
 1

Dynamo: A Transparent Dynamic Optimization System
Vasanth Bala
vas@hpl.hp.com

Evelyn Duesterwald
duester@hpl.hp.com

Hewlett-Packard Labs 1 Main Street,

Cambridge, MA 02142
www.hpl.hp.com/cambridge/projects/Dynamo

Sanjeev Banerjia*
sbanerjia@incert.com

Abstract
We describe the design and implementation of Dynamo, a

software dynamic optimization system that is capable of
transparently improving the performance of a native instruction
stream as it executes on the processor. The input native instruction
stream to Dynamo can be dynamically generated (by a JIT for
example), or it can come from the execution of a statically
compiled native binary. This paper evaluates the Dynamo system
in the latter, more challenging situation, in order to emphasize the
limits, rather than the potential, of the system. Our experiments
demonstrate that even statically optimized native binaries can be
accelerated Dynamo, and often by a significant degree. For
example, the average performance of –O optimized SpecInt95
benchmark binaries created by the HP product C compiler is
improved to a level comparable to their –O4 optimized version
running without Dynamo. Dynamo achieves this by focusing its
efforts on optimization opportunities that tend to manifest only at
runtime, and hence opportunities that might be difficult for a static
compiler to exploit. Dynamo’s operation is transparent in the sense
that it does not depend on any user annotations or binary
instrumentation, and does not require multiple runs, or any special
compiler, operating system or hardware support. The Dynamo
prototype presented here is a realistic implementation running on
an HP PA-8000 workstation under the HPUX 10.20 operating
system.

1. Introduction
Recent trends in software and hardware technologies appear

to be moving in directions that are making traditional performance
delivery mechanisms less effective. The use of object-oriented
languages and techniques in modern software development has
resulted in a greater degree of delayed binding, limiting the size of
the scope available for static compiler analysis. Shrink-wrapped
software is being shipped as a collection of DLLs rather than a
single monolithic executable, making whole-program optimization
at static compile-time virtually impossible. Even in cases where
powerful static compiler optimizations can be applied, computer
system vendors have to rely on the ISV (independent software
vendor) to enable them. This puts computer system vendors in the
uncomfortable position of not being able to control the very keys
that unlock the performance potential of their own machines. More

recently, the use of dynamic code generation environments (like
Java JITs and dynamic binary translators) makes the applicability
of heavyweight static compiler optimization techniques
impractical. Meanwhile, on the hardware side, technology is
moving toward offloading more complexity from the hardware
logic to the software compiler, as evidenced by the CISC to RISC
to VLIW progression.

The problem with this trend is that the static compiler is
taking on an increasingly greater performance burden while the
obstacles to traditional static compiler analysis are continuing to
increase. This will inevitably lead to either very complex compiler
software that provides only modest performance gains on general-
purpose applications, or highly customized compilers that are
tailored for very narrow classes of applications.

The Dynamo project was started in 1996 to investigate a
technology that can complement the static compiler’s traditional
strength as a static performance improvement tool with a novel
dynamic performance improvement capability [3]. In contrast to
the static compiler, Dynamo offers a client-side performance
delivery mechanism that allows computer system vendors to
provide some degree of machine-specific performance without the
ISV’s involvement.

Dynamo is a dynamic optimization system (i.e., the input is an
executing native instruction stream), implemented entirely in
software. Its operation is transparent: no preparatory compiler
phase or programmer assistance is required, and even legacy native
binaries can be dynamically optimized by Dynamo. Because
Dynamo operates at runtime, it has to focus its optimization effort
very carefully. Its optimizations have to not only improve the
executing native program, but also recoup the overhead of
Dynamo’s own operation.

The input native instruction stream to Dynamo can come from
a statically prepared binary created by a traditional optimizing
compiler, or it can be dynamically generated by an application
such as a JIT. Clearly, the runtime performance opportunities
available for Dynamo can vary significantly depending on the
source of this input native instruction stream. The experiments
reported in this paper only discuss the operation of Dynamo in the
more challenging situation of accelerating the execution of a
statically optimized native binary. The performance data presented
here thus serve as an indicator of the limits of the Dynamo system,
rather than its potential. The data demonstrates that even in this
extreme test case, Dynamo manages to speedup many applications,
and comes close to breaking even in the worst case.

Section 1 gives an overview of how Dynamo works. The
following sections highlight several key innovations of the
Dynamo system. Section 2 describes Dynamo’s startup
mechanism, Section 4 gives an overview of the hot code selection,
optimization and code generation process, Section 5 describes how
different optimized code snippets are linked together, Section 6
describes how the storage containing the dynamically optimized

*The author is presently with InCert Corporation, Cambridge, MA.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PLDI 2000, Vancouver, British Columbia, Canada.
Copyright 2000 ACM 1-58113-199-2/00/0006…$5.00.

 2

code is managed, and Section 7 describes signal handling. Finally,
Section 8 summarizes the experimental data to evaluate Dynamo’s
performance. Dynamo is a complex system that took several years
to engineer. This paper only provides an overview of the whole
system. Further details are available in [2] and on the Dynamo
project website (www.hpl.hp.com/cambridge/projects/Dynamo).

2. Overview
From a user’s perspective, Dynamo looks like a PA-8000

software interpreter that itself runs on a PA-8000 processor (the
hardware interpreter). Interpretation allows Dynamo to observe
execution behavior without having to instrument the application
binary. Since software interpretation is much slower than direct
execution on the processor, Dynamo only interprets the instruction
stream until a “hot” instruction sequence (or trace) is identified. At
that point, Dynamo generates an optimized version of the trace
(called a fragment) into a software code cache (called the fragment
cache). Subsequent encounters of the hot trace’s entry address
during interpretation will cause control to jump to the top of the
corresponding cached fragment. This effectively suspends the
interpreter and allows the cached code to execute directly on the
processor without incurring any further interpretive overhead.
When control eventually exits the fragment cache, Dynamo
resumes interpreting the instruction stream, and the process repeats
itself.

Figure 1 illustrates this flow of control in more detail.
Dynamo starts out by interpreting the input native instruction
stream until a taken branch is encountered (A). If the branch target
address corresponds to the entry point of a fragment already in the
fragment cache (B), control jumps to the top of that fragment,
effectively suspending Dynamo, and causing execution of the
cached fragments to occur directly on the underlying processor (F).
Otherwise, if the branch target satisfies a “start-of-trace” condition
(C), a counter associated with the target address is incremented (D).

