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Abstract

Atomic blocks allow programmers to delimit sections of code as
‘atomic’, leaving the language’s implementation to enforce atomic-
ity. Existing work has shown how to implement atomic blocks over
word-based transactional memory that provides scalable multi-
processor performance without requiring changes to the basic
structure of objects in the heap. However, these implementations
perform poorly because they interpose on all accesses to shared
memory in the atomic block, redirecting updates to a thread-private
log which must be searched by reads in the block and later recon-
ciled with the heap when leaving the block.

This paper takes a four-pronged approach to improving perfor-
mance: (1) we introduce a new ‘direct access’ implementation that
avoids searching thread-private logs, (2) we develop compiler op-
timizations to reduce the amount of logging (e.g. when a thread
accesses the same data repeatedly in an atomic block), (3) we use
runtime filtering to detect duplicate log entries that are missed stati-
cally, and (4) we present a series of GC-time techniques to compact ®
the logs generated by long-running atomic blocks.

Our implementation supports short-running scalable concurrent
benchmarks with less than 50% overhead over a non-thread-safe 4
baseline. We support long atomic blocks containing millions of
shared memory accesses with a 2.5-4.5x slowdown.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Concurrent program-
ming structures

General Terms Algorithms, Languages, Performance .

Keywords Atomicity, Critical Regions, Transactional Memory

1. Introduction

Atomic blocks provide a promising simplification to the problem of
writing concurrent programs [12]. A code block is markegmic

and the compiler and runtime system ensure that operations within
the block, including function calls, appear atomic. The program-
mer no longer needs to worry about manual locking, low-level race
conditions, or deadlocks. Atomic blocks can also proxteption
recovery, whereby a block’s side effects are rolled back if an excep-
tion terminates it [13]. This is valuable even in a single-threaded
application: error handling code is often difficult to write and to
test [29]. Implementations of atomic blocks scale to large multi-
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processor machines [12] because theypamellelism preserving:
atomic blocks can execute concurrently so long as a location being
updated in one block is not being accessed in any of the others. This
preserves the kind of sharing allowed in a conventional data cache.

Although they scale well, current implementations of atomic
blocks introduce substantial runtime overhead [12]. They are built
using word-based software transactional memory (STM) which
llows a series of memory accesses made via the STM library to be
performed atomically. There are three main reasons for the runtime
overhead, which we discuss in more detail in Section 2:

STM implementationstypically createprivate shadow copies

of memory updated in atomic blocks. This introduces lookups

on all read operations in atomic blocks and slows down write
operations when there is no contention. Furthermore, the cost of
these lookups precludes the use of atomic blocks across longer-
running sections of code.

STM isimplemented asalibrary. Calls to STM operations are
introduced late in compilation and are treated as opaque calls.
This misses many optimization opportunities.

STM operations are used unnecessarily. Accesses to heap
data are blindly redirected through the STM without consid-
eration of whether or not an object is thread-local.

We address these problems with a novel STM implementation that
is more tightly integrated with the compiler and runtime system.
We make a number of contributions:

Direct-access STM. Our STM is the first to allow objects to

be updated directly in the heap rather than working on private
shadow copies of objects, or via extra levels of indirection
between an object reference and the current object contents.
This optimizes for transactions that commit successfully.

e Decomposed STM interface. Section 3 describes how we de-

compose transactional memory operations to expose opportu-
nities for classical optimizations. For instance, a transactional
storeobj.field = xis splitinto steps that (a) record thsij

is being updated by the current thread, (b) log the old value that
field held, and (c) store the new valugnto the field. These
three steps are then handled separately by the compiler and (a)
and (b) can often be hoisted from a loop while (c) cannot.

Compile-time optimizations. Section 4 describes additional
optimizations to reduce the number of calls to the STM inter-
face. For instance, by further decomposing the logging opera-
tions we can amortize the cost of checking for space across a
series of stores into the log.

Integrated transactional versioning. Our STM is the first

to integrate transactional versioning with an existing object
header word. Earlier STMs, even those integrated in a man-
aged runtime environment, either used external tables of ver-
sioning records [12], additional header words [13], or made



programmer-visible changes to the object model to add levels  In this paper, we distinguish informally between transactions
of indirection between object references and current object con- that areshort and transactions that aleng. A short transaction is
tents [16, 10, 23]. likely to run without requiring any memory allocation by our STM,

« Runtimefiltering. Not all unnecessary operations can be iden- Meaning that it can access up to 1024 words in our experiments.
tified statically, so we add complementary runtime filtering — Short transactions are also likely to be supported by traditional

e.g. to remove updates to transaction-local objects. (Section 5), hardware transactional memory designs [17]. In contrast, when we
] ] ) ] o refer tolong transactions, we mean those which are likely to require
* Garbage collection (GC) integration. Our implementationis  memory allocation within an STM, and which are unlikely to be

the first to allow the GC to reclaim objects that become unreach- accommodated in hardware without complicated extensions [26].
able within a still-running transaction; earlier work would hold

onto such objects until the transaction that allocated them has2>  Atomic blocks and STM

committed or aborted. (Section 6).
( ) In this section we introduce the conventional interface for word-

Our work is implemented in Bartok, an optimizing ahead-of-time  pased transactional memory. We show kawnic blocks are built

Language (CIL) programs with performance competitive to the giscussion applies equally to object-based STMs [16, 15, 23] where
Microsoft .NET Platform. The runtime system is implemented in - many of the same fundamental problems occur.

