E

Adaptive Optimization in the Jalapeno JVM

Matthew Arnold*t Stephen Fink!

David Grovet

tIBM T.J. Watson Research Center

{sjfink,groved, hindm,pfs}@us.ibm.com

ABSTRACT

Future high-performance virtual machines will improve per-
formance through sophisticated online feedback-directed op-
timizations. This paper presents the architecture of the
Jalapefio Adaptive Optimization System, a system to sup-
port leading-edge virtual machine technology and enable
ongoing research on online feedback-directed optimizations.
We describe the extensible system architecture, based on
a federation of threads with asynchronous communication.
We present an implementation of the general architecture
that supports adaptive multi-level optimization based purely
on statistical sampling. We empirically demonstrate that
this profiling technique has low overhead and can improve
startup and steady-state performance, even without the pres-
ence of online feedback-directed optimizations. The paper
also describes and evaluates an online feedback-directed in-
lining optimization based on statistical edge sampling. The
system is written completely in Java, applying the described
techniques not only to application code and standard li-
braries, but also to the virtual machine itself.

1. INTRODUCTION

The dynamic nature of the Java programming language [26]
presents both the largest challenge and the greatest opportu-
nity for high-performance Java implementations. Language
features such as dynamic class loading and reflection pre-
vent straightforward applications of traditional static com-
pilation and interprocedural optimization. As a result, Java
Virtual Machine (JVM) implementors have invested signif-
icant effort in developing dynamic compilers for Java. Be-
cause dynamic compilation occurs during application exe-
cution, dynamic compilers must carefully balance optimiza-
tion effectiveness with compilation overhead to maximize
total system performance. However, dynamic compilers can
also exploit runtime information to perform optimizations
beyond the scope of a purely static compilation model.

The first wave of virtual machines provided Just-In-Time
(JIT) compilation that relied on simple static strategies to

Permission to make digital or hard copies of part or all of thiswork or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation onthefirst page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or afee.

OOPSLA ‘00, 10/00 Minneapolis, MN, USA
© 2000 ACM ISBN 1-58113-200-x/00/0010...$5.00

47

Michael Hindt Peter F. Sweeney!
*Rutgers University

marnold@cs.rutgers.edu

choose compilation targets, typically compiling each method
with a fixed set of optimizations the first time it was in-
voked. These virtual machines include early work such as
the Smalltalk-80 [24] and Self-91 [16] systems, as well as a
number of more recent Java systems [1, 36, 14, 47]. A second
wave of more sophisticated virtual machines moved beyond
this simple strategy by dynamically selecting a subset of all
executed methods for optimization, attempting to focus op-
timization effort on program hot spots. Systems in this cat-
egory include Self-93 [32], the HotSpot JVM [34], the IBM
Java Just-in-Time compiler (version 3.0) [43], JUDO [18],
and the initial stage of the Jalapefio Adaptive Optimiza-
tion System described in this paper. Some second-wave vir-
tual machines also include limited forms of online feedback-
directed optimization (e.g. inlining in Self-93), but do not
develop general mechanisms for adaptive online feedback-
directed optimization.

A number of research projects have explored more aggres-
sive forms of dynamic compilation [35, 9, 12, 13, 8, 27, 28,
38, 37, 19, 39], using runtime information to tailor the ex-
ecutable to its current environment. Most of these systems
were not fully automatic, and so far, few of these techniques
have appeared in mainstream JVMs. However, these sys-
tems have demonstrated that online feedback-directed opti-
mizations can yield substantial performance improvements.
It seems clear that a key component in the upcoming third
wave of high-performance virtual machines will be sophisti-
cated adaptive online feedback-directed optimizations.

Jalapefio [2, 3] is a research JVM being developed at the
IBM T.J. Watson Research Center. This paper introduces
the Jalapefio Adaptive Optimization System, a key compo-
nent of the Jalapefio JVM. Previous papers [2, 14] briefly
describe the adaptive optimization system at a high level.
This paper presents the first description of the architectural
details, implementation, and performance results.

The main contributions of this paper are

e an extensible adaptive optimization architecture that
both supports current leading-edge JVM technology
and enables research into online feedback-directed op-
timization,

the demonstration of low-overhead sampling techniques
to drive adaptive and online feedback-directed opti-
mizations,

Some text in this electronic article is rendered in Type 3 or bitmapped fonts, and may display poorly on screen in Adobe Acrobat v. 4.0 and later. However, printouts of this file are unaffected by this problem. We recommend that you print the file for best legibility.

e the demonstration of an adaptive optimization system
that uses multiple optimization levels to improve per-
formance compared to using only a single level of op-
timization, and

e an initial implementation and evaluation of our first
online feedback-directed optimization: inlining based
on low-overhead sampling data. This optimization im-
proves performance by 11% on average, with improve-
ments ranging up to 73%.

The next section provides some background on the Jalapefio
JVM. Section 3 describes the architecture of the Jalapefio
adaptive optimization system and highlights key issues and
design decisions. Section 4 describes the recompilation im-
plementation. Section 5 describes our first online feedback-
directed optimization, adaptive inlining. Section 6 presents
experimental data demonstrating that sampling is both an
effective and low-overhead mechanism for driving adaptive
optimization. Section 7 presents a discussion of our expe-
riences. Finally, Section 8 discusses related work and Sec-
tion 9 offers our conclusions.

2. BACKGROUND

The Jalapefio JVM 1is a research JVM targeting server appli-
cations. A comprehensive description of Jalapefio appears
in [2]. In this section we highlight the characteristics of
Jalapefio that are most relevant to this work.

Jalapefio is written in Java [3]. In addition to providing
a high-level strongly-typed development environment, this
design decision allows the techniques described in this paper
to apply not only to application code, but also to the JVM
itself. That is, we apply adaptive optimization to the JVM
subsystems, including the compilers, the thread scheduler,
the garbage collector, and the adaptive optimization system
itself.

Jalapefio employs a compile-only strategy; it compiles all
methods to native code before they execute. Currently, the
system includes two fully operational compilers.

e The baseline compiler translates bytecodes directly into
native code by simulating Java’s operand stack. The
compiler does not perform register allocation. The
baseline compiler provides a reference compiler for test-
ing purposes, and generates native code that performs
only slightly better than bytecode interpretation [2].

o The optimizing compiler [14] translates bytecodes into
an intermediate representation, upon which it performs
a variety of optimizations. The compiler uses linear
scan register allocation [40], an efficient and effective
register allocator. For this paper, we group the com-
piler’s optimizations into several levels:

— Level 0 consists mainly of a set of optimizations
performed on-the-fly during the translation from
bytecodes to the intermediate representation. As
these optimizations reduce the size of the gener-
ated IR, performing them tends to reduce overall
compilation time [45]. Currently, the compiler
performs the following optimizations during IR

48

| Compiler | Bytecode Bytes/Millisecond |
Baseline 274.14
Opt Level 0 8.77
Opt Level 1 3.59
Opt Level 2 2.07
Table 1: Average compilation rates on the

SPECjvm98 benchmark suite

generation: constant, type, non-null, and copy
propagation; constant folding and arithmetic sim-
plification; unreachable code elimination; and elim-
ination of redundant nullchecks, checkcasts, and
array store checks.

— Level 1 augments level 0 with additional local op-
timizations such as common subexpression elim-
ination, array bounds check elimination, and re-
dundant load elimination. It also adds inlining
based on static-size heuristics,' global flow-insens-
itive copy and constant propagation, global flow-
insensitive dead assignment elimination, String-
Buffer synchronization optimizations, and scalar
replacement of aggregates and short arrays.

— Level 2 augments level 1 with SSA-based flow-
sensitive optimizations. In addition to traditional
SSA optimizations on scalar variables [21], the
system also uses an extended version of Array
SSA form [25] to perform redundant load elim-
ination and array bounds check elimination [11].

Table 1 gives the average compilation rate for the compilers
used in this paper on the PowerPC machine described in
Section 6.

Jalapefio multiplexes Java threads onto JVM wvirtual proces-
sors, which are implemented as AIX pthreads. The system
supports thread scheduling with a quasi-preemptive mecha-
nism. Each compiler generates yield points, which are pro-
gram points where the running thread checks a dedicated
bit in a machine control register to determine if it should
yield the virtual processor. Currently, the compilers insert
these yield points in method prologues and on loop back
edges. Future work includes developing algorithms for more
optimal placement of yield points to reduce the dynamic
number of yield points executed while still supporting ef-
fective quasi-preemptive thread scheduling. Using a timer-
interrupt mechanism, an interrupt handler periodically sets
a bit on all virtual processors. When a running thread next
reaches a yield point, a check of the bit will result in a call
to the scheduler. Section 4 discusses how we exploit this
mechanism in the current version of our system.