Our current prototype defines start-of-trace as targets of backward-
taken branches (likely loop headers) and fragment cache exit
branches (exits from previously identified hot traces). If the
counter value exceeds a preset hot threshold (E), the interpreter
toggles state and goes into “code generation mode” (G). When
interpreting in this mode, the native instruction sequence being
interpreted is recorded in a hot trace buffer, until an “end-of-trace”
condition is reached (H). At that point the hot trace buffer is
processed by a fast, lightweight optimizer (I) to create an
optimized single-entry, multi-exit, contiguous sequence of
instructions called the fragment1. Our current prototype defines
end-of-trace as backward taken branches or taken branches whose
targets correspond to fragment entry points in the fragment cache
(i.e., fragment cache hits). A trace may also be truncated if its
length exceeds a certain number of instructions. The fragment
generated by the optimizer is emitted into the fragment cache by a
linker (J), which also connects fragment exit branches to other
fragments in the fragment cache if possible. Connecting fragments
together in this manner minimizes expensive fragment cache exits
to the Dynamo interpretive loop. The new fragment is tagged with
the application binary address of the start-of-trace instruction.

As execution proceeds, the application’s working set
gradually materializes in the fragment cache, and the Dynamo
overhead (time spent in the Dynamo interpretive loop / time spent
executing in the fragment cache) begins to drop. Assuming that the
majority of an application’s execution time is typically spent in a
small portion of its code, the performance benefits from repeated
reuse of the optimized fragments can be sufficient to offset the
overhead of Dynamo’s operation. On the SpecInt95 benchmarks,

1 A fragment is similar to a superblock, except for the fact that it is

a dynamic instruction sequence, and can cross static program
boundaries like procedure calls and returns.

Fragment
Cache

interpret until
taken branch

start-of-trace
condition?

lookup branch
target in cache

counter value
exceeds hot
threshold ?

increment counter
associated with

branch target addr

jump to top of
fragment in

cache

interpret + codegen
until taken branch

end-of-trace
condition?

create new
fragment and

optimize it

emit into cache, link with
other fragments & recycle

the associated counter

yes

yes

yes no

no

no

hit

miss

native instruction stream

A B C

D E F

G

H I J

si
gn

al

ha
nd

le
r

O
/S

si

gn
al

 K
context
switch

Figure 1. How Dynamo works

 3

the average Dynamo overhead is less than 1.5% of execution time.
Dynamo’s interpreter-based hot trace selection process (A-H)
dominates this overhead, with the optimizer and linker components
(I, J) contributing a relatively insignificant amount.

3. Startup and Initialization
Dynamo is provided as a user-mode dynamically linked

library (shared library). The entry point into this library is the
routine dynamo_exec. When dynamo_exec is invoked by an
application, the remainder of the application code after return from
the dynamo_exec call will execute under Dynamo control.

As outlined in Figure 2, dynamo_exec first saves a snapshot
of the application’s context (i.e., the machine registers and stack
environment) to an internal app-context data structure. It then
swaps the stack environment so that Dynamo’s own code uses a
custom runtime stack allocated separately for its use. Dynamo’s
operation thus does not interfere with the runtime stack of the
application running on it. The interpreter (box A in Figure 1) is
eventually invoked with the return-pc corresponding to the
application’s dynamo_exec call. The interpreter starts interpreting
the application code from this return-pc, using the context saved in
app-context. The interpreter never returns to dynamo_exec (unless
a special bailout condition occurs, which is discussed later), and
Dynamo has gained control over the application. From this point
onwards, an application instruction is either interpreted, or a copy
of it is executed in the fragment cache. The original instruction is
never executed in place the way it would have been if the
application were running directly on the processor.

We provide a custom version of the execution startup code
crt0.o, that checks to see if the Dynamo library is installed on the
system, and if it is, invokes dynamo_start prior to the jump to
_start (the application’s main entry point). Application binaries
that are linked with this version of crt0.o will transparently invoke
Dynamo if Dynamo is installed on the system, otherwise they will
execute normally. The application binary itself remains unchanged
whether or not it is run under Dynamo. This strategy allows
Dynamo to preserve the original mapping of the application’s text
segment, a key requirement for transparent operation.

 As part of the initialization done in dynamo_exec prior to
actually invoking the interpreter, Dynamo mmaps a separate area
of memory that it manages itself. All dynamically allocated objects
in Dynamo code are created in this area of memory. Access to this
area is protected to prevent the application from inadvertently or
maliciously corrupting Dynamo’s state.

4. Fragment Formation
Due to the significant overheads of operating at runtime,

Dynamo has to maximize the impact of any optimization that it
performs. Furthermore, since the objective is to complement, not
compete, with the compiler that generated the instruction stream,
Dynamo primarily looks for performance opportunities that tend to
manifest themselves in the runtime context of the application.
These are generally redundancies that cross static program
boundaries like procedure calls, returns, virtual function calls,
indirect branches and dynamically linked function calls. Another
performance opportunity is instruction cache utilization, since a
dynamically contiguous sequence of frequently executing
instructions may often be statically non-contiguous in the
application binary.

Dynamo’s unit of runtime optimization is a trace, defined as a
dynamic sequence of consecutively executed instructions. A trace
starts at an address that satisfies the start-of-trace condition and
ends at an address that satisfies the end-of-trace condition. Traces
may extend across statically or dynamically linked procedure
calls/returns, indirect branches and virtual function calls. Dynamo
first selects a “hot” trace, then optimizes it, and finally emits
relocatable code for it into the fragment cache. The emitted
relocatable code is contiguous in the fragment cache memory, and
branches that exit this code jump to corresponding exit stubs at the
bottom of the code. This code is referred to as a fragment. The
trace is a unit of the application’s dynamic instruction stream (i.e.,
a sequence of application instructions whose addresses are
application binary addresses) whereas the fragment is a Dynamo
internal unit, addressed by fragment cache addresses. The
following subsections outline the trace selection, trace optimization
and fragment code generation mechanisms of Dynamo.

4.1 Trace selection
Since Dynamo operates at runtime, it cannot afford to use

elaborate profiling mechanisms to identify hot traces (such as
[14][4]). Moreover, most profiling techniques in use today have
been designed for offline use, where the gathered profile data is
collated and analyzed post-mortem. The objective here is not
accuracy, but predictability. If a particular trace is very hot over a
short period of time, but its overall contribution to the execution
time is small, it may still be an important trace to identify. Another
concern for Dynamo is the amount of counter updates and counter
storage required for identifying hot traces, since this adds to the
overhead and memory footprint of the system.

