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Abstract 
We describe the design and implementation of Dynamo, a 

software dynamic optimization system that is capable of 
transparently improving the performance of a native instruction 
stream as it executes on the processor. The input native instruction 
stream to Dynamo can be dynamically generated (by a JIT for 
example), or it can come from the execution of a statically 
compiled native binary. This paper evaluates the Dynamo system 
in the latter, more challenging situation, in order to emphasize the 
limits, rather than the potential, of the system. Our experiments 
demonstrate that even statically optimized native binaries can be 
accelerated Dynamo, and often by a significant degree. For 
example, the average performance of –O optimized SpecInt95 
benchmark binaries created by the HP product C compiler is 
improved to a level comparable to their –O4 optimized version 
running without Dynamo. Dynamo achieves this by focusing its 
efforts on optimization opportunities that tend to manifest only at 
runtime, and hence opportunities that might be difficult for a static 
compiler to exploit. Dynamo’s operation is transparent in the sense 
that it does not depend on any user annotations or binary 
instrumentation, and does not require multiple runs, or any special 
compiler, operating system or hardware support. The Dynamo 
prototype presented here is a realistic implementation running on 
an HP PA-8000 workstation under the HPUX 10.20 operating 
system. 

1. Introduction 
Recent trends in software and hardware technologies appear 

to be moving in directions that are making traditional performance 
delivery mechanisms less effective. The use of object-oriented 
languages and techniques in modern software development has 
resulted in a greater degree of delayed binding, limiting the size of 
the scope available for static compiler analysis. Shrink-wrapped 
software is being shipped as a collection of DLLs rather than a 
single monolithic executable, making whole-program optimization 
at static compile-time virtually impossible. Even in cases where 
powerful static compiler optimizations can be applied, computer 
system vendors have to rely on the ISV (independent software 
vendor) to enable them. This puts computer system vendors in the 
uncomfortable position of not being able to control the very keys 
that unlock the performance potential of their own machines. More 

recently, the use of dynamic code generation environments (like 
Java JITs and dynamic binary translators) makes the applicability 
of heavyweight static compiler optimization techniques 
impractical. Meanwhile, on the hardware side, technology is 
moving toward offloading more complexity from the hardware 
logic to the software compiler, as evidenced by the CISC to RISC 
to VLIW progression. 

The problem with this trend is that the static compiler is 
taking on an increasingly greater performance burden while the 
obstacles to traditional static compiler analysis are continuing to 
increase. This will inevitably lead to either very complex compiler 
software that provides only modest performance gains on general-
purpose applications, or highly customized compilers that are 
tailored for very narrow classes of applications. 

The Dynamo project was started in 1996 to investigate a 
technology that can complement the static compiler’s traditional 
strength as a static performance improvement tool with a novel 
dynamic performance improvement capability [3]. In contrast to 
the static compiler, Dynamo offers a client-side performance 
delivery mechanism that allows computer system vendors to 
provide some degree of machine-specific performance without the 
ISV’s involvement. 

Dynamo is a dynamic optimization system (i.e., the input is an 
executing native instruction stream), implemented entirely in 
software. Its operation is transparent: no preparatory compiler 
phase or programmer assistance is required, and even legacy native 
binaries can be dynamically optimized by Dynamo. Because 
Dynamo operates at runtime, it has to focus its optimization effort 
very carefully. Its optimizations have to not only improve the 
executing native program, but also recoup the overhead of 
Dynamo’s own operation. 

The input native instruction stream to Dynamo can come from 
a statically prepared binary created by a traditional optimizing 
compiler, or it can be dynamically generated by an application 
such as a JIT. Clearly, the runtime performance opportunities 
available for Dynamo can vary significantly depending on the 
source of this input native instruction stream. The experiments 
reported in this paper only discuss the operation of Dynamo in the 
more challenging situation of accelerating the execution of a 
statically optimized native binary. The performance data presented 
here thus serve as an indicator of the limits of the Dynamo system, 
rather than its potential. The data demonstrates that even in this 
extreme test case, Dynamo manages to speedup many applications, 
and comes close to breaking even in the worst case. 

Section 1 gives an overview of how Dynamo works. The 
following sections highlight several key innovations of the 
Dynamo system. Section 2 describes Dynamo’s startup 
mechanism, Section 4 gives an overview of the hot code selection, 
optimization and code generation process, Section 5 describes how 
different optimized code snippets are linked together, Section 6 
describes how the storage containing the dynamically optimized 
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code is managed, and Section 7 describes signal handling. Finally, 
Section 8 summarizes the experimental data to evaluate Dynamo’s 
performance. Dynamo is a complex system that took several years 
to engineer. This paper only provides an overview of the whole 
system. Further details are available in [2] and on the Dynamo 
project website (www.hpl.hp.com/cambridge/projects/Dynamo). 

2. Overview 
From a user’s perspective, Dynamo looks like a PA-8000 

software interpreter that itself runs on a PA-8000 processor (the 
hardware interpreter). Interpretation allows Dynamo to observe 
execution behavior without having to instrument the application 
binary. Since software interpretation is much slower than direct 
execution on the processor, Dynamo only interprets the instruction 
stream until a “hot” instruction sequence (or trace) is identified. At 
that point, Dynamo generates an optimized version of the trace 
(called a fragment) into a software code cache (called the fragment 
cache). Subsequent encounters of the hot trace’s entry address 
during interpretation will cause control to jump to the top of the 
corresponding cached fragment. This effectively suspends the 
interpreter and allows the cached code to execute directly on the 
processor without incurring any further interpretive overhead. 
When control eventually exits the fragment cache, Dynamo 
resumes interpreting the instruction stream, and the process repeats 
itself. 