As shown in Figure 1, a Jalapefio compiler can be invoked
in three ways. First, when the executing code reaches an

!The compiler performs both unguarded inlining of final
and static methods and guarded inlining of non-final virtual
methods. In addition, the compiler exploits “preexistence”
to safely perform unguarded inlining of some invocations
of non-final virtual methods without requiring stack frame
rewriting on invalidation [23].

Resolution

Adaptive
Optimization
System

Executing

Unresolved
Reference

[Base,Opt,...]

Cl oader

(Re)Compilation Plan

Figure 1: Compilation scenarios in the Jalapefio JVM

unresolved reference, causing a new class to be loaded, the
class loader invokes a compiler to compile the class initializer
(if one exists). The class loader also initializes the compiled
code for all methods to a lazy compilation stub. The second
compilation scenario occurs whenever the executing code at-
tempts to invoke a method that has not yet been compiled.
When this happens, the lazy compilation stub is executed,
which leads to the compilation of the method. In these first
two scenarios, the application thread that caused the com-
piler to be invoked will stall until compilation completes.

In the third scenario, which is the focus of this paper, the
adaptive optimization system can invoke a compiler when
profiling data suggests that recompiling a method with ad-
ditional optimizations may be beneficial.

The Jalapefio JVM begins execution by reading from a boot
tmage file, which contains the core services of Jalapefio pre-
compiled to machine code [3]. Jalapefio supports several
configurations of the “core”. The simplest configuration in-
cludes a class loader, an object allocator, and the baseline
compiler. This version loads and compiles (with the base-
line compiler) all non-core classes, including the optimizing
compiler, when the JVM boots. For better performance,
a full configuration includes the optimizing compiler in the
precompiled boot image. Results in this paper use the full
configuration, which increases boot-image writing time, but
produces a higher performance JVM.

3. SYSTEM ARCHITECTURE

The Jalapefio Adaptive Optimization System (AOS) con-
tains three components, each of which encompasses one or
more separate threads of control. These subsystems are
the runtime measurements subsystem, the controller, and
the recompilation subsystem. Figure 2 depicts the inter-
nal structure of the Jalapefio adaptive optimization system
and the interactions between its components. In addition
to the components, the AOS database provides a repository
that records component decisions and allows components to
query these decisions. The next four sections discuss this
figure in more detail.

49

3.1 Runtime Measurements Subsystem

The runtime measurements subsystem gathers information
about the executing methods, summarizes the information,
and then either passes the summary along to the controller
via the organizer event queue or records the information in

the AOS database.

Figure 2 shows the structure of the runtime measurements
subsystem. Several systems, including instrumentation in
the executing code, hardware performance monitors, and
VM instrumentation, produce raw profiling data as the pro-
gram runs. Usually, these systems perform only extremely
limited processing of the raw data as it is produced. Instead,
separate threads called organizers periodically process and
analyze the raw data. The design separates the generation
of raw profiling data from the data analysis for two rea-
sons. First, this design allows multiple organizers to process
the same raw data, possibly in different ways. Second, this
separation allows low-level profiling code to execute under
strict resource constraints. Recall that we monitor not just
application code, but also system services of the VM. So,
for example, low-level code that monitors the VM memory
allocator must not allocate any objects (it must use pre-
allocated data structures and buffers) and should complete
its task in a short time period.

The controller directs the data monitoring and creates or-
ganizer threads to process the raw data at specific time in-
tervals. When awoken, each organizer analyzes raw data,
and packages the data into a suitable form for consumption
by the controller. Additionally, an organizer may add in-
formation to the organizer event queue for the controller to
process, or may record information in the AOS database for
later queries by other AOS components.

This architecture can support a variety of measurement tech-
niques, including hardware performance monitors, call stack
sampling [46, 7], and compiler-inserted instrumentation such
as invocation counters, basic block edge or path profiles [10],
and value profiles [15].

Compilers

Executing
Code -, [Base,Opt,...
\S‘/Q//
Profile 4’@,,1/
Information <,
___ U oo L.

Hardware / VM
Performance Monitor

wn

[

e Raw Raw Raw
[Data Data Data
7

3

=g ;

L 2 Organizer i
E =

- 0

C o

S5 S

xon

Formatted Formatted
Data Data

/

Instrumented Instrumentation/
Optimized Compilation
Code Plan

[
AOS Compilation
Database /=~] Thlpeads

Compilation Queue

Controller

Figure 2: Architecture of the Jalapefio Adaptive Optimization System

3.2 Controller

The controller orchestrates and conducts the other compo-
nents of the adaptive optimization system. It coordinates
the activities of the runtime measurements subsystem and
the recompilation subsystem. The controller initiates all
runtime measurement subsystem profiling activity by deter-
mining what profiling should occur, under what conditions,
and for how long. It receives information from the runtime
measurement subsystem and AQOS database, and uses this
information to make compilation decisions. It passes these
compilation decisions to the recompilation subsystem, di-
recting the actions of the various compilers.

Based on information from the runtime measurements sub-
system and the AQOS database, the controller can perform
the following actions: 1) it can instruct the runtime measure-
ments subsystem to continue or change its profiling strategy,
which could include using the recompilation subsystem to in-
sert intrusive profiling; 2) it can recompile one or more meth-
ods using profiling data to improve their performance. The
controller makes these decisions based on an analytic model
representing the costs and benefits of performing these tasks.

The controller communicates with the other two components
using priority queues; it extracts measurement events from
a queue that is filled by the runtime measurements subsys-
tem and inserts recompilation decisions into a queue that
compilation threads process. When these queues are empty,
the dequeuing thread(s) sleep. The various system compo-
nents also communicate indirectly by reading and writing
information in the AOS database.

3.3 Recompilation Subsystem

The recompilation subsystem consists of compilation threads
that invoke compilers. The compilation threads extract and
execute compilation plans that are inserted into the com-
pilation queue by the controller. Recompilation occurs in
separate threads from the application, and thus, can occur
in parallel. This differs from the initial (lazy) compilation
of a method, which occurs the first time a method is in-
voked: during lazy compilation, compilation occurs in the
application thread that attempted to invoke the uncompiled
method.

Each compilation plan consists of three components: an
optimization plan, profiling data, and an instrumentation
plan. The optimization plan specifies which optimizations
the compiler should apply during recompilation. The pro-
filing data, initially gathered by the runtime measurements
subsystem, directs the optimizing compiler’s feedback-directed
optimizations. Instrumentation plans dictate which, if any,
intrusive instrumentation the compiler should insert into the
generated code.

The compilation threads takes the output of the compiler —
a Java object that represents the executable code and asso-
ciated runtime information (exception table information and
garbage collection maps) — and installs it in the JVM, so
that all future calls to this method will use the new version.
In our current implementation, any previous activations of
the method will continue to use the old compiled code for
the method until that method’s activation completes. Noth-
ing in our design precludes using stack frame rewriting to

50

enable previous activations of the method to use the new
compiled version, but this functionality has not yet been im-
plemented. We expect that Jalapefio will eventually rewrite
baseline stack frames to optimized stack frames. It is as yet
unclear if there is sufficient motivation to support the more
difficult transition between two optimized stack frames.

3.4 AOS Database

The AOS database provides a repository where the adap-
tive optimization system records decisions, events, and static
analysis results. The various adaptive system components
query these artifacts as needed.

For example, the controller uses the AOS database to record
compilation plans and to track the status and history of
methods selected for recompilation. As another example,
the compilation threads record static analysis and inlin-
ing summaries produced by the optimizing compiler. The
controller and organizer threads query this information as
needed to guide recompilation decisions. More details on
the current implementation appear in Section 5.

4. MULTI-LEVEL RECOMPILATION

This section describes the implementation of the adaptive
recompilation system. Section 5 describes how this system
is extended to support our first online feedback-directed
optimization, adaptive inlining. Section 4.1 provides an
overview of the implementation. Section 4.2 provides de-
tails concerning how profiling information is obtained. Sec-
tion 4.3 discusses the recompilation model.

4.1 Overview

Figure 3 provides an overview of the implementation. The
controller thread is created during JVM boot time. It subse-
quently creates threads corresponding to the other subsys-
tems: organizer threads to perform sample-based runtime
measurements and a single compilation thread® to perform
recompilation. After these threads are created, the con-
troller sleeps until the runtime measurements subsystem in-
serts an event in the organizer event queue.

The adaptive optimization system (without adaptive inlin-
ing) creates two organizer threads, a hot methods organizer
and a decay organizer. The hot methods organizer processes
method samples and inserts hot method events in the or-
ganizer event queue to allow the controller to consider the
methods for recompilation. Each event contains the method
ID and its relative hotness. The decay organizer decays
counters contained in the runtime measurements subsystem.
Such counters include the hot method counter and the coun-
ters associated with call graph edges discussed in Section 5.
The decay organizer does not communicate directly with the
controller.