CIL, including the garbage collectors and the new STM.

As our results in Section 7 show, the combined effect of our 2.1 Word-based transactional memory
techniques is that short blocks (e.g. updates to red-black trees ofyord-based STM provides the following two sets of operations [12]:
skip lists) run with less than 50% overhead compared with non- )
thread-safe uniprocessor code. Furthermore, our techniques allow V°?3 mizarzg
blocks to scale to contain millions of memory accesses, running 0" tucoc
between 2.5x and 4.5x slower than uniprocessor code. bool TMIsValid()

As we conclude in Section 9, our work sheds light on how fu-
ture hardware can improve the performance of atomic blocks. It is
important that the problem be tackled after exploring the opportu-
nities for optimizing a purely software-based implementation and The first setis used to manage transacti@MStart starts a trans-
with careful consideration of how hardware support fits with all of ~action in the current threadMAbort aborts the current thread’s

word TMRead(addr a)
void TMWrite(addr a, word value)

the other parts of the runtime system. transaction.TMCommit attempts to commit the current thread’s
_ transaction. If the transaction cannot commit (because a concur-
11 Semantics rent transaction has updated one of the locations it accessed) then

This paper focuses on the performance of atomic blocks. There TMCommit returnsfalse and the current transaction is discarded.
are many interesting questions about their exact semantics [11], OtherwiseTMComnit retumnstrue and the updates are atomically
including the interaction of atomic blocks with locking code and = Propagated to the shared he@pIsValid returnstrue iff the cur-
combining I/O operations with atomic blocks. These are important "ent thread's transaction could commit at the point of the call. The

questions but orthogonal to the performance questions we considerSécond set of operations performs data acceddeiad returns
the current value of the specified location, or the most recent value

1.2 Design assumptions written by TMWrite in the current transaction.

As with any performance-based work on language design, we are2 2  Building atomic blocks over STM
faced with a chicken-and-egg problem in terms of benchmarking.
We therefore make some assumptions about hownic blocks
will be used.

Our key assumption is thamost transactions commit success-
fully. We believe this is reasonable. First, the use of a parallelism-
preserving STM means that transactions will not abort ‘sponta-
neously’ or because of conflicts that the programmer cannot un-
derstand (in an earlier system we built, conflicts were detected 23 problemswith the STM interface
based on hash values, which could collide giving unintuitive perfor- . . S
mance characteristics [12]). Second, the programmer already has a NS design suffers from a number of problems which limit its ap-
strong incentive to avoid contention because of the cost of ping- Plicability. Figure 1(a) shows a running example that illustrates
ponging data between caches. Traditional techniques such as han this. The example iterates through the elements of a linked list

ing high-contention operations off to work queues managed by a etweefn Izentlfnehl nOdgmis'}éead and EhiS'TTi.l' It sums the
Single thread remain valuable. Value fields of the nodes and stores the resultiis. Sum. Flg'

Our second assumption is thegads significantly outnumber ure 1(b) shows hovBum g:ould be implemented using traditional
updates in atomic blocks. This is borne out by observations of word-based STM operations. Several performance problems occur:

current programs, and attempts to develop transactional versions e Searching transaction logs will not scale to support large
of them [5, 3]. This makes us careful to keep the overhead of  transactions. TMRead must see earlier stores by the same trans-
transactional reads low: reads involve merely logging the address  action, so it must search the transaction log that holds tentative

of the object being read and the contents of its header word. updates. The performance depends on the length of the transac-
Our final assumption is thatansaction size cannot be bounded. tion log and the effectiveness of auxiliary index structures.

This lets us retain compositionality and suggests that the STM
implementation needs to scale well as the length of transactions
grows. In our design, the space overhead grows with the number of
objects that a transaction accesses and the number of words that it ¢ Monolithic TM operations cause repeated work. For in-

updates. It does not grow with the number of accesses made. stance, repeated searches when accessing a field in a loop.