As discussed in Section 2, Dynamo uses software
interpretation of the instruction stream to observe runtime
execution behavior. Interpretation is expensive but it prevents the

Application crt0 code
...
...
push stack frame;
spill caller-save regs;
call dynamo_exec ;
restore caller-save regs;
pop stack frame;
...
...
...

Dynamo library code

dynamo_exec :
 save callee-save regs to app-context;
 copy caller-save regs from stack frame
 to app-context;
 save stackptr to app-context;
 return-pc = value of link reg;
 swap Dynamo & application stack;
 // stackptr now points to Dynamo stack
 initialize internal data structures;
 call interpreter (return-pc, app-context);
 // control does not return here!

app runs
natively

app runs
under Dynamo

Figure 2. How Dynamo gains control over the application

 4

need to instrument the application binary or otherwise perturb it in
any way. Interpretation is preferable to statistical PC sampling
because it does not interfere with applications that use timer
interrupts. Also, as we will elaborate shortly, interpretation allows
Dynamo to select hot regions directly without having to collate and
analyze point statistics like the kind produced by PC sampling
techniques. Another important advantage of interpretation is that it
is a deterministic trace selection scheme, which makes the task of
engineering the Dynamo system much easier.

It is worth noting that the “interpreter” here is a native
instruction interpreter and that the underlying CPU is itself a very
fast native instruction interpreter implemented in hardware. This
fact can be exploited on machines that provide fast breakpoint
traps (e.g., through user-mode accessible breakpoint window
registers) to implement the Dynamo interpreter very efficiently [2].
On the PA-8000 however, breakpoint traps are very expensive, and
it was more efficient to implement the interpreter by using
emulation. The higher the interpretive overhead, the earlier
Dynamo has to predict the hot trace in order to keep the overheads
low. In general, the more speculative the trace prediction scheme,
the larger we need to size the fragment cache, to compensate for
the larger number of traces picked as a result. Thus, the
interpretive overhead has a ripple effect throughout the rest of the
Dynamo system.

Dynamo uses a speculative scheme we refer to as MRET (for
most recently executed tail) to pick hot traces without doing any
path or branch profiling. The MRET strategy works as follows.
Dynamo associates a counter with certain selected start-of-trace
points such as the target addresses of backward taken branches.
The target of a backward taken branch is very likely to be a loop
header, and thus the head of several hot traces in the loop body. If
the counter associated with a certain start-of-trace address exceeds
a preset threshold value, Dynamo switches its interpreter to a mode
where the sequence of interpreted instructions is recorded as they
are being interpreted. Eventually, when an end-of-trace condition
is reached, the recorded sequence of instructions (the most recently
executed tail starting from the hot start-of-trace) is selected as a hot
trace.

The insight behind MRET is that when an instruction

becomes hot, it is statistically likely that the very next sequence of
executed instructions that follow it is also hot. Thus, instead of
profiling the branches in the rest of the sequence, we simply record
the tail of instructions following the hot start-of-trace and
optimistically pick this sequence as a hot trace. Besides its
simplicity and ease of engineering, MRET has the advantage of
requiring much smaller counter storage than traditional branch or
path profiling techniques. Counters are only maintained for
potential loop headers. Furthermore, once a hot trace has been
selected and emitted into the fragment cache, the counter
associated with its start-of-trace address can be recycled. This is
possible because all future occurrences of this address will cause
the cached version of the code to be executed and no further
profiling is required.

Subsequent hot traces that also start at the same start-of-trace
address will be selected when control exits the first selected trace
for that start-of-trace address. Exits from previously selected hot
traces are treated as start-of-trace points by Dynamo (see Figure 1).
This allows subsequent hot tails that follow the earlier hot start-of-
trace to be selected by the MRET scheme in the usual manner.

No profiling is done on the code generated into Dynamo’s
fragment cache. This allows the cached code to run directly on the
processor at full native speed without any Dynamo introduced
overheads. The flip side of this is that if the biases of some
branches change after a hot trace was selected, Dynamo would be
unable to detect it. In order to allow Dynamo to adapt to changing
branch biases, the fragment cache is designed to tolerate periodic
flushes. Periodically flushing some of the traces in the fragment
cache helps remove unused traces, and also forces re-selection of
active traces. This is discussed in more detail in Section 6.

4.2 Trace optimization
The selected hot trace is prepared for optimization by

converting it into a low-level intermediate representation (IR) that
is very close to the underlying machine instruction set.

The first task of trace optimization is to transform the
branches on the trace so that their fall-through direction remains on
the trace. Loops are only allowed if the loop-back branch targets
the start-of-trace. Otherwise the loop-back branch is treated as a
trace exit. Unconditional direct branches are redundant on the trace

to I

to B

(a) (b) (c)

call

return

A

C

D

H

I

B

G

J

E

call

return

A

C

D

G

H

J

trap to
Dynamo

E

fragment
body

exit
stubs

A

B C

D

E

G

H I

J

Figure 3. Control flow snippet in the application binary, (b) Layout of this snippet in the application program's memory, and (c)
Layout of a trace through this snippet in Dynamo's fragment cache.

 5

and can be removed. In the case of branches with side-effects, such
as branch-and-link branches, the side-effect is preserved even if the
branch itself is removed. After trace optimization, no branch-and-
link type branches remain on the trace.

Even indirect branches may be redundant. For example, a
return branch if preceded by the corresponding call on the trace is
redundant and will be removed. Other indirect branches are
optimistically transformed into direct conditional branches. The
transformed conditional branch compares the dynamic branch
target with the target contained in the trace at the time the trace
was selected (referred to as the predicted indirect branch target). If
the comparison succeeds, control goes to the predicted (on-trace)
target. If the comparison fails, control is directed to a special
Dynamo routine that looks up a Dynamo-maintained switch table.
The switch table is a hash table indexed by indirect branch target
addresses (application binary addresses). The table entries contain
the fragment cache address corresponding to the target. If an entry
is found for the dynamic indirect branch target, control is directed
to the corresponding fragment cache address. Otherwise, control
exits the fragment cache to the Dynamo interpreter. If the
interpreter then selects a new hot trace starting at that dynamic
indirect branch target, Dynamo will add a new entry to the switch
table corresponding to the mapping from the start-of-trace
application address to its fragment cache address. Assuming
execution follows the selected hot trace most of the time, this
transformation replaces a potentially expensive indirect branch
with a less expensive direct conditional branch. The following
outlines the transformed code for an indirect branch instruction:

// assuming the indirect branch’s dynamic target is in Rx
spill Rscratch to app-context; // free a fixed register
set Rscratch = address of predicted on-trace target;
if (Rx = = Rscratch) goto predicted target;
copy Rx to Rscratch;
goto switch_table_lookup(Rscratch);

The actual register that contains the original indirect branch’s

dynamic target can be different for different indirect branch
instructions. The purpose of copying this dynamic target to register
Rscratch is to ensure that when control enters the switch table
lookup routine at execution time, the same fixed register (Rscratch)
will contain the dynamic target that has to be looked up.