ZCurrently, Jalapefio uses a simple coarse-grained locking
scheme to control access to a few JVM services. In par-
ticular, accessing certain class loader data structures that
Jalapefio’s compilers need to read during compilation re-
quires that the JVM master lock be held. This locking strat-
egy prevents multiple compilation threads from being effec-
tive, and can introduce lock contention between the compi-
lation thread and application threads.

51

The compilation thread extracts plans from the compila-
tion queue and invokes the optimizing compiler passing in
the compilation plan. The compilation thread records the
compilation time for the recompiled method in the AOS
database to allow for more accurate modeling of future re-
compilation decisions.

4.2 Sampling

The sampling implementation takes advantage of existing
mechanisms in the Jalapefio JVM. Before switching threads,
a counter associated with the current method is incremented.
The system attributes a sample taken on a back edge to the
current method. A sample taken in a method prologue is
credited to both the calling and current method, capturing
the fact that control is in transition between both meth-
ods. We have experimented with other sampling attribution
strategies and have found this one to be most effective. The
accuracy of this sampling technique is investigated in more

detail in [6].

This sampling technique provides a basic mechanism to es-
timate the time spent in execution of each method. In the
adaptive optimization system, two organizer threads peri-
odically process the raw data.

The first organizer thread (the hot method organizer), cre-
ated during system startup, installs a sampling object (the
method listener) to record raw data regarding the execution
profile. During a thread switch, the VM invokes the update
method of this listener, which records the currently active
method in a raw data buffer. This activity costs only a few
additional cycles during each thread switch, and the perfor-
mance impact does not stand out from noise from one run
to the next. After collecting the number of samples spec-
ified by its current sample size, the method listener wakes
the hot methods organizer thread.

When awoken, the hot methods organizer scans the method
counter raw data to identify methods where the application
spends most of its time. The organizer deems a method to be
“hot” if the percentage of samples attributed to that method
exceeds a controller-directed threshold and the method is
not already compiled at the maximum optimization level
available. For each hot method it discovers, the hot methods
organizer enqueues an event in the organizer event queue
that contains the method and the percentage of samples
attributed to the method.

The controller dynamically adjusts the listener’s sample size
and the organizer’s hotness threshold to adapt to the current
behavior of the application. By adjusting the sample size
within specified bounds, the controller attempts to reduce
the overhead of the hot methods organizer when the system
is in a steady state (the set of hot methods is stable), while
still being able to respond quickly to application phase shifts
(indicated by changes in the set of hot methods). Similarly,
the controller dynamically adjusts the hotness threshold to
approximately control the number of hot methods reported
by the hot methods organizer. If after several sampling pe-
riods, “not enough” hot methods are being returned, then
the controller can decrease the hotness threshold. On the
other hand, if “too many” hot methods are being returned
for several sampling periods, then the controller can increase

Compilers
[Base,Opt,...]

Executing %
s,

Code /(‘?//
___ RS S Y S
| Runtime Measurements Ooé !
. Method Subsystem Instrumented/ Instrumentation/
! Sample Optimized Compilation i
' Code Plan ,
= E
i | Hot Methods Decay AOS Compilation !
| | Organizer Organizer Database Thread '
1
i 1
! I
1 1
! I
i 1
' I
1 1
! I
i 1
! :
E Organizer Event Queue Controller Compilation Queue .
i 1
! I
i 1
! I
i 1
! I
1 1

Adaptive Optimization System

Figure 3: Implementation of adaptive recompilation in the Jalapeno Adaptive Optimization System

the threshold.

A second organizer, the decay organizer, periodically decays
the method counters. By decaying the counters, the sys-
tem gives more weight to recent samples when determining
method hotness.

4.3 Recompilation

Given a hot method from the organizer event queue, the
controller must decide whether it is profitable to recompile
the method with additional optimizations. The controller
uses a cost-benefit analysis to make this calculation.

For this discussion, we number the optimization levels avail-
able to the controller from 0 to N.®> For a method m cur-
rently compiled at level z, the controller estimates the fol-
lowing quantities:

o T, the expected time the program will spend executing
method m, if m is not recompiled.

o C};, the cost of recompiling method m at optimization
level 5, for: < j < N.*

o T;, the expected time the program will spend execut-
ing method m in the future, if m is recompiled at level

7.

Using these estimated values, the controller identifies the re-
compilation level j that minimizes the expected future run-

3For this discussion, the compilers in our current implemen-
tation (baseline, Opt level 0, Opt level 1, Opt level 2) would
map into this function as level 0, 1, 2, 3.

“The model considers recompilation at the same level
because new profiling information may enable additional
speedups over the previous version compiled at level :. This
is encoded by a feedback-directed optimization boost factor
that is used in the calculation of Tj.

52

ning time of a recompiled version of m; i.e., it chooses the
7 that minimizes the quantity C; + T;. If C; + T; < T3,
the controller decides to recompile m at level j7; otherwise it
decides to not recompile.

Clearly, the factors in this model are unknowable in prac-
tice. The process of estimating future costs and benefits is
an ongoing open research problem. The current controller
implementation is based on the fairly simple estimates de-
scribed below.

First, the controller assumes the program will execute for
twice its current duration. So, if the application has run
for b seconds, the controller assumes it will run for 5 more
seconds; if it has run for 2 hours, then it will run for 2 more
hours. Define T to be the future expected running time of
the program.

The system keeps track of where the application spends time
as it runs, using the sampling techniques described previ-
ously. The system uses a weighted average of these sam-
ples to estimate the percentage of future time (P,,) in each
method, barring recompilation. From this percentage esti-
mate and the future time estimate, the controller predicts
the future time spent in each method. That is,

T, =Tf % Py, (1)
For example, if the weighted samples indicate that the ap-
plication will spend 10% of its time in method m and the
code has run for 10 seconds, the controller will estimate the
future execution time of m to be 1 second.

The weight of each sample starts at one and decays periodi-
cally. Thus, the execution behavior of the recent past exerts
the most influence on the estimates of future program be-
havior. When the controller recompiles methods, it adjusts
the future estimates to account for the new optimization
level, and expected speedup due to recompilation.

The system estimates the effectiveness of each optimization
level as a constant based on offline measurements. Let Sk be
the speedup estimate for code at level k& compared to level 0.
Then, if method m is at level 2, the future expected running
time if we recompile at level 7 is given by

T, =T % 8:/85; (2)

To complete the cost-benefit analysis, the controller needs
to estimate the cost of recompilation. It currently use a
linear model of the compilation speed for each optimization
level, as a function of method size. This model is calibrated
offline.

We have described and implemented a simple controller model
that neglects many aspects of program behavior. The per-
formance results show that even this simple model functions
effectively in practice. However, we will continue to explore
model refinements as our system evolves.

5. FEEDBACK-DIRECTED INLINING

This section describes an extension to the adaptive opti-
mization system to support online feedback-directed inlin-
ing. At a high level, the system takes a statistical sample
of the method calls in the running application and main-
tains an approximation to the dynamic call graph based on
this data. Using this approximate dynamic call graph, the
system identifies “hot” edges to inline, and passes the infor-
mation to the optimizing compiler. The system may choose
to recompile already optimized methods to inline hot call
edges. Figure 4 shows the structure of the implementation
using the architectural framework of Section 3.

When a thread switch occurs in a method prologue, the
system calls the update method of an edge listener (as well
as the method listener as discussed in Section 4.2). This
edge listener walks the thread’s stack to determine the call
site that originated the call. The edge listener creates a tuple
identifying the calling edge (specified by the caller, call site,
and callee) and inserts this tuple into a buffer.

When the buffer becomes full, the edge listener is temporar-
ily deactivated (its update method will not be called again
at a prologue thread switch) and it notifies the dynamic call
graph (DCG) organizer to wake up and process the buffer.
The DCG organizer maintains a dynamic call graph, where
each edge corresponds to a tuple value in the buffer. After
updating the weights in the dynamic call graph, the DCG
organizer clears the buffer, and reactivates the edge listener.
The decay organizer, a separate thread, periodically decays
the edge weights in the dynamic call graph.

Periodically, the DCG organizer invokes the adaptive inlin-
ing organizer to recompute adaptive inlining decisions. The
adaptive inlining organizer performs two functions. First,
it identifies edges in the dynamic call graph whose percent-
age of samples exceed an edge hotness threshold. These
edges are added to an inlining rules data structure, which is
consulted by the controller when it formulates compilation
plans. Any edge in this data structure will be inlined if the
calling method is subsequently recompiled, subject to gener-
ous size constraints. The system sets the initial edge hotness
threshold fairly high, but periodically reduces it until reach-

53

ing a fixed minimal value. Effectively, this forces inlining
to be more conservative during program startup, but allows
it to become progressively more aggressive as profiling data
accumulates.