Figure 1 illustrates this flow of control in more detail. 
Dynamo starts out by interpreting the input native instruction 
stream until a taken branch is encountered (A). If the branch target 
address corresponds to the entry point of a fragment already in the 
fragment cache (B), control jumps to the top of that fragment, 
effectively suspending Dynamo, and causing execution of the 
cached fragments to occur directly on the underlying processor (F). 
Otherwise, if the branch target satisfies a “start-of-trace” condition 
(C), a counter associated with the target address is incremented (D). 

Our current prototype defines start-of-trace as targets of backward-
taken branches (likely loop headers) and fragment cache exit 
branches (exits from previously identified hot traces). If the 
counter value exceeds a preset hot threshold (E), the interpreter 
toggles state and goes into “code generation mode” (G). When 
interpreting in this mode, the native instruction sequence being 
interpreted is recorded in a hot trace buffer, until an “end-of-trace” 
condition is reached (H). At that point the hot trace buffer is 
processed by a fast, lightweight optimizer (I) to create an 
optimized single-entry, multi-exit, contiguous sequence of 
instructions called the fragment1. Our current prototype defines 
end-of-trace as backward taken branches or taken branches whose 
targets correspond to fragment entry points in the fragment cache 
(i.e., fragment cache hits). A trace may also be truncated if its 
length exceeds a certain number of instructions. The fragment 
generated by the optimizer is emitted into the fragment cache by a 
linker (J), which also connects fragment exit branches to other 
fragments in the fragment cache if possible. Connecting fragments 
together in this manner minimizes expensive fragment cache exits 
to the Dynamo interpretive loop. The new fragment is tagged with 
the application binary address of the start-of-trace instruction. 

As execution proceeds, the application’s working set 
gradually materializes in the fragment cache, and the Dynamo 
overhead (time spent in the Dynamo interpretive loop / time spent 
executing in the fragment cache) begins to drop. Assuming that the 
majority of an application’s execution time is typically spent in a 
small portion of its code, the performance benefits from repeated 
reuse of the optimized fragments can be sufficient to offset the 
overhead of Dynamo’s operation. On the SpecInt95 benchmarks, 

                                                           
1 A fragment is similar to a superblock, except for the fact that it is 

a dynamic instruction sequence, and can cross static program 
boundaries like procedure calls and returns. 
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the average Dynamo overhead is less than 1.5% of execution time. 
Dynamo’s interpreter-based hot trace selection process (A-H) 
dominates this overhead, with the optimizer and linker components 
(I, J) contributing a relatively insignificant amount. 

3. Startup and Initialization 
Dynamo is provided as a user-mode dynamically linked 

library (shared library). The entry point into this library is the 
routine dynamo_exec. When dynamo_exec is invoked by an 
application, the remainder of the application code after return from 
the dynamo_exec call will execute under Dynamo control. 

As outlined in Figure 2, dynamo_exec first saves a snapshot 
of the application’s context (i.e., the machine registers and stack 
environment) to an internal app-context data structure. It then 
swaps the stack environment so that Dynamo’s own code uses a 
custom runtime stack allocated separately for its use. Dynamo’s 
operation thus does not interfere with the runtime stack of the 
application running on it. The interpreter (box A in Figure 1) is 
eventually invoked with the return-pc corresponding to the 
application’s dynamo_exec call. The interpreter starts interpreting 
the application code from this return-pc, using the context saved in 
app-context. The interpreter never returns to dynamo_exec (unless 
a special bailout condition occurs, which is discussed later), and 
Dynamo has gained control over the application. From this point 
onwards, an application instruction is either interpreted, or a copy 
of it is executed in the fragment cache. The original instruction is 
never executed in place the way it would have been if the 
application were running directly on the processor. 

We provide a custom version of the execution startup code 
crt0.o, that checks to see if the Dynamo library is installed on the 
system, and if it is, invokes dynamo_start prior to the jump to 
_start (the application’s main entry point). Application binaries 
that are linked with this version of crt0.o will transparently invoke 
Dynamo if Dynamo is installed on the system, otherwise they will 
execute normally. The application binary itself remains unchanged 
whether or not it is run under Dynamo. This strategy allows 
Dynamo to preserve the original mapping of the application’s text 
segment, a key requirement for transparent operation. 

 As part of the initialization done in dynamo_exec prior to 
actually invoking the interpreter, Dynamo mmaps a separate area 
of memory that it manages itself. All dynamically allocated objects 
in Dynamo code are created in this area of memory. Access to this 
area is protected to prevent the application from inadvertently or 
maliciously corrupting Dynamo’s state. 

4. Fragment Formation 
Due to the significant overheads of operating at runtime, 

Dynamo has to maximize the impact of any optimization that it 
performs. Furthermore, since the objective is to complement, not 
compete, with the compiler that generated the instruction stream, 
Dynamo primarily looks for performance opportunities that tend to 
manifest themselves in the runtime context of the application. 
These are generally redundancies that cross static program 
boundaries like procedure calls, returns, virtual function calls, 
indirect branches and dynamically linked function calls. Another 
performance opportunity is instruction cache utilization, since a 
dynamically contiguous sequence of frequently executing 
instructions may often be statically non-contiguous in the 
application binary. 