Finally, an unconditional trace exit branch is appended to the
bottom of the trace so that control reaching the end of the trace can
exit it via a taken branch. After fixing up the branches on the trace,
the result is a single-entry, multi-exit sequence of instructions with
no internal control join points. Figure 3 illustrates the branch
adjustments that occur after a trace is selected from the application
binary.

Since traces are free of internal join points, new opportunities
for optimization may be exposed that were otherwise unsafe in the
original program code. The simplicity of control flow allowed
within a trace also means traces can be analyzed and optimized
very rapidly. In fact, the Dynamo trace optimizer is non-iterative,
and optimizes a trace in only two passes: a forward pass and a
backward pass. During each pass the necessary data flow
information is collected as it proceeds along the fragment. Most of
the optimizations performed involve redundancy removal:
redundant branch elimination, redundant load removal, and
redundant assignment elimination. These opportunities typically
result from partial redundancies in the original application binary
that become full redundancies in a join-free trace.

The trace optimizer also sinks all partially redundant
instructions (i.e., on-trace redundancies) into special off-trace
compensation blocks that it creates at the bottom of the trace. This
ensures that the partially redundant instructions get executed only
when control exits the trace along a specific path where the
registers defined by those instructions are downward-exposed.
Fragment A in Figure 5 illustrates such a case. The assignment to
register r5 shown in the compensation block (thick border) could
have originally been in the first trace block. This sinking code
motion ensures that the overhead of executing this assignment is
only incurred when control exits the fragment via the path along
which that assignment to r5 is downwards exposed.

Other conventional optimizations performed are copy
propagation, constant propagation, strength reduction, loop
invariant code motion and loop unrolling. Dynamo also performs
runtime disambiguated conditional load removal by inserting
instruction guards that conditionally nullify a potentially redundant
load.

Note that load removal is only safe if it is known that the
respective memory location is not volatile. Information about
volatile variables may be communicated to Dynamo through the
symbol table. In the absence of any information about volatile
variables, load removal transformations are conservatively
suppressed.

4.3 Fragment code generation
The fragment code generator emits code for the trace IR into

the fragment cache. The emitted code is referred to as a fragment.
The fragment cache manager (discussed in Section 6) first
allocates sufficient room in the fragment cache to generate the
code.

A trace IR may be split into multiple fragments when it is
emitted into the fragment cache. This is the case, for example, if a
direct conditional branch is encountered on the trace, which was
converted from the application’s original indirect branch
instruction by the trace optimizer (see Section 4.2). Such a branch
splits the trace into two fragments. The predicted on-trace target of
the original indirect branch, which is the instruction immediately
following this branch on the trace, starts a separate fragment.

Virtual registers may be used in the IR but the trace optimizer
retains their original machine register mappings. The register
allocator attempts to preserve the original machine register
mappings to the extent possible when the code is finally emitted.
The allocator reservers one register to hold the address of the app-
context data structure (see Figure 2) when control is within the
fragment. The app-context is a Dynamo internal data structure that
is used to keep the application’s machine state during
interpretation, and also to record a snapshot of the application’s
machine state at the point of the last fragment cache exit to
Dynamo. The trace optimizer uses the app-context as a spill area to
create temporary scratch registers necessary for its optimizations.
It cannot use the application’s runtime stack as a spill area because
that would interfere with stack operations generated by the static
compiler that created the application binary.

Generation of the fragment code from the trace IR involves
two steps: emitting the fragment body, and emitting the fragment
exit stubs. Emitting the fragment body involves straightforward
generation of the code corresponding to the trace IR itself. After
that, a unique exit stub is emitted for every fragment exit branch
and fragment loop-back branch. The exit stub is a piece of code
that transfers control from the fragment cache to the Dynamo
interpreter in a canonical way, as outlined below:

 6

spill Rlink to app-context;
branch & link to interpreter; // sets Rlink to the following PC
<ptr to linkage info for this exit branch>

Each stub can be entered by only one fragment exit branch.

The stub code first saves the link register (Rlink) to the app-
context. It then does a branch and link to the entry point of the
Dynamo interpreter, which sets the Rlink register to the fragment
cache address following this branch. The Dynamo interpreter will
take a snapshot of the application’s machine state (with the
application’s original Rlink value being taken from the app-context
data structure) prior to starting interpretation. The end of the exit
stub beyond the branch and link instruction contains a pointer to
linkage information for the fragment exit branch associated with
the stub. When control exits the fragment to the Dynamo
interpreter, the interpreter consults this linkage information to
figure out the next application address at which it should start
interpretation. The value of the Rlink register contains the address
of the location containing the pointer to the linkage information for
the current fragment exit.

5. Fragment Linking
After the fragment code is emitted into the fragment cache,

the new fragment is linked to other fragments already in the
fragment cache. Linking involves patching a fragment exit branch
so that its taken target is the entry point of another fragment,
instead of to its exit stub.

As an example, suppose the trace BDGIJE in Figure 3 (a) now
becomes hot (B is a valid start-of-trace by our definition, when it is
entered via an exit from the earlier hot trace ACDGHJE). Figure 4
illustrates the linking that occurs after the fragment corresponding
to the BDGIJE trace is emitted into the fragment cache. Linked
branches are shown as dark arrows, and their original unlinked
versions are indicated as dashed light arrows.

Fragment linking is essential for performance, because it
prevents expensive exits from the fragment cache back to the
Dynamo interpreter. In our prototype implementation on the PA-
8000 for example, disabling fragment linking results in an order of
magnitude slowdown (by an average factor of 40 for the SpecInt95
benchmarks).

Fragment linking also provides an opportunity for removing
redundant compensation code from the source fragment involved

in the link. Recall that the trace optimizer sinks on-trace
redundancies into compensation blocks, so that these instructions
are only executed when control exits the fragment along a
particular path (see Section 4.2). Fragment A in Figure 5 illustrates
such a case, where the assignment to r5 shown in the compensation
block (thick border) was originally in the first block before it was
sunk into its compensation block. As part of the linkage
information that is kept at each fragment exit stub (the shaded
boxes in Figure 5), a mask of on-trace redundant register
assignments along that particular fragment exit is maintained. In
Figure 5, this mask would be kept in the exit stub corresponding to
the compensation block, and bit 5 of the mask would be set. A
similar mask of killed register assignments at the top of every
fragment is also maintained as part of the Dynamo internal data
structure that keeps fragment-related information. At link-time, if a
register appears in both masks, the instruction that last defined it in
the source fragment’s compensation block is dead and can be
removed. This is illustrated in Figure 5, where the assignment to r5
in Fragment A’s compensation block can be deleted because r5 is
defined before being used on entry to Fragment B.