The second function of the adaptive inlining organizer is to
identify methods that are candidates for further recompila-
tion to enable inlining of hot call edges. To be identified as a
recompilation candidate by the inlining organizer, a method
must satisfy two criteria. First, the method must be hot,
as defined by the hotness threshold used by the hot method
organizer. Second, recompiling the method must force a
new inlining action, as dictated by the inlining rules data
structure.

When the adaptive inlining organizer identifies a method for
recompilation, it enqueues an event representing the method
for consideration by the controller. The organizer estimates
a boost factor, an estimate of the greater efficacy of optimiza-
tion on the method, due to the adaptive inlining rules. The
controller incorporates this boost factor into its cost/benefit
model described in Section 4.

Many factors can contribute to the expected boost factor,
including the elimination of call/return overhead and addi-
tional optimizations enabled by inlining. Our current imple-
mentation estimates the boost factor based on the fraction
of dynamic calls attributed to the call edge in the dynamic
call graph and an estimate, based on a previous study of off-
line profile directed inlining [5], of the benefit of eliminating
virtually all calls from the program. In future work, we
will examine more sophisticated heuristics involving more
detailed analysis of inline candidates or techniques such as
Dean and Chambers’s inlining trials [22].

As described in more detail in the context of the Self-93 im-
plementation [31], the system should take care when recom-
piling a method previously compiled with feedback-directed
inlining that previous inlining decisions are not lost. The
key issue in both Self-93 and in our system is that once a
call edge is inlined, it may no longer appear in the profil-
ing data used to drive the next round of inlining. Therefore,
failure to preserve old inlining decisions can result in the sys-
tem oscillating between two compiled versions of a method,
each embodying a different set of inlining decisions. As in
previous work, we solve this problem by ensuring that all
methods inlined in the previous version of the method are
also inlined in the new version.

6. PERFORMANCE EVALUATION

This section experimentally assesses the performance of the
current implementation of the Jalapefio Adaptive Optimiza-
tion System. Section 6.1 describes the experimental setup,
the benchmark suite, and the adaptive optimization sys-
tem configuration parameters used in the experiments. Sec-
tion 6.2 focuses on the effectiveness of multi-level recom-
pilation described in Section 4. The performance of the
feedback-directed inlining subsystem introduced in Section 5
is assessed in Section 6.3. Section 6.4 presents data on adap-
tive optimization system overhead and Section 6.5 presents
data on recompilation behavior.

Runtime Measurements
Edge
Subsystem

Decay
Organizer|

Method
Sample

Hot Methods
Organizer

Dynamic Call
Graph Organize

=

Adaptive Inlining
Organizer

Compilers
[Base,Opt,.. .]I

Instrumented/| | |nstrumentation/
Optimized Compilation
Code Plan

Compilation
Thread

Figure 4: Implementation of feedback-directed inlining in the Jalapefio Adaptive Optimization System

6.1 Experimental Methodology

The performance results in this section were obtained on an
IBM F50 Model 7025 with two 333MHz PP C604e processors
running AIX v4.3. The system has 1GB of main memory.

All experiments were performed using Jalapefio’s nongener-
ational copying garbage collector. The Jalapefio boot image
was compiled using the optimizing compiler at level 2; the
optimizing compiler and the adaptive optimization system
were included in the boot image. The following controller
configuration parameters were used in the experiments:

o Timer interrupts (Section 4.2) were generated every 10
milliseconds.

¢ The initial recompilation hotness threshold (Section 4.2)
was set to 1% and was allowed to vary between 1% and

0.25%.

¢ The initial recompilation sample size (Section 4.2) was
set such that the recompilation organizer would run 2
times a second. The sample size was allowed to vary
such that the recompilation organizer could run be-
tween 2 times a second and once every 4 seconds.

o The initial inlining edge hotness threshold (Section 5)
was set to 1% and was periodically reduced until it

reached 0.2%.

¢ The inlining sample size (Section 5) was set such that
the dynamic call graph and adaptive inlining organiz-
ers would run once every 2.5 seconds.

e The half-life for method samples 1s 1.7 seconds. The
half-life of edge weights in the dynamic call graph is
7.3 seconds.

We evaluate the system using the SPECjvm98 [20] bench-
marks, the Jalapefio optimizing compiler [14], and the Volano
benchmark [44]. Table 2 provides a description of each
benchmark, the number of classes that comprise the bench-
mark, and the size, in bytes, of its class files. Previous
work [2] has shown that Jalapefio performance on these
benchmarks without adaptive compilation roughly matches
that of the industry-leading IBM product virtual machine.

We focus on two interesting regimes for adaptive compi-
lation: program startup and steady state. During program
startup, program behavior typically changes rapidly as it dy-
namically loads classes and initializes data structures. After
a while, the program reaches a steady state. We evaluate
the startup regime by timing the first run of the SPECjvm98
benchmarks with the size 10 (medium) inputs, and by using
the Jalapefio optimizing compiler to compile a HelloWorld
program. We report the minimum time obtained from five
runs of each benchmark (a new JVM is started for each
run). For the Volano benchmark, we use a configuration
that passes 120,000 messages, and runs for roughly 30 sec-
onds on our system.

To measure steady-state performance, on the SPECjvm98
benchmarks, we report the best elapsed time from five runs,
all run during a single JVM ezecution, with the size 100
(large) inputs. For the Jalapefio optimizing compiler bench-

Number | Size of Class Files
Benchmarks | Description of Classes (in bytes)
compress An implementation of the Lempel-Ziv compression algorithm 12 17,821
jess Java expert shell system 150 396,536
db Execution of database functions on memory resident data 3 10,156
javac JDK 1.0.2 Java compiler 175 561,463
mpegaudio Decompression of audio files 54 120,182
mtrt Variant of a two-thread raytracing algorithm 25 57,859
jack Java parser generator 55 130,889
opt-compiler | Jalapefio optimizing compiler 393 1,378,292
Volano Multithreaded server application to simulate chat rooms 69 209,891

Table 2: The set

of benchmarks used to evaluate the Jalapefio Adaptive Optimization System. The first

seven rows comprise the suite of SPECjvm98 benchmarks.

mark, we report the best time from five runs of compiling
the entire optimizing compiler, consisting of roughly 75,000
lines of Java source code. For the Volano benchmark, we
report performance in terms of message throughput over a
run that passes 1.2 million messages.

6.2 Multi-Level Recompilation

This section evaluates the effectiveness of the adaptive multi-
level recompilation system described in Section 4 by compar-
ing its performance to both JIT and simple adaptive single-
level configurations of Jalapefio. In the adaptive single-level
configurations, the controller compiles all hot methods with
the optimizing compiler using a single fixed optimization
level.

To allow the experiments to focus on the impact of recom-
pilation decisions, none of the configurations perform any
feedback-directed optimizations (i.e., they do not use pro-
filing data to guide specific optimizations). Thus, when the
adaptive system chooses to recompile a method at an opti-
mization level, it will compile it the same way a JIT con-
figuration would. For each benchmark we ran the following
Jalapefio configurations:

o the baseline compiler as a JIT;

e the optimizing compiler at level 0 as a JIT;
o the optimizing compiler at level 1 as a JIT;
o the optimizing compiler at level 2 as a JIT;

o the adaptive single-level configuration using the opti-
mizing compiler at level 0;

o the adaptive single-level configuration using the opti-
mizing compiler at level 1;

o the adaptive single-level configuration using the opti-
mizing compiler at level 2;

o the adaptive multi-level system using the optimizing
compiler at any of its three levels.

The JIT configurations compile each method the first time
it executes and never recompile a method. Thus, these con-
figurations only incur the overhead of compilation the first

55

time a method is called. In the adaptive configurations, the
baseline compiler compiles each method the first time it ex-
ecutes. However, as the application executes, the adaptive
optimization system continuously identifies and recompiles
hot methods at higher optimization levels.

Figure 5 shows performance in the startup regime for each
benchmark. The graph shows speed relative to the baseline
JIT configuration, thus taller bars represent better perfor-
mance. Execution times for each configuration can be found
in the appendix.

The results show that in the startup regime, adaptive recom-
pilation clearly delivers better performance than any of the
JIT configurations. The worst adaptive configuration, level
2, improved performance by a mean of 23% compared to
the best JIT configuration, at optimization level 0. For four
benchmarks, even optimization level 0 is too expensive in
compile-time, degrading performance compared to the base-
line compiler. These results show that in the startup regime,
compile-time overhead plays a large role. For all bench-
marks, increasing the optimization level in the JIT config-
uration causes startup performance to suffer. This prop-
erty does not hold for the adaptive configurations, where
selective compilation allows effective use of higher optimiza-
tion on several benchmarks. However, the best single level
of adaptive optimization varies among the benchmarks be-
tween level 0 and level 1. For this reason, overall, the multi-
level optimization strategy delivers the best performance of
all configurations.