Dynamo’s unit of runtime optimization is a trace, defined as a 
dynamic sequence of consecutively executed instructions. A trace 
starts at an address that satisfies the start-of-trace condition and 
ends at an address that satisfies the end-of-trace condition. Traces 
may extend across statically or dynamically linked procedure 
calls/returns, indirect branches and virtual function calls. Dynamo 
first selects a “hot” trace, then optimizes it, and finally emits 
relocatable code for it into the fragment cache. The emitted 
relocatable code is contiguous in the fragment cache memory, and 
branches that exit this code jump to corresponding exit stubs at the 
bottom of the code. This code is referred to as a fragment. The 
trace is a unit of the application’s dynamic instruction stream (i.e., 
a sequence of application instructions whose addresses are 
application binary addresses) whereas the fragment is a Dynamo 
internal unit, addressed by fragment cache addresses. The 
following subsections outline the trace selection, trace optimization 
and fragment code generation mechanisms of Dynamo. 

4.1 Trace selection 
Since Dynamo operates at runtime, it cannot afford to use 

elaborate profiling mechanisms to identify hot traces (such as 
[14][4]). Moreover, most profiling techniques in use today have 
been designed for offline use, where the gathered profile data is 
collated and analyzed post-mortem. The objective here is not 
accuracy, but predictability. If a particular trace is very hot over a 
short period of time, but its overall contribution to the execution 
time is small, it may still be an important trace to identify. Another 
concern for Dynamo is the amount of counter updates and counter 
storage required for identifying hot traces, since this adds to the 
overhead and memory footprint of the system. 

As discussed in Section 2, Dynamo uses software 
interpretation of the instruction stream to observe runtime 
execution behavior. Interpretation is expensive but it prevents the 

Application crt0 code 
... 
... 
push stack frame; 
spill caller-save regs; 
call dynamo_exec ; 
restore caller-save regs;  
pop stack frame; 
... 
... 
... 
 
 

Dynamo library code 
 
dynamo_exec : 
   save callee-save regs to app-context; 
   copy caller-save regs from stack frame 
        to app-context; 
   save stackptr to app-context; 
   return-pc = value of link reg;  
   swap Dynamo & application stack; 
   // stackptr now points to Dynamo stack 
   initialize internal data structures;  
   call interpreter  (return-pc, app-context); 
   // control does not return here!  
 

app runs 
natively 

 

app runs 
under Dynamo 

 

 
Figure 2. How Dynamo gains control over the application 
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need to instrument the application binary or otherwise perturb it in 
any way. Interpretation is preferable to statistical PC sampling 
because it does not interfere with applications that use timer 
interrupts. Also, as we will elaborate shortly, interpretation allows 
Dynamo to select hot regions directly without having to collate and 
analyze point statistics like the kind produced by PC sampling 
techniques. Another important advantage of interpretation is that it 
is a deterministic trace selection scheme, which makes the task of 
engineering the Dynamo system much easier. 

It is worth noting that the “interpreter” here is a native 
instruction interpreter and that the underlying CPU is itself a very 
fast native instruction interpreter implemented in hardware. This 
fact can be exploited on machines that provide fast breakpoint 
traps (e.g., through user-mode accessible breakpoint window 
registers) to implement the Dynamo interpreter very efficiently [2]. 
On the PA-8000 however, breakpoint traps are very expensive, and 
it was more efficient to implement the interpreter by using 
emulation. The higher the interpretive overhead, the earlier 
Dynamo has to predict the hot trace in order to keep the overheads 
low. In general, the more speculative the trace prediction scheme, 
the larger we need to size the fragment cache, to compensate for 
the larger number of traces picked as a result. Thus, the 
interpretive overhead has a ripple effect throughout the rest of the 
Dynamo system. 

Dynamo uses a speculative scheme we refer to as MRET (for 
most recently executed tail) to pick hot traces without doing any 
path or branch profiling. The MRET strategy works as follows. 
Dynamo associates a counter with certain selected start-of-trace 
points such as the target addresses of backward taken branches. 
The target of a backward taken branch is very likely to be a loop 
header, and thus the head of several hot traces in the loop body. If 
the counter associated with a certain start-of-trace address exceeds 
a preset threshold value, Dynamo switches its interpreter to a mode 
where the sequence of interpreted instructions is recorded as they 
are being interpreted. Eventually, when an end-of-trace condition 
is reached, the recorded sequence of instructions (the most recently 
executed tail starting from the hot start-of-trace) is selected as a hot 
trace. 

The insight behind MRET is that when an instruction 

becomes hot, it is statistically likely that the very next sequence of 
executed instructions that follow it is also hot. Thus, instead of 
profiling the branches in the rest of the sequence, we simply record 
the tail of instructions following the hot start-of-trace and 
optimistically pick this sequence as a hot trace. Besides its 
simplicity and ease of engineering, MRET has the advantage of 
requiring much smaller counter storage than traditional branch or 
path profiling techniques. Counters are only maintained for 
potential loop headers. Furthermore, once a hot trace has been 
selected and emitted into the fragment cache, the counter 
associated with its start-of-trace address can be recycled. This is 
possible because all future occurrences of this address will cause 
the cached version of the code to be executed and no further 
profiling is required. 

Subsequent hot traces that also start at the same start-of-trace 
address will be selected when control exits the first selected trace 
for that start-of-trace address. Exits from previously selected hot 
traces are treated as start-of-trace points by Dynamo (see Figure 1). 
This allows subsequent hot tails that follow the earlier hot start-of-
trace to be selected by the MRET scheme in the usual manner. 