While the advantages of linking are clear, it also has some
disadvantages that impact other parts of the Dynamo system. For
instance, linking makes the removal of individual fragments from
the fragment cache expensive, because all incoming branches into
a fragment must first be unlinked first. Linking also makes it
difficult to relocate fragments in the fragment cache memory after
they have been emitted. This might be useful for instance to do
periodic de-fragmentation of the fragment cache memory.

6. Fragment Cache Management
Dynamo cannot afford to do complicated management of the

fragment cache storage, because of the overheads this would incur.
We could avoid storage management altogether by simply
expanding the size of the fragment cache as needed. But this has
several undesirable effects. For example, one of the advantages of
collecting hot traces in a separate fragment cache is the improved
instruction cache locality and TLB utilization that can result from
keeping the working set close together in memory. This advantage
could go away if over time, the hot traces that make up the current
working set are spread out over a large area of fragment cache
memory. Clearly, the ideal situation where the fragment cache only
contains the traces that make up the current working set is difficult

A

C

D

G

H

J

E

to I

to B

B

D

G

I

J

E

to A

to H

r5 = ...

r5 = ...

Fragment A

Fragment B

r5 = ...

Figure 4. Example of fragment linking Figure 5. Example of link-time optimization

 7

to achieve. The overhead of implementing an LRU type scheme to
identify cold fragments would be too expensive as well. Moreover,
as pointed out earlier, any policy that only removes a few
fragments would incur the expense of having to unlink every
incoming branch into these fragments.

Dynamo instead employs a novel pre-emptive flushing
heuristic to periodically remove cold traces from the fragment
cache without incurring a high penalty. A complete fragment cache
flush is triggered whenever Dynamo recognizes a sharp increase in
the fragment creation rate (or hot trace selection rate). The
rationale here is that a sharp rise in new fragment creation is very
likely indicative of a significant change in the working set of the
program that is currently in the fragment cache. Since control is
predominantly being spent in Dynamo during this stage, the
fragment cache flush is essentially “free”. Figure 6 illustrates this
scenario for the SpecInt95 m88ksim benchmark. Since all
fragments are removed during a fragment cache flush, no unlinking
of branches needs to be done.

The pre-emptive flushing mechanism has other useful side
effects. All fragment-related data structures maintained for internal
bookkeeping by Dynamo are tied to the flush, causing these
memory pools to be reset as a side effect of a pre-emptive flush. A
pre-emptive flush thus serves as an efficient garbage collection
mechanism to free dynamic objects associated with fragments that
are likely to have dropped out of the current working set. If some
fragments belonging to the new working set are inadvertently
flushed as a result, they will be regenerated by Dynamo when
those program addresses are encountered later during execution.
Regeneration of fragments allows Dynamo to adapt to changes in
the application’s branch biases. When a trace is re-created,
Dynamo may select a different tail of instructions from the same
start-of-trace point. This automatic “re-biasing” of fragments is
another useful side effect of the pre-emptive cache flushing
strategy.

7. Signal Handling
Optimizations that involve code reordering or removal, such

as dead code elimination and loop unrolling, can create a problem
if a signal arrives while executing the optimized fragment, by
making it difficult or impossible for Dynamo to recreate the

original signal context prior to the optimization. This can create
complications for precise signal delivery. For example, the
application might arm a signal with a handler that examines or
even modifies the machine context at the instant of the signal. If a
signal arrives at a point where a dead register assignment has been
removed, the signal context is incomplete.

Dynamo intercepts all signals, and executes the program’s
signal handler code under its control, in the same manner that it
executes the rest of the application code (box K in Figure 1). This
gives Dynamo an opportunity to rectify the signal context that
would otherwise be passed directly to the application’s handler by
the operating system. Asynchronous signals (such as keyboard
interrupts, etc., where the signal address is irrelevant) are treated
differently from synchronous signals (such as segment faults, etc.,
where the signal address is critical).

If an asynchronous signal arrives when executing a fragment,
the Dynamo signal handler will queue it and return control back to
the fragment cache. All queued asynchronous signals are processed
when the next normal fragment cache exit occurs. This allows
Dynamo to provide a proper signal context to the application’s
handler since control is not in the middle of an optimized fragment
at the time the signal context is constructed.

In order to bound asynchronous signal handling latency, the
Dynamo signal handler unlinks all linked branches on the current
fragment prior to resuming execution of the fragment. To
disconnect self-loops in a similar manner, the fragment generator
emits an exit stub for each self-loop branch in addition to the exit
stubs for the fragment exit branches. Unlinking the current
fragment forces the next fragment exit branch to exit the fragment
cache via the exit stub, preventing the possibility of control
spinning within the fragment cache for an arbitrarily long period of
time before the queued signals are processed. This feature allows
Dynamo to operate in environments where soft real-time
constraints must be met.

Synchronous signals on the other hand are problematic,
because they cannot be postponed. A drastic solution is to suppress
code removing and reordering transformations altogether. A more
acceptable alternative is to use techniques similar to that developed
for debugging of optimized code to de-optimize the fragment code
before attempting to construct the synchronous signal context.

Figure 6. Dynamic trace selection rate for m88ksim, showing a sharp change in the working set ~106 sec into its execution

0

10

20

30

40

50

60

70

80

90

100

1 16 31 46 61 76 91 106 121 136 151 166 181 196 211 226 241 256
Time (s)

tr

ac
es

 s
el

ec
te

d

flush

previous working set
formation completed

new working set
being formed

 8

Fortunately, the problem of de-optimizing is much simpler in
Dynamo since only straight-line fragments are considered during
optimization. Optimization logs can be stored along with each
fragment that describes compensation actions to be performed
upon signal-delivery, such as the execution a previously deleted
instruction. This is presently an ongoing effort in the Dynamo
project.

Our prototype currently implements a less ambitious solution
to this problem, by dividing trace optimizations into two
categories, conservative and aggressive. Conservative
optimizations allow the precise signal context to be constructed if a
synchronous fault occurs while executing the fragment. Aggressive
optimizations on the other hand cannot guarantee this. Examples of
conservative optimizations include constant propagation, constant
folding, strength reduction, copy propagation and redundant
branch removal. The aggressive category includes all of the
conservative optimizations plus dead code removal, code sinking
and loop invariant code motion. Certain aggressive optimizations,
like redundant load removal, can sometimes be incorrect, if the
load is from a volatile memory location.