Figure 6 shows performance in the steady-state regime for
each benchmark. Again, the graph depicts speed relative to
the baseline JIT configuration and the execution times can
be found in the appendix.

The results show that the performance of each adaptive con-
figuration is competitive with its JIT configuration coun-
terpart. The multi-level adaptive system delivers the best
performance of the adaptive configurations, with overall per-
formance within 2% of the best JIT configuration at opti-
mization level 2. This result is encouraging, since the JIT
configuration performs no compilation, profiling, or decision
making during the runtime at steady state. The adaptive
system also benefits from delaying optimization. During the
delay, more of the program loads dynamically, so later op-

Speedup over JIT Baseline

Speedup over JIT Basdine

N

w
o b b b v |

o JIT OptLevel O
O JIT OptLevel 1
O JIT OptLevel 2

@ Adaptive OptLevel O
m Adaptive OptLevel 1
m Adaptive OptLevel 2
L m Adaptive Multi-Level

(e}
|

N
|

N
]

compress jess db javac mpegaudio mtrt jack opt-compiler volano geometric mean

Figure 5: Startup performance

O JIT OptLevel O
O JIT OptLevel 1
i _ o JIT OptLevel 2
@ Adaptive OptLevel O
m Adaptive OptLevel 1
m Adaptive OptLevel 2
® Adaptive Multi-Level

| |

compress jess db javac mpegaudio mtrt jack opt-compiler volano geometric mean

Figure 6: Steady-state performance

56

timization takes advantage of a greater view of the whole
program. In our current compiler, this results in more effec-
tive devirtualization and inlining, and less dynamic linking,
leading to improved performance over all JIT configurations
on some benchmarks.

Both Figures 5 and 6 illustrate that any one fixed strat-
egy does not suit a workload with programs that execute
for different lengths of time. For long-running programs,
the highest optimization level delivers the best performance
for JIT and single-level adaptive configurations. However,
for short-running programs, the highest optimization level
delivers the worst performance. The adaptive multi-level
system applies optimizations judiciously, attaining high per-
formance in both the startup and the steady-state regimes.

6.3 Feedback-Directed Inlining

Figure 7 shows the performance impact of feedback-directed
inlining in an adaptive multi-level system for both the startup
and steady-state regimes. For each benchmark we show the
speed relative to the adaptive multi-level system from the
previous section. Larger bars represent better performance.
Values greater than 1.0 indicate that feedback-directed in-
lining improved performance over the adaptive multi-level
system; values less than 1.0 indicate a performance degra-
dation.

For the startup regime, both jess and javac significantly
improve with feedback-directed inlining, with a 10% and
4.7% performance improvement, respectively. Only mtrt’s
performance significantly degrades with a 6.7% degradation.
Overall, feedback-directed inlining improves performance of
the short running programs by 1%. We did not expect to
see much performance impact in this regime because of the
programs’ short execution times. A short execution time
does not allow many methods to be compiled at high opti-
mization levels (where inlining occurs), or to be recompiled
due to new hot call sites.

For the steady-state regime, feedback-directed inlining con-
sistently improves performance. Feedback-directed inlin-
ing improved jess by 73% and mpegaudio by 22%. The
mtrt benchmark once again degrades with a 9% degradation.
Overall, feedback-directed inlining improves performance by
an average of 11%.

6.4 Adaptive System Overhead

Figure 8 illustrates where execution time is spent in the
various components of Jalapefio when using the multi-level
adaptive system with feedback-directed inlining. The figure
characterizes the overhead for two execution regimes: pro-
gram startup and long-running programs. For this figure,
program startup corresponds to first run of the SPECjvm98
benchmarks with input size 10, and long-running corresponds
to cumulative timings for five runs of the same benchmarks
with input size 100. This differs slightly from the steady-
state data, which reports the best time of five runs. The data
represents the cumulative time spent executing system com-
ponents on both processors of the SMP. The fraction of time
spent in each thread was collected for all seven SPECjvm98
benchmarks and for both regimes. The average of these
fractions was then computed separately for each regime.

57

The top two pie charts illustrate a coarse-grain break down
of total AOS system overhead. These two pie charts demon-
strate that the total time spent in the AQOS threads is rela-
tively small, averaging 8.6% for program startup and 6.0%
for long-running. The similarity in overhead for the two
regimes can be attributed to the cost-benefit model of the
controller (described in Section 4.3). By estimating future
execution time, the model avoids performing too much work
at startup, yet allows more time for optimization as program
execution continues. Previous versions of the adaptive sys-
tem that did not use a cost-benefit model tended to spend a
larger percentage of time performing optimization in short-
running programs. In addition, baseline compilation and
garbage collection comprise a small percentage of execution
time in both regimes.

The bottom pair of pie charts shows the relative time spent
in each AOS thread. The percentage of time spent com-
piling in both regimes is similar, approximately 50%, again
due to the controller model. The organizer threads incur
slightly higher overhead for the long-running programs be-
cause each program spends more time in a steady state.
During this time, the organizer threads continue to process
runtime measurements, but insert fewer events in the orga-
nizer event queue, thus reducing the controller’s computa-
tion load.

For both program startup and steady state the AOS over-
head (the execution time of the controller and organizer
threads) is less than 3.7% of the total execution time (only
2.9% for the long-running regime). This confirms experi-
mental observations of previous research [35, 46].

6.5 Recompilation Decisions

Figure 9 depicts the recompilation decisions made by the
controller in the adaptive multi-level system during the steady-
state regime. For each benchmark, four bars are shown:
each bar represents the percentage of all methods that fin-
ished at the given optimization level. The baseline bar rep-
resents methods that were never recompiled by the adaptive
optimization system. The level 1 and level 2 bars are fur-
ther subdivided to show how methods reached their final
compilation state. In the adaptive multi-level system there
are two paths a method can follow to level 1: either the
method was directly recompiled at level 1, or the method
was first recompiled at level 0 and then recompiled again at
level 1. Similarly, there are four possible paths that result
in a method being compiled at opt level 2. However, for our
benchmarks no method actually took the path that entailed
being recompiled at all three of the optimization levels.

The adaptive system recompiled between 12% (Volano) and
45% (javac) of all methods dynamically compiled. The
most commonly selected optimization level was level 1, which
is consistent with the model parameters that define the ex-
pected benefits and costs of each optimization level. Most of
the methods that reached the higher optimization levels (1
and 2) passed through an intermediate stage of optimization
before they were recompiled at their ultimate level.

Figure 10 depicts the recompilation activity of the adaptive
multi-level system with feedback-directed inlining during a
long-running program with phase shifts. In this experiment,

Speedup over Adaptive Multi-L evel

1.74

— Program Startup
mm Steady State

1.5+
1.10
1 — 1.05
1.00 1.01 = 1.01 099101100 1.01
1.0 %3—
0.5
0.0
0 o — c %] o
5 = s 3 £ & g 3 = = s
g = 5 e o £ 2
o) Q = o 1)
8 o o = o =8
£ = £ =
©)
Q
o

Figure 7: Impact of online feedback-directed inlining
Breakdown of Jalapefio Execution Time

Program Startup Long Running

8.6% 6.0% 0.9% Al AOS

0.3% 0.1% Threads
2.6% OGarbage
Collection
W Baseline
Compiler
OApplication
Thread(s)
88.6% 92.9%

Breakdown of Time in AOS Threads

Program Startup Long Running

0,
15.9% 4.3%

@ Controller
20.6%

OMethod
Organizer

M Inlining
Organizer

@ Decay
Organizer

O Optimizing
12 4% Compiler
51.6%

11.1%

Figure 8: Breakdown of time spent in various Jalapeno threads

58

opt-compiler

Geometric Mean

100

mm Baseline

= Baseline -> Level 0

=3 Baseline -> Level 1

™ Baseline -> Level 0 -> Level 1
= Baseline -> Level 2

@ Baseline -> Level 1 -> Level 2
3 Baseline -> Level 0 -> Level 2

% of All Methods Compiled

compress jess db javac mpegaudio = mtrt jack opt-compiler volano

Figure 9: Controller recompilation decisions for the adaptive multi-level system with feedback-directed in-
lining during the steady-state regime

50 M Level 2
I O Level 1
[J Level O
3
3 40
g
3
o
% 30
o
=
5]
=
% 20
o
O
IS] N
Z 10 [
L - o [FEL

compress jess I db I javac mpegaudio Tmirt jack

Figure 10: Recompilation activity while running the seven SPECjvm98 benchmarks in the same JVM. Each

benchmark is run once using the size 100 inputs. The x-axis represents time partitioned into 100 fixed-size
intervals.