No profiling is done on the code generated into Dynamo’s 
fragment cache. This allows the cached code to run directly on the 
processor at full native speed without any Dynamo introduced 
overheads. The flip side of this is that if the biases of some 
branches change after a hot trace was selected, Dynamo would be 
unable to detect it. In order to allow Dynamo to adapt to changing 
branch biases, the fragment cache is designed to tolerate periodic 
flushes. Periodically flushing some of the traces in the fragment 
cache helps remove unused traces, and also forces re-selection of 
active traces. This is discussed in more detail in Section 6. 

4.2 Trace optimization 
The selected hot trace is prepared for optimization by 

converting it into a low-level intermediate representation (IR) that 
is very close to the underlying machine instruction set. 

The first task of trace optimization is to transform the 
branches on the trace so that their fall-through direction remains on 
the trace. Loops are only allowed if the loop-back branch targets 
the start-of-trace. Otherwise the loop-back branch is treated as a 
trace exit. Unconditional direct branches are redundant on the trace 
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and can be removed. In the case of branches with side-effects, such 
as branch-and-link branches, the side-effect is preserved even if the 
branch itself is removed. After trace optimization, no branch-and-
link type branches remain on the trace.  

Even indirect branches may be redundant. For example, a 
return branch if preceded by the corresponding call on the trace is 
redundant and will be removed. Other indirect branches are 
optimistically transformed into direct conditional branches. The 
transformed conditional branch compares the dynamic branch 
target with the target contained in the trace at the time the trace 
was selected (referred to as the predicted indirect branch target). If 
the comparison succeeds, control goes to the predicted (on-trace) 
target. If the comparison fails, control is directed to a special 
Dynamo routine that looks up a Dynamo-maintained switch table. 
The switch table is a hash table indexed by indirect branch target 
addresses (application binary addresses). The table entries contain 
the fragment cache address corresponding to the target. If an entry 
is found for the dynamic indirect branch target, control is directed 
to the corresponding fragment cache address. Otherwise, control 
exits the fragment cache to the Dynamo interpreter. If the 
interpreter then selects a new hot trace starting at that dynamic 
indirect branch target, Dynamo will add a new entry to the switch 
table corresponding to the mapping from the start-of-trace 
application address to its fragment cache address. Assuming 
execution follows the selected hot trace most of the time, this 
transformation replaces a potentially expensive indirect branch 
with a less expensive direct conditional branch. The following 
outlines the transformed code for an indirect branch instruction: 

 
// assuming the indirect branch’s dynamic target is in Rx 
spill Rscratch to app-context; // free a fixed register 
set Rscratch = address of predicted on-trace target; 
if (Rx = = Rscratch) goto predicted target; 
copy Rx to Rscratch; 
goto switch_table_lookup(Rscratch); 
 
The actual register that contains the original indirect branch’s 

dynamic target can be different for different indirect branch 
instructions. The purpose of copying this dynamic target to register 
Rscratch is to ensure that when control enters the switch table 
lookup routine at execution time, the same fixed register (Rscratch) 
will contain the dynamic target that has to be looked up. 

Finally, an unconditional trace exit branch is appended to the 
bottom of the trace so that control reaching the end of the trace can 
exit it via a taken branch. After fixing up the branches on the trace, 
the result is a single-entry, multi-exit sequence of instructions with 
no internal control join points. Figure 3 illustrates the branch 
adjustments that occur after a trace is selected from the application 
binary. 

Since traces are free of internal join points, new opportunities 
for optimization may be exposed that were otherwise unsafe in the 
original program code. The simplicity of control flow allowed 
within a trace also means traces can be analyzed and optimized 
very rapidly. In fact, the Dynamo trace optimizer is non-iterative, 
and optimizes a trace in only two passes: a forward pass and a 
backward pass. During each pass the necessary data flow 
information is collected as it proceeds along the fragment. Most of 
the optimizations performed involve redundancy removal: 
redundant branch elimination, redundant load removal, and 
redundant assignment elimination. These opportunities typically 
result from partial redundancies in the original application binary 
that become full redundancies in a join-free trace. 

The trace optimizer also sinks all partially redundant 
instructions (i.e., on-trace redundancies) into special off-trace 
compensation blocks that it creates at the bottom of the trace. This 
ensures that the partially redundant instructions get executed only 
when control exits the trace along a specific path where the 
registers defined by those instructions are downward-exposed. 
Fragment A in Figure 5 illustrates such a case. The assignment to 
register r5 shown in the compensation block (thick border) could 
have originally been in the first trace block. This sinking code 
motion ensures that the overhead of executing this assignment is 
only incurred when control exits the fragment via the path along 
which that assignment to r5 is downwards exposed. 

Other conventional optimizations performed are copy 
propagation, constant propagation, strength reduction, loop 
invariant code motion and loop unrolling. Dynamo also performs 
runtime disambiguated conditional load removal by inserting 
instruction guards that conditionally nullify a potentially redundant 
load. 

Note that load removal is only safe if it is known that the 
respective memory location is not volatile. Information about 
volatile variables may be communicated to Dynamo through the 
symbol table. In the absence of any information about volatile 
variables, load removal transformations are conservatively 
suppressed. 

4.3 Fragment code generation 
The fragment code generator emits code for the trace IR into 

the fragment cache. The emitted code is referred to as a fragment. 
The fragment cache manager (discussed in Section 6) first 
allocates sufficient room in the fragment cache to generate the 
code. 