Dynamo’s trace optimizer is capable of starting out in its
aggressive mode of optimization, and switching to conservative
mode followed by a fragment cache flush if any suspicious
instruction sequence is encountered. Unfortunately, the PA-RISC
binary does not provide information about volatile memory
operations or information about program-installed signal handlers.
So this capability is currently unused in Dynamo. In a future
version of Dynamo, we plan to investigate ways to allow the
generator of Dynamo’s input native instruction stream to provide
hints to Dynamo. Dynamo can use such hints if they are available,
but will not rely on them for operation.

8. Performance Data
For performance evaluation we present experiments on

several integer benchmarks. Dynamo incurs a fixed startup
overhead for allocating and initializing its internal data structures
and the fragment cache. The startup overhead could probably be
improved through more careful engineering. But for the purposes
of this study, we use benchmarks that long enough to allow the
startup and initialization overhead to be recouped. This section

presents data comparing the performance of running several
integer benchmarks on Dynamo to the identical binary executing
directly on the processor. Our benchmark set includes the
SpecInt95 benchmarks2 and a commercial C++ code called
deltablue, which is an incremental constraint solver [28]. The
programs were compiled at the +O2 optimization level (equivalent
to the default –O option) using the product HP C/C++ compiler.
This optimization level includes global intraprocedural
optimization. Performance measurements were based on wall clock
time on a lightly loaded single-processor HP PA-8000 workstation
[21] running the HP-UX 10.20 operating system.

Figure 7 shows the speedup that Dynamo achieves over +O2
optimized native program binaries running without Dynamo. For
these runs, Dynamo was configured to use a fixed size 150 Kbyte
fragment cache, which is flushed when sharp changes occur to the
trace selection rate or there is no room to generate new fragments.
Details about the performance impact of varying the fragment
cache size are outside the scope of this paper and can be found
elsewhere [2]. As the figure indicates, Dynamo achieves
considerable speedup in some cases, over 22% in li and m88skim,
about 18% in perl, and about 14% in compress. These four
programs have relatively stable working sets, a fact that dynamic
optimization can exploit very well. The average overall speedup is
about 9%. A significant portion of the performance gains come
from the act of selecting a trace and forming a fragment out of it,
that is, from the implied partial procedure inlining and improved

2 Our experiments do not include the SpecInt95 gcc benchmark.

This benchmark actually consists of repeated runs of gcc on a
number of input files, and the individual runs are too short
running to qualify for our performance study (less than 60
seconds on the PA-8000). To understand the performance
characteristics of gcc, we modified the gcc program to internally
loop over the input files, thus resulting in a single long
invocation of gcc. We do not show data for the modified gcc
because it does not represent the original benchmark, but it’s
performance characteristics are comparable to that of go for all
of the data shown here.

-5%

0%

5%

10%

15%

20%

25%

co
m

pr
es

s

go

ijp
eg li

m
88

ks
im

pe
rl

vo
rt

ex

de
lta

bl
ue

A
ve

ra
ge

aggressive optimization

conservative optimization

trace selection

Figure 7. Speedup of +O2 optimized PA-8000 binaries running on Dynamo, relative to the identical binaries running
standalone. The contributions from dynamic inlining due to trace selection, conservative trace optimization and aggressive trace
optimization are shown. Dynamo bails out to direct native execution on go and vortex.

 9

code layout in the fragment cache. Fragment optimization accounts
for approximately 3% of the total gains on average, and one-third
of this is due to conservative (signal and volatile-memory safe)
optimizations. Note however, that if we ignore the inputs on which
Dynamo bails out (as discussed shortly), the average contribution
due to trace optimization is around 5%.

Dynamo does not achieve performance improvements on
programs go, ijpeg and vortex. Dynamo’s startup time is a non-
negligible fraction of the total runtime of ijpeg, as ijpeg does not
run long enough to recoup Dynamo’s startup overhead before
starting to provide any performance benefit. In the case of go and
vortex that run for a long time, the problem is the lack of a stable
working set. A relatively high number of distinct dynamic
execution paths are executed in these benchmarks [4]. Frequently
changing dynamic execution paths result in an unstable working
set, and Dynamo spends too much time selecting traces without
these traces being reused sufficiently in the cache to offset the
overhead of its own operation.

Fortunately, since Dynamo is a native-to-native optimizer, it
can use the original input program binary as a fallback when its
overhead starts to get too high. Dynamo constantly monitors the
ratio of time spent in Dynamo over time spent in the fragment
cache. If this ratio stays above a tolerable threshold for a prolonged
period of time, Dynamo assumes that the application cannot be
profitably optimized at runtime. At that point Dynamo bails-out by
loading the application’s app-context to the machine registers and
jumping to an application binary address. From that point on the
application runs directly on the processor, without any further
dynamic optimization. Bail-out allows Dynamo to come close to
break-even performance even on “ill-behaved” programs with
unstable working sets. This is illustrated in the graph in Figure 8
for the benchmark go. The Dynamo overhead for a relatively well-
behaved application, m88ksim, is also shown for comparison.

 Figure 9 shows Dynamo’s performance on binaries compiled
with higher optimization levels. The figure shows the program

runtimes with and without Dynamo, for three optimization levels:
+O2 (same as –O), +O4, and profile-based +O4 +P (i.e., +O4 with
a prior profile collection run). At level +O4, the HP C compiler
performs global interprocedural and link-time optimization. At
level +O4 +P the compiler performs +O4 optimizations based on
profile information gathered during a prior +O4 run. However,
compile-time increases very significantly from +O2 to +O4, and
the ability to debug the binary is lost. Because of this, most
software vendors are reluctant to enable higher optimization levels,
in spite of the performance advantages they offer.

The data in Figure 9 shows that Dynamo finds performance
improvement opportunities even in highly optimized binaries. In
fact, on this set of benchmarks, Dynamo is able to raise the average
performance of +O2 compiled binaries to a level that slightly
exceeds the performance of their +O4 compiled versions running
without Dynamo! This performance boost comes in a transparent
fashion, without the creator of the binary having to do anything
special. The fact that Dynamo finds performance improvement
opportunities even in +O4 optimized binaries is not as surprising
as it first seems, because Dynamo primarily focuses on runtime
performance opportunities that a static compiler would find
difficult to exploit.