59

each of the seven SPECjvm98 benchmarks was run once
with size 100 input in a single JVM. This differs from the
previous performance results, which run each benchmark in
a fresh JVM. The x-axis of the figure represents time, from
system boot to program exit, partitioned into 100 fixed-size
intervals. The x-axis is marked to show approximately when
each benchmark begins and ends its execution. The y-axis
gives the number of recompilations that occurred in each
interval. Each bar is subdivided to show the number of
recompilations at each optimization level.

As expected, when each new benchmark begins its execu-
tion, the set of hot methods changes dramatically, generat-
ing a new set of recompilation candidates. This results in
the increase in the number of level 0 recompilations at the
beginning of each benchmark’s execution. As execution of
each phase continues, many methods that remain hot gradu-
ate to higher optimization levels. Another interesting trend
is that later phases initiate more recompilation activity than
earlier phases. T'wo factors cause this increase in recompila-
tion activity. First, javac and jack have larger working sets
of hot methods than do compress, jess, and db. Second,
as explained in Section 4.3, the controller assumes that the
program will execute for twice as long as it has currently
run. Therefore, in later stages of this run the controller se-
lects methods for recompilation more aggressively because
it expects to enjoy a longer period of time to recover its
compilation costs.

7. DISCUSSION

We have presented the design and implementation of an
extensible and high-performance adaptive optimization sys-
tem. We now present some subjective observations on the
system.

The system must manage a substantial volume of data ef-
ficiently. We believe that our distributed, asynchronous,
object-oriented design serves this purpose in two ways. First,
as data passes through the pipeline from raw data to com-
pilation decisions, each successive pipeline phase performs
increasingly sophisticated analysis on a decreasing volume
of data. Thus, the design helps structure a system that per-
forms sophisticated analysis with reasonably low overhead.
Second, by separating functionality into modules, the design
separates concerns and allows an extensible architecture, as
is common in well-designed object-oriented systems.

The sampling-based online profiling also helps control run-
time overhead of the adaptive optimization system. By
changing sampling frequencies dynamically, the system can
adaptively throttle its own overhead. This behavior would
likely be more difficult with compiler-inserted intrusive in-
strumentation. However, in future work, we will let the
controller insert more expensive intrusive instrumentation
for limited periods of time, in order to collect more precise
information.

Many times, we faced implementation decisions regarding
whether to make controller decisions based on an analytic
model of program behavior, or whether to introduce ad-hoc
tuning parameters to guide decisions. Invariably, tuning the
parameters proved more difficult than expected, due to un-
forseen differences in application behavior. As work on the

60

system progresses, we will move increasingly toward ana-
Iytic decisions based on first principles, and excise all ad
hoc parameters from the implementation. Developing an ef-
fective model is a main area for future work, especially in
the presence of inlining and multithreading.

We feel that Java served as an effective and productive lan-
guage for implementing the system. Java’s safety properties
and memory management eased debugging throughout de-
velopment. We exploited Java threads and synchronization
operations to build the asynchronous system components.
However, race conditions remain difficult, and sound con-
current system design is vital.

Some previous systems (e.g. [28]) have relied on limited,
but fast compiler stubs to perform runtime optimization.
In contrast, we chose a different design point with a full,
general optimizing compiler that can recompile any part of
the application code, libraries, or the VM itself. While our
approach potentially introduces more runtime overhead, we
have demonstrated techniques that limit the overhead and
achieve good performance in a full-blown Java Virtual Ma-
chine.

Finally, we note an oversimplification in the analytic model
of Section 4.3. This model assumes 100% CPU utilization,
and decides whether to allocate CPU cycles to the applica-
tion or to the compiler. However, in hindsight, we realize
that this assumption is not valid for the subset of our exper-
iments that use single-threaded codes on a multiprocessor.
To correct this, we plan to enhance the analytic model to
reduce the expected cost of compilation if the system detects
idle processors. We do not expect the cost of compilation
to be zero, due to memory system contention, but clearly
the compiler can use idle cycles more aggressively than our
current system. We expect this change will improve our per-
formance for scenarios with idle cycles, as the controller will
be significantly more aggressive in scheduling compilation.

8. RELATED WORK

Previous adaptive virtual machines have used method in-
vocation counters to identify and optimize online program
hot spots. Hoélzle and Unger [32] describe the SELF-93 sys-
tem, an adaptive optimization system for SELF. The goal
of the system is to avoid long pauses in interactive appli-
cations by optimizing only the performance-critical parts of
the application. Method invocation counters with an expo-
nential decay mechanism are used to identify candidates for
optimization. In addition, Self-93 used polymorphic inline
caches (PICs) to gather context-sensitive receiver class dis-
tributions to guide class prediction and inlining. In SELF-
93, optimized methods do not contain invocation counters.
Therefore, although SELF-93 could reoptimize an already
optimized method, ® its counter-based profiling mechanism
would be less effective for identifying hot regions of already
optimized code, thus making it more difficult to implement

®Recompilation of an optimized method could be triggered
when it calls an unoptimized method whose invocation
counter exceeds the threshold on the call. However, this sit-
uation would typically arise only after an application phase
shift, since if the call edge between the two methods had
been hot when the caller was optimized, the callee would
have either been inlined into the caller or optimized itself.

an effective multi-level optimization strategy. In contrast,
our sampling technique allows optimized, as well as unopti-
mized, methods to be sampled continuously and fairly.

The HotSpot JVM [34] and the IBM Java Just-in-Time com-
piler (version 3.0) [43] are adaptive systems for Java. Both
systems initially interpret an application and later compile
performance-critical code. The IBM JIT uses method invo-
cation counters augmented to accommodate loops in meth-
ods to trigger compilation. Details of the HotSpot compila-
tion system are not provided.

Bala et al. [9] describe Dynamo, a transparent dynamic op-
timizer that performs optimizations at runtime on a native
binary. Dynamo initially interprets the program, keeping
counters to identify sections of code called hot traces. These
sections are then optimized and written as an executable.

Other dynamic optimization research have used non-sample-
based profiling techniques to identify and optimize online
program hot spots. Burger and Dybvig [12, 13] explore
profile-driven dynamic recompilation in Scheme, with an im-
plementation of a basic block reordering optimization. Un-
fortunately, the overhead for basic block edge profiling, even
after applying basic block reordering, is 27% of the execution
time. Furthermore, they require programmer intervention
to determine how to throttle profiling to reduce its over-
head. In contrast, our sampling technique’s overhead is low
enough (Section 6) that sampling can be continuous, and
our architecture for adaptive optimization does not require
any programmer intervention.

Hansen [30] describes an adaptive FORTRAN system that
makes automatic optimization decisions. When a basic block
counter reaches a threshold, the basic block is reoptimized
and moved to the next optimization state, where more ag-
gressive optimizations are performed.

Perhaps the work that is most similar to our work is that
of Kistler [35]. Kistler presents a continuous program op-
timization architecture for Oberon that allows “up-to-the-
minute” profiling information to be used in program reop-
timization. Kistler concludes that continuous optimization
can produce better code than can be achieved with offline
compilation, regardless of whether profiling information is
used in the latter. There are some interesting differences in
the overall architectural design of his and our systems. Con-
sider, for example, the interactions between the controller
(manager) and runtime measurements (profiler). In his de-
sign, this interaction is based on a message protocol in which
the “individual profiling components are autonomous.” In
our design, an organizer thread processes the profiling data
for consumption by the controller. Adding a new organizer
thread allows alternative processing of raw profiling data
without requiring a new profiler. Although Kistler evalu-
ates the time overhead of periodically sampling the program
counter, it is not obvious what optimizations are driven by
this sampling technique, and therefore he does not evalu-
ate the technique’s usefulness. In contrast, we are able to
demonstrate the effect on performance of optimizations that
are driven by our sample-based profiling. Finally, it is hard
to compare the results of the two systems due to the differ-
ence in languages, the maturity of the systems, the different

61

target optimizations, and the selection of benchmarks. For
example, Kistler’s work does not measure the difference in
a program’s behavior between its startup and steady states.

Whaley [46] implemented sample-based calling-context-sensitive

profiling in a production JIT compiler. He demonstrated
that the overhead of this sample-based approach was low
enough to run continuously, and that this sampling tech-
nique is stable over repeated runs of the same benchmark
with the same set of inputs. However, no optimizations are
driven by the sampled data and he does not, therefore, eval-
uate the sampling technique’s usefulness.