A trace IR may be split into multiple fragments when it is 
emitted into the fragment cache. This is the case, for example, if a 
direct conditional branch is encountered on the trace, which was 
converted from the application’s original indirect branch 
instruction by the trace optimizer (see Section 4.2). Such a branch 
splits the trace into two fragments. The predicted on-trace target of 
the original indirect branch, which is the instruction immediately 
following this branch on the trace, starts a separate fragment. 

Virtual registers may be used in the IR but the trace optimizer 
retains their original machine register mappings. The register 
allocator attempts to preserve the original machine register 
mappings to the extent possible when the code is finally emitted. 
The allocator reservers one register to hold the address of the app-
context data structure (see Figure 2) when control is within the 
fragment. The app-context is a Dynamo internal data structure that 
is used to keep the application’s machine state during 
interpretation, and also to record a snapshot of the application’s 
machine state at the point of the last fragment cache exit to 
Dynamo. The trace optimizer uses the app-context as a spill area to 
create temporary scratch registers necessary for its optimizations. 
It cannot use the application’s runtime stack as a spill area because 
that would interfere with stack operations generated by the static 
compiler that created the application binary. 

Generation of the fragment code from the trace IR involves 
two steps: emitting the fragment body, and emitting the fragment 
exit stubs. Emitting the fragment body involves straightforward 
generation of the code corresponding to the trace IR itself. After 
that, a unique exit stub is emitted for every fragment exit branch 
and fragment loop-back branch. The exit stub is a piece of code 
that transfers control from the fragment cache to the Dynamo 
interpreter in a canonical way, as outlined below: 
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spill Rlink to app-context; 
branch & link to interpreter; // sets Rlink to the following PC 
<ptr to linkage info for this exit branch> 
 
Each stub can be entered by only one fragment exit branch. 

The stub code first saves the link register (Rlink) to the app-
context. It then does a branch and link to the entry point of the 
Dynamo interpreter, which sets the Rlink register to the fragment 
cache address following this branch. The Dynamo interpreter will 
take a snapshot of the application’s machine state (with the 
application’s original Rlink value being taken from the app-context 
data structure) prior to starting interpretation. The end of the exit 
stub beyond the branch and link instruction contains a pointer to 
linkage information for the fragment exit branch associated with 
the stub. When control exits the fragment to the Dynamo 
interpreter, the interpreter consults this linkage information to 
figure out the next application address at which it should start 
interpretation. The value of the Rlink register contains the address 
of the location containing the pointer to the linkage information for 
the current fragment exit. 

5. Fragment Linking 
After the fragment code is emitted into the fragment cache, 

the new fragment is linked to other fragments already in the 
fragment cache. Linking involves patching a fragment exit branch 
so that its taken target is the entry point of another fragment, 
instead of to its exit stub. 

As an example, suppose the trace BDGIJE in Figure 3 (a) now 
becomes hot (B is a valid start-of-trace by our definition, when it is 
entered via an exit from the earlier hot trace ACDGHJE). Figure 4 
illustrates the linking that occurs after the fragment corresponding 
to the BDGIJE trace is emitted into the fragment cache. Linked 
branches are shown as dark arrows, and their original unlinked 
versions are indicated as dashed light arrows. 

Fragment linking is essential for performance, because it 
prevents expensive exits from the fragment cache back to the 
Dynamo interpreter. In our prototype implementation on the PA-
8000 for example, disabling fragment linking results in an order of 
magnitude slowdown (by an average factor of 40 for the SpecInt95 
benchmarks). 

Fragment linking also provides an opportunity for removing 
redundant compensation code from the source fragment involved 

in the link. Recall that the trace optimizer sinks on-trace 
redundancies into compensation blocks, so that these instructions 
are only executed when control exits the fragment along a 
particular path (see Section 4.2). Fragment A in Figure 5 illustrates 
such a case, where the assignment to r5 shown in the compensation 
block (thick border) was originally in the first block before it was 
sunk into its compensation block. As part of the linkage 
information that is kept at each fragment exit stub (the shaded 
boxes in Figure 5), a mask of on-trace redundant register 
assignments along that particular fragment exit is maintained. In 
Figure 5, this mask would be kept in the exit stub corresponding to 
the compensation block, and bit 5 of the mask would be set. A 
similar mask of killed register assignments at the top of every 
fragment is also maintained as part of the Dynamo internal data 
structure that keeps fragment-related information. At link-time, if a 
register appears in both masks, the instruction that last defined it in 
the source fragment’s compensation block is dead and can be 
removed. This is illustrated in Figure 5, where the assignment to r5 
in Fragment A’s compensation block can be deleted because r5 is 
defined before being used on entry to Fragment B. 

While the advantages of linking are clear, it also has some 
disadvantages that impact other parts of the Dynamo system. For 
instance, linking makes the removal of individual fragments from 
the fragment cache expensive, because all incoming branches into 
a fragment must first be unlinked first. Linking also makes it 
difficult to relocate fragments in the fragment cache memory after 
they have been emitted. This might be useful for instance to do 
periodic de-fragmentation of the fragment cache memory. 

6. Fragment Cache Management 
Dynamo cannot afford to do complicated management of the 

fragment cache storage, because of the overheads this would incur. 
We could avoid storage management altogether by simply 
expanding the size of the fragment cache as needed. But this has 
several undesirable effects. For example, one of the advantages of 
collecting hot traces in a separate fragment cache is the improved 
instruction cache locality and TLB utilization that can result from 
keeping the working set close together in memory. This advantage 
could go away if over time, the hot traces that make up the current 
working set are spread out over a large area of fragment cache 
memory. Clearly, the ideal situation where the fragment cache only 
contains the traces that make up the current working set is difficult 
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to achieve. The overhead of implementing an LRU type scheme to 
identify cold fragments would be too expensive as well. Moreover, 
as pointed out earlier, any policy that only removes a few 
fragments would incur the expense of having to unlink every 
incoming branch into these fragments. 