In some programs (such as li and perl), Dynamo is able to
boost the performance of even profile-feedback compiled binaries
(+O4 +P). On average however, the benefits of Dynamo disappear
once static optimization is enhanced with profile information. This
is to be expected, as the most beneficial inlining and other path-
sensitive optimizations have been already made at compile-time.

As pointed out in the introduction, the goal of this study is to
establish the limits of Dynamo’s capabilities in an extreme setting,
where the quality of the input program code is good. In compiling
these benchmarks, the static compiler had all of the program
sources available, and no dynamically linked libraries were used.
Using good quality compiled code as input forced the development

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 100 200 300
Time (sec)

O
ve

rh
ea

d
(%

 ti
m

e
sp

en
t i

n
D

yn
am

o) go

go (with bail-out)

m88ksim

Figure 8. Illustration of bail-out. Dynamo bails out on go ~45 sec into its execution, after which go runs directly on the
processor without incurring any Dynamo overhead. m88ksim is shown for comparison as a case where Dynamo does not
bail out.

 10

effort to focus on fine-tuning the engineering of the Dynamo
system.

It should be emphasized that the performance data shown here
is very specific to the quality of the code produced by the PA-8000
compiler, and to the PA-8000 processor implementation. Although
the hot trace selection and dynamic optimization can be expected
to provide benefits in general, the actual impact in terms of wall-
clock performance improvement will vary from target to target. On
the deeply pipelined PA-8000 for example, the branch
misprediction penalty is 5 cycles, and indirect branches (including
returns) are always mispredicted. Indirect branch removal therefore
makes a big contribution toward Dynamo’s performance gains on
the PA-8000. On the other hand, the PA-8000 has a large
instruction cache (1 Mbyte), so the gains from improved I-cache
locality in the software fragment cache code are unlikely to be
significant. However, the processor has a unified instruction and
data TLB with only 96 entries, so the reduction in TLB pressure
due to better locality of the working set in the fragment cache can
contribute to a performance boost.

9. Related Work
In focusing on native-to-native runtime optimization, Dynamo

is a fundamentally different approach from past work on dynamic
compilation. Just-in-time compilers delay all compilation until
runtime [6][11][10]. Selective dynamic compilation
[1][9][23][13][22][26][16][24] is a staged form of compilation that
restricts dynamic compilation to selected portions of code
identified by user annotations or source language extensions. In
these cases, the static compiler prepares the dynamic compilation
process as much as possible by generating templates that are
instantiated at run-time by a specialized dynamic compiler.

In contrast to both just-in-time and selective dynamic
compilation, Dynamo separates that task of compilation, which
occurs prior to execution, from dynamic optimization, which
occurs entirely at runtime and without requiring user assistance.
Dynamo’s input is an already compiled native instruction stream,
that is re-optimized to exploit performance opportunities that
manifest themselves at runtime.

A lot of work has been done on dynamic translation as a
technique for non-native system emulation [8][30][5][31][12][17].
The idea is to lower emulation overhead by caching native code
translations of frequently interpreted regions. Unlike such binary
translators, Dynamo is not concerned with translation. The
Dynamo approach does however allow one to couple a fast
lightweight translator that emits native code to Dynamo, which
then becomes a backend optimizer.

There are several implementations of offline binary
translators that also perform native code optimization [7][29].
These generate profile data during the initial run via emulation,
and perform background translation together with optimization of
hot spots based on the profile data. The benefit of the profile-based
optimization is only available during subsequent runs of the
program and the initial profile-collecting run may suffer from
worsened performance.

Hardware solutions for a limited form of runtime code
optimization are now commonplace in modern superscalar
microprocessors [21][25][19]. The optimization unit is a fixed size
instruction window, with the optimization logic operating on the
critical execution path. The Trace Cache is another hardware
alternative that can be extended to do superscalar-like optimization
off the critical path [27][15]. Dynamo offers the potential for a
purely software alternative, which could allow it to be tailored to
specific application domains, and cooperate with the compiler or
JIT in ways that hardware dynamic optimizers cannot.

10. Conclusion
Dynamo is a novel performance delivery mechanism. It

complements the compiler’s traditional strength as a static
performance improvement tool by providing a dynamic
optimization capability. In contrast to other approaches to dynamic
optimization, Dynamo works transparently, requiring no user
intervention. This fact allows Dynamo to be bundled with a
computer system, and shipped as a client-side performance
delivery mechanism, whose activation does not depend on the
ISVs (independent software vendors) in the way that traditional
compiler optimizations do.

0

50

100

150

200

250

300

350

400

450

500

co
m

pr
es

s

go

ijp
eg li

m
88

ks
im

pe
rl

vo
rt

ex

de
lta

bl
ue

A
ve

ra
ge

Native +O2

Native +O4

Native +O4 +P

Dynamo +O2

Dynamo +O4

Dynamo +O4 +P

Figure 8. Dynamo performance on native binaries compiled at higher optimization levels (the first 3 bars for each program
correspond to the native runs without Dynamo, and the next 3 bars correspond to the runs on Dynamo)

 11

This paper demonstrates that it is possible to engineer a
practical software dynamic optimizer that provides a significant
performance benefit even on highly optimized executables
produced by a static compiler. The key is to focus the optimization
effort on opportunities that are likely to manifest themselves only
at runtime, and hence those that a static compiler might miss.

We are currently investigating applications of Dynamo’s
dynamic optimization technology in many different areas. One of
the directions we are exploring is to export an API to the
application program, so that a “Dynamo-aware” application can
use the underlying system in interesting ways. This might be useful
for example to implement a very low-overhead profiler, or a JIT
compiler. From Dynamo’s perspective, user and/or compiler hints
provided via this API might allow it to perform more
comprehensive optimizations that go beyond the scope of
individual traces. Finally, we are also looking at the problem of
transparent de-optimization at runtime.

11. Acknowledgements
Since the inception of the Dynamo project, many people have

influenced our thinking. We would particularly like to thank Bill
Buzbee, Wei Hsu, Lacky Shah, Giuseppe Desoli, Paolo
Faraboschi, Geoffrey Brown and Stefan Freudenberger for
numerous technical discussions. Finally, we are grateful to Josh
Fisher and Dick Lampman for their encouragement and support of
this project.

12. References
[1] Auslander, J., Philipose, M., Chambers, C., Eggers, S.J., and

Bershad, B.N. 1996. Fast, effective dynamic compilation. In
Proceedings of the SIGPLAN’96 Conference on
Programming Language Design and Implementation
(PLDI’96).