Another area of research considers runtime optimizations
that exploit invariant runtime values. Because such val-
ues are not statically determinable, these systems provide
optimization opportunities not available with static compi-
lation. Some systems include DyC [8, 27, 28], Tempo [38]
(based on C), Fabius [37] (based on ML), and Consel and
Noel’s work [19] which takes a partial evaluation approach.
The tcc system [39] provides a mechanism to specify and
compose arbitrary expressions and statements at runtime.
The main disadvantage of these techniques is that they rely
on programmer directives to identify the regions of code to
be optimized.

Other work [17, 29] has explored offline profile-directed com-
pilation schemes that use one or more profiles from previ-
ous runs of an application as feedback into a compiler to
make better optimization decisions for future executions. In
addition, there are fully automated profiling systems that
use transparent low overhead profiling to improve perfor-
mance of future executions. Such systems include Digital
FX!32 [33], Morph [48], and DCPI [4]. In contrast, this pa-
per focuses on using profiling information of an application’s
execution to help optimize that same execution of the ap-
plication. Nevertheless, our architecture can be extended to
handle offline profile-directed compilation schemes; for ex-
ample, the controller could use compilation plans and pro-
filing data from previous executions of an application.

There are also nonadaptive systems that perform compila-
tion/optimization at runtime to avoid the cost of interpreta-
tion. This includes early work such as the Smalltalk-80 [24]
and Self-91 [16] systems, as well many of today’s JIT Java
compilers [1, 36, 47].

Previous studies have evaluated the viability of selective op-
timization. Arnold et al. [6] used the Jalapefio JVM to
quantify the performance potential of selective optimization.
Their results confirmed that selective optimization has the
potential to significantly outperform a fixed JIT strategy
and can even approach the performance of static compilation
for longer-running benchmarks. Radhakrishnan et al. [41]
used the Kaffe Virtual Machine to establish the maximum
performance improvement possible by interpreting, rather
than compiling, cold methods for the SPECjvm98 with in-
put size 1.

Serrano et al. [42] describe a quasi-static compilation ap-
proach using Jalapefio that attempts to avoid the costs of
dynamic compilation. Using their approach, an application
is pre-executed and the compiled images are written to a

file before the JVM terminates. When a compiled method
is needed during subsequent executions of the application,
the dynamic compiler is not automatically invoked as is the
case in our adaptive system. The system checks to see if a
precompiled image of the method exists. If an image exists,
the system relocates and links the code into the new JVM
environment. If no image exists, the dynamic compiler com-
piles the method.

9. CONCLUSIONS

We have described the design and implementation of the
Jalapefio Adaptive Optimization System, a general and ex-
tensible architecture to support online feedback-directed op-
timization. The system is written completely in Java, al-
lowing the techniques described to apply not only to the
application, but also to the virtual machine and its compo-
nents. We have presented the current instantiation of this
framework, relying on sample-based online profiling, multi-
ple optimization levels, and sample-driven online feedback-
directed inlining.

Performance results demonstrate that low-overhead sam-
pling techniques can effectively drive profile-directed online
recompilation of Java programs. The adaptive system, in-
cluding recompilation, on average introduces less than 10%
overhead and delivers total system performance competitive
with the best alternative strategies considered. We have fur-
ther demonstrated that a multi-level optimization strategy
can deliver robust performance in both startup and steady-
state program regimes, competitive with the best alterna-
tive in each regime. Finally, we have demonstrated that
sampling techniques can effectively drive feedback-directed
inlining, delivering performance improvements of 11% on
average and up to 73%.

This system provides a flexible infrastructure for future re-
search on online optimization. Future research topics in-
clude automatic specialization, profile-directed memory lay-
out optimizations, refinements to the recompilation analytic
model, and consideration of larger server codes based on
IBM middleware products. We anticipate that the Jalapefio
Adaptive Optimization System will play a key role in our
efforts to improve Java server performance.

Acknowledgments

We thank the Jalapefio team members [2] for their work in
developing the system used to conduct this research. We
thank Vivek Sarkar for his support of this work. We also
thank Barbara Ryder for her support of Matthew Arnold’s
involvement in this work. Michael Burke, Laureen Treacy,
and the anonymous OOPSLA reviewers provided valuable
suggestions and feedback on the presentation of this work.

62

10. REFERENCES

[1] A.-R. Adl-Tabatabai, M. Cierniak, C.-Y. Lueh, V. M.
Parikh, and J. M. Stichnoth. Fast, effective code
generation in a Just-in-Time Java compiler. In
Proceedings of the ACM SIGPLAN'98 Conference on
Programming Language Design and Implementation
(PLDI), pages 280-290, Montreal, Canada,
17-19 June 1998. SIGPLAN Notices 33(5), May 1998.

B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke,
P. Cheng, J.-D. Choi, A. Cocchi, S. J. Fink, D. Grove,
M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, M. F.
Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J.
Serrano, J. C. Shepherd, S. E. Smith, V. C. Sreedhar,
H. Srinivasan, and J. Whaley. The Jalapefio virtual
machine. IBM Systems Journal, 39(1), 2000.

B. Alpern, D. Attanasio, J. J. Barton, A. Cocchi,
D. Lieber, S. Smith, and T. Ngo. Implementing
Jalapefio in Java. In ACM Conference on
Object-Oriented Programming Systems, Languages,
and Applications, pages 314-324, 1999.

J. M. Andersen, L. M. Berc, J. Dean, S. Ghemawat,
M. R. Henzinger, S.-T. A. Leung, R. L. Sites, M. T.
Vandevoorde, C. A. Waldspurger, and W. E. Weihl.
Continuous profiling: Where have all the cycles gone?
Technical Note 1997-016a, Digital Systems Research
Center, www.research.digital.com/SRC, Sept. 1997.

M. Arnold, S. Fink, V. Sarkar, and P. Sweeney. A
comparative study of static and dynamic heuristics for
inlining. In ACM SIGPLAN Workshop on Dynamic
and Adaptive Compilation and Optimization, 2000.

M. Arnold, M. Hind, and B. G. Ryder. An empirical
study of selective optimization. In 18th International
Workshop on Languages and Compilers for Parallel

Computing, Aug. 2000.

M. Arnold and P. F. Sweeney. Approximating the
calling context tree via sampling. Technical Report RC

21789, IBM T.J. Watson Research Center, July 2000.

J. Auslander, M. Philipose, C. Chambers, S. J.
Eggers, and B. N. Bershad. Fast, effective dynamic
compilation. In Proceedings of the ACM SIGPLAN '96
Conference on Programming Language Design and
Implementation, pages 149-159, Philadelphia,
Pennsylvania, 21-24 May 1996. SIGPLAN Notices
31(5), May 1996.

V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A
transparent dynamic optimization system. In
SIGPLAN 2000 Conference on Programming
Language Design and Implementation, June 2000.

T. Ball and J. R. Larus. Branch prediction for free. In
Proceedings of the ACM SIGPLAN'98 Conference on
Programming Language Design and Implementation
(PLDI), pages 300-313, Albuquerque, New Mexico,
23-25 June 1993. SIGPLAN Notices 28(6), June 1993.

R. Bodik, R. Gupta, and V. Sarkar. ABCD:
Eliminating Array Bounds Checks on Demand. In
SIGPLAN 2000 Conference on Programming
Language Design and Implementation, June 2000.

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[19]

(20]

(21]

(22]

R. G. Burger. Efficient Compilation and
Profile- Driven Dynamic Recompilation in Scheme.
PhD thesis, Indiana University, 1997.

R. G. Burger and R. K. Dybvig. An infrastructure for
profile-driven dynamic recompilation. In ICCL’98, the
IEEE Computer Society International Conference on
Computer Languages, May 1998.

M. G. Burke, J.-D. Choi, S. Fink, D. Grove, M. Hind,
V. Sarkar, M. J. Serrano, V. C. Sreedhar,

H. Srinivasan, and J. Whaley. The Jalapefio dynamic
optimizing compiler for Java. In ACM 1999 Java
Grande Conference, pages 129-141, June 1999.

B. Calder, P. Feller, and A. Eustace. Value profiling.
In the 80th International Symposium on
Microarchitecture, pages 259-269, Dec. 1997.

C. Chambers and D. Ungar. Making pure
object-oriented languages practical. In ACM
Conference on Object-Oriented Programming Systems,
Languages, and Applications, pages 1-15, Nov. 1991.
SIGPLAN Notices 26(11).

P. P. Chang, S. A. Mahlke, W. Y. Chen, and W. mei
W. Hwu. Profile-guided automatic inline expansion for
C programs. Software — Practice and Ezperience,

22(5):349-369, May 1992.

