-selected parts of C programs
at run-time, exploiting information of run-time values by treating
them as (run-time-)compile-time constants. The key challenge for
this kind of system is to keep run-time compilation overhead low
while achieving good-quality compiled code. In DyC, both selec-
tivity and staging work to reduce run-time costs. By compiling only
those parts of the program that benefit most from run-time compila-
tion, the extra cost of run-time compilation is limited to the selected
parts. By preplanning during the static-compile-time stage the pos-
sible actions and results of the run-time optimizer (which we call
staging the optimization), the run-time compiler stage can focus on
the work that couldn’t be precomputed statically, i.e., that depends
on the run-time computed “constants.” Staged run-time compil-
ers differ greatly from “just-in-time” (JIT) run-time compilers, be-
cause the latter delay most if not all compilation until run-time, and
hence incur much greater run-time overhead and/or produce much
less optimized code.

DyC’s approach to staging builds on many of the ideas developed
in the partial evaluation (PE) community (for an overview of partial
evaluation, see [13]). For best effectiveness on real-world C pro-
grams, DyC incorporated a number of advanced PE techniques, in-
cluding polyvariant, program-point-specific specialization and di-
vision. Among other things, these techniques allowed loops over
run-time computed array and graph data structures to be fully un-
rolled at run-time. DyC also included automatic techniques for
managing a cache of specialized versions of selected code regions,
plus techniques for automatically selecting the appropriate version
each time the code region was entered. Empirical measurements
on substantial application programs demonstrated both good over-
all speed-ups and significant value for each of DyC’s techniques on
at least one benchmark.

DyC [2, 10, 9, 11] was one of several projects exploring selec-
tive or staged run-time compilation. Keppel [14] explored manual
techniques for constructing staged run-time optimizers. Engler’s
DCG [8] and VCODE [6] systems presented more advanced and
efficient, but still manual, systems. Fabius [16, 15] produced the
first automatic system, applying run-time specialization to curried
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functions in a side-effect-free subset of ML; it also was the first to
apply PE ideas to the construction of staged optimizers. Tempo [5,
12, 20, 4, 17] adapted a compile-time partial evaluator for C to also
work as a run-time optimizer. ‘C [7, 23, 22] allowed users to write
programs that create and combine program templates at run-time;
this approach both allows and requires users to implement any run-
time optimizations.

With the exception of Fabius (which only handled a limited,
purely functional language), all of these systems required user in-
tervention or annotation to identify where run-time compilation
should be applied. Moreover, the correctness of the optimized pro-
grams depended on the correctness of the user’s annotations. An
important follow-on to DyC is Calpa [18, 19], a system that uses
value profile information and static alias analysis to automatically
generate the annotations driving DyC. Calpa uses a cost/benefit
analysis to decide the most profitable annotations to insert into the
most frequently executed parts of programs. Calpa also ensures
that the transformations performed by DyC preserve the behavior
of the program.

DyC’s staged versions of optimizations were constructed by hand,
at great effort. To ease the construction of staged optimizers, and
enable staging to be applied to a wider range of optimizations, we
have been developing techniques for mechanizing the construction
of staged optimizers from descriptions of regular, unstaged ones.
SCF [21] takes an implementation (in a purely functional subset
of ML) of a pipeline of optimizers, plus a partial description of
the program that will be compiled at run-time, and produces a spe-
cialized optimization pipeline for compiling that program. Current
work is developing extensions that are more appropriate for earlier
compiler stages. Eventually, we hope to develop an entire multi-
stage compilation system based on automatically generated staged
optimizations [3].
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