[2] Bala, V., Duesterwald, E., and Banerjia, S. 1999. Transparent
dynamic optimization: The design and implementation of
Dynamo. Hewlett Packard Laboratories Technical Report
HPL-1999-78. June 1999.

[3] Bala V., and Freudenberger, S. 1996. Dynamic optimization:
the Dynamo project at HP Labs Cambridge (project proposal).
HP Labs internal memo, Feb 1996.

[4] Ball, T., and Larus, J.R. 1996. Efficient path profiling. In
Proceedings of the 29th Annual International Symposium on
Microarchitecture (MICRO-29), Paris. 46-57.

[5] Bedichek, R. 1995. Talisman: fast and accurate
multicomputer simulation. In Proceedings of the 1995 ACM
SIGMETRICS Conference on Measurement and Modeling of
Computer Systems.

[6] Chambers, C., and Ungar, D. 1989. Customization:
optimizing compiler technology for Self, a dynamically-typed
object-orientied programming language. In Proceedings of the
SIGPLAN’89 Conference on Programming Language Design
and Implementation. 146-160.

[7] Chernoff, A., Herdeg, M., Hookway, R., Reeve, C., Rubin,
N., Tye, T., Yadavalli, B., and Yates, J. 1998. FX!32: a
profile-directed binary translator. IEEE Micro, Vol 18, No. 2,
March/April 1998.

[8] Cmelik, R.F., and Keppel, D. 1993. Shade: a fast instruction
set simulator for execution profiling. Technical Report
UWCSE-93-06-06, Dept. Computer Science and Engineering,
University .of Washington.

[9] Consel, C., and Noel, F. 1996. A general approach for run-
time specialization and its application to C. In Proceedings of
the 23th Annual Symposium on Principles of Programming
Languages. 145-156.

[10] Cramer, T., Friedman, R., Miller, T., Seberger, D., Wilson,
R., and Wolczko, M. 1997. Compiling Java Just In Time.
IEEE Micro, May/Jun 1997.

[11] Deutsch, L.P. and Schiffman A.M. 1984. Efficient
implementation of the Smalltalk-80 system. In Proceedings of
the 11th Annual ACM Symposium on Principles of
Programming Languages. 297-302.

[12] Ebcioglu K., and Altman, E.R. 1997. DAISY: Dynamic
compilation for 100% architectural compatibility. In
Proceedings of the 24th Annual International Symposium on
Computer Architecture. 26-37.

[13] Engler, D.R. 1996. VCODE: a retargetable, extensible, very
fast dynamic code generation system. In Proceedings of the
SIGPLAN’96 Conference on Programming Language Design
and Implementation (PLDI’96).

[14] Fisher, J., and Freudenberger, S. 1992. Predicting conditional
branch directions from previous runs of a program. In
Proceedings of the 5th International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS 5). Oct 1992. 85-95.

[15] Friendly, D.H., Patel, S.J., and Patt., Y.N. 1998. Putting the
fill unit to work: dynamnic optimizations for trace cache
microprocessors. In Proceedings of the 31st Annual
Internation Symposium on Microarchitecture (MICRO-31),
Dallas. 173-181.

[16] Grant, B., Philipose, M., Mock, M., Chambers, C., and
Eggers, S.J. An evaluation of staged run-time optimizations in
DyC. In Proceedings of the SIGPLAN’99 Conference on
Programming Language Design and Implementation. 293-
303.

[17] Herold, S.A. 1998. Using complete machine simulation to
understand computer system behavior. Ph.D. thesis, Dept.
Computer Science, Stanford University.

[18] Hwu, W.W., Mahlke, S.A., Chen, W.Y., Chang, P. P., Warter,
N.J., Bringmann, R.A., Ouellette, R.Q., Hank, R.E., Kiyohara,
T., Haab, G.E., Holm, J.G., and Lavery, D.M. 1993.The
superblock: an effective structure for VLIW and superscalar
compilation. The Journal of Supercomputing 7, (Jan.). 229-
248.

[19] Keller, J. 1996. The 21264: a superscalar Alpha processor
with out-of-order execution. Presented at the 9th Annual
Microprocessor Forum, San Jose, CA.

[20] Kelly, E.K., Cmelik, R.F., and Wing, M.J. 1998. Memory
controller for a microprocessor for detecting a failure of
speculation on the physical nature of a component being
addressed. U.S. Patent 5,832,205, Nov. 1998.

[21] Kumar, A. 1996. The HP PA-8000 RISC CPU: a high
performance out-of-order processor. In Proceedings of Hot
Chips VIII, Palo Alto, CA.

[22] Leone, M. and Dybvig, R.K. 1997. Dynamo: a staged
compiler architecture for dynamic program optimization.
Technical Report #490, Dept. of Computer Science, Indiana
University.

 12

[23] Leone, M. and Lee, P. 1996. Optimizing ML with run-time
code generation. In Proceedings of the SIGPLAN’96
Conference on Programming Language Design and
Implementation. 137-148.

[24] Marlet, R., Consel, C., and Boinot, P. Efficient incremental
run-time specialization for free. In Proceedings of the
SIGPLAN ’99 Conference on Programming Language Design
and Implementation. 281-292.

[25] Papworth, D. 1996. Tuning the Pentium Pro
microarchitecture. IEEE Micro, (Apr.). 8-15.

[26] Poletta, M., Engler, D.R., and Kaashoek, M.F. 1997. tcc: a
system for fast flexible, and high-level dynamic code
generation. In Proceedings of the SIGPLAN ’97 Conference
on Programming Language Design and Implementation. 109-
121.

[27] Rotenberg, E., Bennett, S., and Smith, J.E. 1996. Trace cache:
a low latency approach to high bandwidth instruction

fetching. In Proceedings of the 29th Annual International
Symposium on Microarchitecture (MICRO-29), Paris. 24-35.

[28] Sannella, M., Maloney, J., Freeman-Benson, B., and Borning,
A. 1993. Multi-way versus one-way constraints in user
interfaces: experiences with the Deltablue algorithm. Software
– Practice and Experience 23, 5 (May). 529-566.

[29] Sites, R.L., Chernoff, A., Kirk, M.B., Marks, M.P., and
Robinson, S.G. Binary Translation. Digital Technical
Journal, Vol 4, No. 4, Special Issue, 1992.

[30] Stears, P. 1994. Emulating the x86 and DOS/Windows in
RISC environments. In Proceedings of the Microprocessor
Forum, San Jose, CA.

[31] Witchel, E. and Rosenblum R. 1996. Embra: fast and flexible
machine simulation. In Proceedings of the SIGMETRICS ’96
Conference on Measurement and Modeling of Computer
Systems. 68-78