M. Cierniak, G.-Y. Lueh, and J. M. Stichnoth.
Practicing JUDO: Java Under Dynamic
Optimizations. In SIGPLAN 2000 Conference on
Programming Language Design and Implementation,

June 2000.

C. Consel and F. Noél. A general approach for
run-time specialization and its application to C. In
Conference Record of the 28rd ACM
SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, pages 145-156, Jan. 1996.

T. S. P. E. Corporation. SPEC JVM98 Benchmarks.
http://www.spec.org/osg/jvm98, 1998.

R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman,
and F. K. Zadeck. An efficient method for computing
static single assignment form and the control
dependence graph. ACM Transactions on
Programming Languages and Systems, 13(4):451-490,
1991.

J. Dean and C. Chambers. Towards better inlining
decisions using inlining trials. In Proceedings of the
ACM Conference on LISP and Functional
Programming '94, pages 273-282, Orlando, FL, June
1994.

D. Detlefs and O. Agesen. Inlining of virtual methods.
In the 18th European Conference on Object-Oriented
Programming, 1999.

L. P. Deutsch and A. M. Schiffman. Efficient
implementation of the Smalltalk-80 system. In 17th
Annual ACM Symposium on the Principles of
Programming Languages, pages 297-302, Jan. 1984.

63

[25]

26]

(27]

(28]

[29]

S. Fink, K. Knobe, and V. Sarkar. Unified Analysis of
Array and Object References in Strongly Typed
Languages. In Seventh International Static Analysis

Symposium (2000), June 2000.

J. Gosling, B. Joy, and G. Steele. The Java Language
Specification. Addison Wesley, 1996.

B. Grant, M. Mock, M. Philipose, C. Chambers, and
S. Eggers. DyC: An expressive annotation-directed
dynamic compiler for C. Technical Report
TR-97-03-03, University of Washington, Department
of Computer Science and Engineering, Mar. 1997.

B. Grant, M. Philipose, M. Mock, C. Chambers, and
S. J. Eggers. An evaluation of staged run-time
optimizations in DyC. In Proceedings of the ACM
SIGPLAN '99 Conference on Programming Language
Design and Implementation, pages 293-304, 1999.

D. Grove, J. Dean, C. Garrett, and C. Chambers.
Profile-guided receiver class prediction. In ACM
Conference on Object-Oriented Programming Systems,
Languages, and Applications, pages 108-123, Oct.
1995.

G. J. Hansen. Adaptive Systems for the Dynamic
Run-Time Optimization of Programs. PhD thesis,
Carnegie-Mellon University, 1974.

U. Holzle. Adaptive Optimization for Self: Reconciling
High Performance with Ezploratory Programmang.
PhD thesis, Stanford University, Aug. 1994.

U. Holzle and D. Ungar. Reconciling responsiveness
with performance in pure object-oriented languages.
ACM Transactions on Programming Languages and

Systems, 18(4):355-400, July 1996.

R. J. Hookway and M. A. Herdeg. Digital FX!32:
Combining emulation and binary transslation. Digital

Technical Journal, 9(1):3-12, Jan. 1997.

The Java Hotspot performance engine architecture.
White paper available at

http://java.sun.com/products/hotspot/whitepaper.html,
Apr. 1999.

T. P. Kistler. Continuous Program Optimization. PhD
thesis, University of California, Irvine, 1999.

A. Krall. Efficient JavaVM Just-in-Time compilation.
In J.-L. Gaudiot, editor, International Conference on
Parallel Architectures and Compilation Techniques,

pages 205-212, Oct. 1998.

M. Leone and P. Lee. Dynamic specialization in the
Fabius system. ACM Computing Surveys, 30(3es):1-5,
Sept. 1998. Article 23.

R. Marlet, C. Consel, and P. Boinot. Efficient
incremental run-time specialization for free. In
Proceedings of the ACM SIGPLAN 99 Conference on
Programming Language Design and Implementation,

pages 281-292, 1999.

39]

[40]

[41]

[42]

48]

M. Poletto, D. R. Engler, and M. F. Kaashoek. tcc: A
system for fast, flexible, and high-level dynamic code
generation. In Proceedings of the ACM SIGPLAN'97
Conference on Programming Language Design and
Implementation (PLDI), pages 109-121, Las Vegas,
Nevada, 15-18 June 1997. SIGPLAN Notices 32(5),
May 1997.

M. Poletto and V. Sarkar. Linear scan register
allocation. ACM Transactions on Programming

Languages and Systems, 21(5):895-913, Sept. 1999.
R. Radhakrishnan, N. Vijaykrishnan, L. K. John, and

A. Sivasubramaniam. Architectural issues in Java
runtime systems. In Proceedings of the Sizth
International Symposium on High Performance
Computer Architecture (HPCA-6), pages 387-398,

Toulouse, France, Jan. 2000.

M. Serrano, R. Bordawekar, S. Midkiff, and M. Gupta.
Quasi-static compilation in Java. In ACM Conference
on Object-Oriented Programming Systems, Languages,
and Applications, Oct. 2000.

T. Suganama, T. Ogasawara, M. Takeuchi, T. Yasue,
M. Kawahito, K. Ishizaki, H. Komatsu, and
T. Nakatani. Overview of the IBM Java Just-in-Time
compiler. IBM Systems Journal, 39(1), 2000.

VolanoMark 2.1.
http://www.volano.com/benchmarks.html.

J. Whaley. Dynamic optimization through the use of
automatic runtime specialization. M.eng.,
Massachussetts Institute of Technology, May 1999.

J. Whaley. A portable sampling-based profiler for Java
virtual machines. In ACM 2000 Java Grande
Conference, June 2000.

B.-S. Yang, S.-M. Moon, S. Park, J. Lee, S. Lee,

J. Park, Y. C. Chung, S. Kim, K. Ebcioglu, and

E. Altman. LaTTe: A Java VM Just-in-Time compiler
with fast and efficient register allocation. In
International Conference on Parallel Architectures and
Compilation Techniques, Oct. 1999.

X. Zhang, Z. Wang, N. Gloy, J. B. Chen, and M. D.
Smith. System support for automated profiling and
optimization. In Proceedings of the 16th Symposium on
Operating Systems Principles (SOSP-97), Operating
Systems Review, 31(5), pages 15626, Oct. 5-8 1997.

APPENDIX

Tables 3 and 4 give the absolute execution data for the startup and steady-state regimes for the bar charts presented in
Sections 6.2 and 6.3.

Benchmarks || Base JIT Adaptive

Line |OPTO0[OPT1][OPT 2 || OPTO0 | OPT 1| OPT 2 || multi [multi+-AI
compress 24.987 6.096 7.156 8.868 6.660 5.860 6.071 5.939 5.953
jess 7.398 8.955 12.957 21.473 4.960 5.158 5.824 5.305 4.810
db 1.907 2.582 4.788 6.282 1.761 1.982 2.355 1.745 1.731
javac 6.331 14.627 21.067 31.844 5.533 5.823 6.295 5.670 5.412
mpegaudio 25.794 7.736 9.413 14.472 7.838 7.153 9.714 8.028 7.922
mtrt 6.444 4.380 7.221 12.357 3.621 4.266 6.727 || 3.524 3.776
jack 11.879 10.318 14.063 20.015 6.933 7.092 7.554 7.139 7.216
opt-compiler || 12.808 16.740 33.014 83.084 10.466 4.639 4.937 | 4.709 4.672
Volano 3045 4429 4468 4312 4007 4155 4019 4185 4204

Table 3: Performance of the benchmarks in the startup regime. All results are in seconds, except Volano,
with units of messages per second (larger is better).

Benchmarks Base JIT Adaptive

Line OPT 0 [OPT1[OPT2||OPTO0]|OPT 1| OPT 2 || multi | multi+AI
compress 276.586 53.789 41.422 37.945 53.235 40.582 37.646 37.882 35.221
jess 63.989 34.730 29.018 29.023 34.708 29.040 29.185 28.813 16.591
db 102.863 76.235 75.790 75.964 70.090 70.663 69.885 70.193 65.898
javac 73.461 92.905 44.004 43.908 65.687 42.869 42.649 39.425 39.558
mpegaudio 235.265 37.213 28.236 25.997 43.175 32.517 30.357 28.271 23.043
mtrt 57.017 16.050 8.839 8.940 15.572 9.719 9.355 11.379 12.511
jack 87.970 40.951 39.726 38.036 43.526 40.603 39.658 38.877 36.107
opt-compiler || 267.822 || 345.557 | 107.004 | 106.745 || 257.773 | 126.083 | 124.270 || 105.292 101.649
Volano 3375 3697 5134 5194 4535 4652 4994 5272 5000

Table 4: Performance of the benchmarks in the steady-state regime. All results are in seconds, except Volano,
with units of messages per second (larger is better).

65