Dynamo instead employs a novel pre-emptive flushing 
heuristic to periodically remove cold traces from the fragment 
cache without incurring a high penalty. A complete fragment cache 
flush is triggered whenever Dynamo recognizes a sharp increase in 
the fragment creation rate (or hot trace selection rate). The 
rationale here is that a sharp rise in new fragment creation is very 
likely indicative of a significant change in the working set of the 
program that is currently in the fragment cache. Since control is 
predominantly being spent in Dynamo during this stage, the 
fragment cache flush is essentially “free”. Figure 6 illustrates this 
scenario for the SpecInt95 m88ksim benchmark. Since all 
fragments are removed during a fragment cache flush, no unlinking 
of branches needs to be done. 

The pre-emptive flushing mechanism has other useful side 
effects. All fragment-related data structures maintained for internal 
bookkeeping by Dynamo are tied to the flush, causing these 
memory pools to be reset as a side effect of a pre-emptive flush. A 
pre-emptive flush thus serves as an efficient garbage collection 
mechanism to free dynamic objects associated with fragments that 
are likely to have dropped out of the current working set. If some 
fragments belonging to the new working set are inadvertently 
flushed as a result, they will be regenerated by Dynamo when 
those program addresses are encountered later during execution. 
Regeneration of fragments allows Dynamo to adapt to changes in 
the application’s branch biases. When a trace is re-created, 
Dynamo may select a different tail of instructions from the same 
start-of-trace point. This automatic “re-biasing” of fragments is 
another useful side effect of the pre-emptive cache flushing 
strategy. 

7. Signal Handling 
Optimizations that involve code reordering or removal, such 

as dead code elimination and loop unrolling, can create a problem 
if a signal arrives while executing the optimized fragment, by 
making it difficult or impossible for Dynamo to recreate the 

original signal context prior to the optimization. This can create 
complications for precise signal delivery. For example, the 
application might arm a signal with a handler that examines or 
even modifies the machine context at the instant of the signal. If a 
signal arrives at a point where a dead register assignment has been 
removed, the signal context is incomplete.  

Dynamo intercepts all signals, and executes the program’s 
signal handler code under its control, in the same manner that it 
executes the rest of the application code (box K in Figure 1). This 
gives Dynamo an opportunity to rectify the signal context that 
would otherwise be passed directly to the application’s handler by 
the operating system. Asynchronous signals (such as keyboard 
interrupts, etc., where the signal address is irrelevant) are treated 
differently from synchronous signals (such as segment faults, etc., 
where the signal address is critical). 

If an asynchronous signal arrives when executing a fragment, 
the Dynamo signal handler will queue it and return control back to 
the fragment cache. All queued asynchronous signals are processed 
when the next normal fragment cache exit occurs. This allows 
Dynamo to provide a proper signal context to the application’s 
handler since control is not in the middle of an optimized fragment 
at the time the signal context is constructed. 

In order to bound asynchronous signal handling latency, the 
Dynamo signal handler unlinks all linked branches on the current 
fragment prior to resuming execution of the fragment. To 
disconnect self-loops in a similar manner, the fragment generator 
emits an exit stub for each self-loop branch in addition to the exit 
stubs for the fragment exit branches. Unlinking the current 
fragment forces the next fragment exit branch to exit the fragment 
cache via the exit stub, preventing the possibility of control 
spinning within the fragment cache for an arbitrarily long period of 
time before the queued signals are processed. This feature allows 
Dynamo to operate in environments where soft real-time 
constraints must be met. 

Synchronous signals on the other hand are problematic, 
because they cannot be postponed. A drastic solution is to suppress 
code removing and reordering transformations altogether. A more 
acceptable alternative is to use techniques similar to that developed 
for debugging of optimized code to de-optimize the fragment code 
before attempting to construct the synchronous signal context. 

 

Figure 6. Dynamic trace selection rate for m88ksim, showing a sharp change in the working set ~106 sec into its execution 
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Fortunately, the problem of de-optimizing is much simpler in 
Dynamo since only straight-line fragments are considered during 
optimization. Optimization logs can be stored along with each 
fragment that describes compensation actions to be performed 
upon signal-delivery, such as the execution a previously deleted 
instruction. This is presently an ongoing effort in the Dynamo 
project. 

Our prototype currently implements a less ambitious solution 
to this problem, by dividing trace optimizations into two 
categories, conservative and aggressive. Conservative 
optimizations allow the precise signal context to be constructed if a 
synchronous fault occurs while executing the fragment. Aggressive 
optimizations on the other hand cannot guarantee this. Examples of 
conservative optimizations include constant propagation, constant 
folding, strength reduction, copy propagation and redundant 
branch removal. The aggressive category includes all of the 
conservative optimizations plus dead code removal, code sinking 
and loop invariant code motion. Certain aggressive optimizations, 
like redundant load removal, can sometimes be incorrect, if the 
load is from a volatile memory location. 

Dynamo’s trace optimizer is capable of starting out in its 
aggressive mode of optimization, and switching to conservative 
mode followed by a fragment cache flush if any suspicious 
instruction sequence is encountered. Unfortunately, the PA-RISC 
binary does not provide information about volatile memory 
operations or information about program-installed signal handlers. 
So this capability is currently unused in Dynamo. In a future 
version of Dynamo, we plan to investigate ways to allow the 
generator of Dynamo’s input native instruction stream to provide 
hints to Dynamo. Dynamo can use such hints if they are available, 
but will not rely on them for operation. 

8. Performance Data 
For performance evaluation we present experiments on 

several integer benchmarks. Dynamo incurs a fixed startup 
overhead for allocating and initializing its internal data structures 
and the fragment cache. The startup overhead could probably be 
improved through more careful engineering. But for the purposes 
of this study, we use benchmarks that long enough to allow the 
startup and initialization overhead to be recouped. This section 

presents data comparing the performance of running several 
integer benchmarks on Dynamo to the identical binary executing 
directly on the processor. Our benchmark set includes the 
SpecInt95 benchmarks2 and a commercial C++ code called 
deltablue, which is an incremental constraint solver [28]. The 
programs were compiled at the +O2 optimization level (equivalent 
to the default –O option) using the product HP C/C++ compiler. 
This optimization level includes global intraprocedural 
optimization. Performance measurements were based on wall clock 
time on a lightly loaded single-processor HP PA-8000 workstation 
[21] running the HP-UX 10.20 operating system. 

Figure 7 shows the speedup that Dynamo achieves over +O2 
optimized native program binaries running without Dynamo. For 
these runs, Dynamo was configured to use a fixed size 150 Kbyte 
fragment cache, which is flushed when sharp changes occur to the 
trace selection rate or there is no room to generate new fragments. 
Details about the performance impact of varying the fragment 
cache size are outside the scope of this paper and can be found 
elsewhere [2]. As the figure indicates, Dynamo achieves 
considerable speedup in some cases, over 22% in li and m88skim, 
about 18% in perl, and about 14% in compress. These four 
programs have relatively stable working sets, a fact that dynamic 
optimization can exploit very well. The average overall speedup is 
about 9%. A significant portion of the performance gains come 
from the act of selecting a trace and forming a fragment out of it, 
that is, from the implied partial procedure inlining and improved 

                                                           
2 Our experiments do not include the SpecInt95 gcc benchmark. 

This benchmark actually consists of repeated runs of gcc on a 
number of input files, and the individual runs are too short 
running to qualify for our performance study (less than 60 
seconds on the PA-8000). To understand the performance 
characteristics of gcc, we modified the gcc program to internally 
loop over the input files, thus resulting in a single long 
invocation of gcc. We do not show data for the modified gcc 
because it does not represent the original benchmark, but it’s 
performance characteristics are comparable to that of go for all 
of the data shown here. 
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code layout in the fragment cache. Fragment optimization accounts 
for approximately 3% of the total gains on average, and one-third 
of this is due to conservative (signal and volatile-memory safe) 
optimizations. Note however, that if we ignore the inputs on which 
Dynamo bails out (as discussed shortly), the average contribution 
due to trace optimization is around 5%. 

Dynamo does not achieve performance improvements on 
programs go, ijpeg and vortex. Dynamo’s startup time is a non-
negligible fraction of the total runtime of ijpeg, as ijpeg does not 
run long enough to recoup Dynamo’s startup overhead before 
starting to provide any performance benefit. In the case of go and 
vortex that run for a long time, the problem is the lack of a stable 
working set. A relatively high number of distinct dynamic 
execution paths are executed in these benchmarks [4]. Frequently 
changing dynamic execution paths result in an unstable working 
set, and Dynamo spends too much time selecting traces without 
these traces being reused sufficiently in the cache to offset the 
overhead of its own operation. 

Fortunately, since Dynamo is a native-to-native optimizer, it 
can use the original input program binary as a fallback when its 
overhead starts to get too high. Dynamo constantly monitors the 
ratio of time spent in Dynamo over time spent in the fragment 
cache. If this ratio stays above a tolerable threshold for a prolonged 
period of time, Dynamo assumes that the application cannot be 
profitably optimized at runtime. At that point Dynamo bails-out by 
loading the application’s app-context to the machine registers and 
jumping to an application binary address. From that point on the 
application runs directly on the processor, without any further 
dynamic optimization. Bail-out allows Dynamo to come close to 
break-even performance even on “ill-behaved” programs with 
unstable working sets. This is illustrated in the graph in Figure 8 
for the benchmark go. The Dynamo overhead for a relatively well-
behaved application, m88ksim, is also shown for comparison. 

 Figure 9 shows Dynamo’s performance on binaries compiled 
with higher optimization levels. The figure shows the program 

runtimes with and without Dynamo, for three optimization levels: 
+O2 (same as –O), +O4, and profile-based +O4 +P (i.e., +O4 with 
a prior profile collection run). At level +O4, the HP C compiler 
performs global interprocedural and link-time optimization. At 
level +O4 +P the compiler performs +O4 optimizations based on 
profile information gathered during a prior +O4 run. However, 
compile-time increases very significantly from +O2 to +O4, and 
the ability to debug the binary is lost. Because of this, most 
software vendors are reluctant to enable higher optimization levels, 
in spite of the performance advantages they offer. 

The data in Figure 9 shows that Dynamo finds performance 
improvement opportunities even in highly optimized binaries. In 
fact, on this set of benchmarks, Dynamo is able to raise the average 
performance of +O2 compiled binaries to a level that slightly 
exceeds the performance of their +O4 compiled versions running 
without Dynamo! This performance boost comes in a transparent 
fashion, without the creator of the binary having to do anything 
special. The fact that Dynamo finds performance improvement 
opportunities even in +O4 optimized binaries is not as surprising 
as it first seems, because Dynamo primarily focuses on runtime 
performance opportunities that a static compiler would find 
difficult to exploit. 

In some programs (such as li and perl), Dynamo is able to 
boost the performance of even profile-feedback compiled binaries 
(+O4 +P). On average however, the benefits of Dynamo disappear 
once static optimization is enhanced with profile information. This 
is to be expected, as the most beneficial inlining and other path-
sensitive optimizations have been already made at compile-time. 

As pointed out in the introduction, the goal of this study is to 
establish the limits of Dynamo’s capabilities in an extreme setting, 
where the quality of the input program code is good. In compiling 
these benchmarks, the static compiler had all of the program 
sources available, and no dynamically linked libraries were used. 
Using good quality compiled code as input forced the development 
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effort to focus on fine-tuning the engineering of the Dynamo 
system. 

It should be emphasized that the performance data shown here 
is very specific to the quality of the code produced by the PA-8000 
compiler, and to the PA-8000 processor implementation. Although 
the hot trace selection and dynamic optimization can be expected 
to provide benefits in general, the actual impact in terms of wall-
clock performance improvement will vary from target to target. On 
the deeply pipelined PA-8000 for example, the branch 
misprediction penalty is 5 cycles, and indirect branches (including 
returns) are always mispredicted. Indirect branch removal therefore 
makes a big contribution toward Dynamo’s performance gains on 
the PA-8000. On the other hand, the PA-8000 has a large 
instruction cache (1 Mbyte), so the gains from improved I-cache 
locality in the software fragment cache code are unlikely to be 
significant. However, the processor has a unified instruction and 
data TLB with only 96 entries, so the reduction in TLB pressure 
due to better locality of the working set in the fragment cache can 
contribute to a performance boost. 

9. Related Work 
In focusing on native-to-native runtime optimization, Dynamo 

is a fundamentally different approach from past work on dynamic 
compilation. Just-in-time compilers delay all compilation until 
runtime [6][11][10]. Selective dynamic compilation 
[1][9][23][13][22][26][16][24] is a staged form of compilation that 
restricts dynamic compilation to selected portions of code 
identified by user annotations or source language extensions. In 
these cases, the static compiler prepares the dynamic compilation 
process as much as possible by generating templates that are 
instantiated at run-time by a specialized dynamic compiler. 

In contrast to both just-in-time and selective dynamic 
compilation, Dynamo separates that task of compilation, which 
occurs prior to execution, from dynamic optimization, which 
occurs entirely at runtime and without requiring user assistance. 
Dynamo’s input is an already compiled native instruction stream, 
that is re-optimized to exploit performance opportunities that 
manifest themselves at runtime.  

A lot of work has been done on dynamic translation as a 
technique for non-native system emulation [8][30][5][31][12][17]. 
The idea is to lower emulation overhead by caching native code 
translations of frequently interpreted regions. Unlike such binary 
translators, Dynamo is not concerned with translation. The 
Dynamo approach does however allow one to couple a fast 
lightweight translator that emits native code to Dynamo, which 
then becomes a backend optimizer. 

There are several implementations of offline binary 
translators that also perform native code optimization [7][29]. 
These generate profile data during the initial run via emulation, 
and perform background translation together with optimization of 
hot spots based on the profile data. The benefit of the profile-based 
optimization is only available during subsequent runs of the 
program and the initial profile-collecting run may suffer from 
worsened performance.  

Hardware solutions for a limited form of runtime code 
optimization are now commonplace in modern superscalar 
microprocessors [21][25][19]. The optimization unit is a fixed size 
instruction window, with the optimization logic operating on the 
critical execution path. The Trace Cache is another hardware 
alternative that can be extended to do superscalar-like optimization 
off the critical path [27][15]. Dynamo offers the potential for a 
purely software alternative, which could allow it to be tailored to 
specific application domains, and cooperate with the compiler or 
JIT in ways that hardware dynamic optimizers cannot. 

10. Conclusion 
Dynamo is a novel performance delivery mechanism. It 

complements the compiler’s traditional strength as a static 
performance improvement tool by providing a dynamic 
optimization capability. In contrast to other approaches to dynamic 
optimization, Dynamo works transparently, requiring no user 
intervention. This fact allows Dynamo to be bundled with a 
computer system, and shipped as a client-side performance 
delivery mechanism, whose activation does not depend on the 
ISVs (independent software vendors) in the way that traditional 
compiler optimizations do. 
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This paper demonstrates that it is possible to engineer a 
practical software dynamic optimizer that provides a significant 
performance benefit even on highly optimized executables 
produced by a static compiler. The key is to focus the optimization 
effort on opportunities that are likely to manifest themselves only 
at runtime, and hence those that a static compiler might miss. 

We are currently investigating applications of Dynamo’s 
dynamic optimization technology in many different areas. One of 
the directions we are exploring is to export an API to the 
application program, so that a “Dynamo-aware” application can 
use the underlying system in interesting ways. This might be useful 
for example to implement a very low-overhead profiler, or a JIT 
compiler. From Dynamo’s perspective, user and/or compiler hints 
provided via this API might allow it to perform more 
comprehensive optimizations that go beyond the scope of 
individual traces. Finally, we are also looking at the problem of 
transparent de-optimization at runtime. 
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