Programming directly with STM is cumbersome because the pro-
grammer must ensure th@llRead and TMWrite are used for all
memory accesses made during a transaction. It is straightforward
to automate this process by having a compiler rewrite memory ac-
cesses in atomic blocks to use STM operations, and having it gen-
erate specialized versions of any methods called.

e Opaquecallstothe TM library hinder optimization — e.g. it
is no longer possible to hoist readiayis . Tail from the loop.



public int Sum() {
Node n = this.Head;
int t = 0;
do {
t += n.Value;
if (n==this.Tail)
{
this.Sum = t;

public void Sum() {
Node n = TMRead(&this.Head);
int t = 0;
do {
t += TMRead(&n.Value);
if (n==TMRead(&this.Tail))
{
TMWrite(&this.Sum, t);

public int Sum() {
tm_mgr tx = DTMGetTMMgr();
DTMOpenForRead (tx, this);
Node n = this.Head;
int t = 0;
do {
DTMOpenForRead(tx, n);
t += n.Value;

public int Sum() {
tm_mgr tx = DTMGetTMMgr();
DTMOpenForUpdate (tx, this);
Node n = this.Head;
int t = 0;
do {
DTMOpenForRead(tx, n);
t += n.Value;

return t; return t; DTMOpenForRead(tx, this); if (n==this.Tail) {
} } if (n==this.Tail) { DTMLogFieldStore(tx, this,
n = n.Next; n = TMRead(&n.Next); DTMOpenForUpdate (tx, this); offsetof (List.Sum));
} ¥ DTMLogFieldStore(tx, this, this.Sum = t;
} } offsetof (List.Sum)); return t;
this.Sum = t; ¥
return t; n = n.Next;
} ¥
DTMOpenForRead(tx, n); }
n = n.Next;
}

}

(a) Original code. (b) Monolithic operations. (c) Decomposed operations. (d) Optimized operations.

Figurel. Running example with explicit STM calls (in reality, these are added during compilation, not as a source-to-source transformation).

tion management operations. Each thread has its own transaction
p-manager that survives for th_e_lifetime of the thread. Making the

transaction manager an explicit parameter ofifig* operations

The first problem is solved by designing the system so that a 2/l0Ws us to reduce the number of accesses to per-thread storage.
transaction can perform read and write operations directly to the The third set provides contention detection. Most field accesses

heap, letting a read naturally see a preceding transactional storeﬁre gleréo:jmedtlwng r?&pecttFo an objectée];‘g;ence;hese cases are
without any searching. Of course, logs are still needed for rolling "and'ed directly bybTMOpenForRead an OpenForUpdate

back a transaction that aborts and to detect conflicts at commit time, Which indicate that the specified object will be accessed in read-
However, for short transactions, these logs are append-only, andoNly mode or that it may subsequently be updated. Update access

searching is never required for any transaction size subsumes read access so it is sufficient to open an object for update
The second problem is solved by introducing 'i'M operations before a series of reads and writes to its fields. Static field accesses

early during compilation and extending the subsequent analysis andand indirect field accesses do not ordinarily involve an obJ.ect ref-
optimization phases to be aware of their semantics erence: these cases are handledByAddrToSurrogate which

Finally, the third problem is solved by decomposing the mono- maps an address tosarrogate object that is used for contention

lithic TM operations into separate steps so that repeated work candetéction on behalf of the addréss
be avoided. For instance, we separate the management of the tranSBa The final set of operations maintains an undo log, needed to roll

action logs from the actual data accesses, often allowing log man-Pack updates on abomTMLogFieldStore deals with stores to
agement to be hoisted from loops. objects andTMLogAddrStore deals with stores to any address.

The result is a new form of STM interface which can be seen Calls to these operations must be correctly sequenced to provide

as a hybrid that combines ideas from pure word-based and object-2l0micity. There are three rules: (a) a location must be open for
based designs. As with object-based STM, objects muspéreed read (or for update) when it is read, (b) a location must be open for
by a transaction before they can be accessed. However, as with ¢/Pdate when itis updated or a store logged for it, (c) a location’s old
word-based STM, subsequent accesses are performed with referYalue must have been logged before it is updated. In practice this
ence to an ordinary memory address rather than with reference toMé2ans that a call tBiRead could be rewritten aBTMGet TMMgr,

a handle returned when the object was opened. Avoiding the usePTMAddrToSurrogate and thenDTMOpenForRead. TMiirite is

of handles reduces the number of live variables at most points in aPTMGetTMMgr, DTMAddrToSurrogate, DTHOpenForUpdate and
transaction’s execution. thenDTMLogAddrStore.

The new interface decomposes the transactional memory oper- _ Figuré 1(c) shows how our running example can be written
ations into four sets: using this decomposed interface and Figure 1(d) illustrates the

optimization opportunities that are available.

3. Decomposed direct-access STM

This section introduces a new interface that lets us solve the pro
lems with the monolithic word-based STM.

tm-mgr DTMGetTMMgr () 3.1 Runtime system

In this section we describe the implementation of the decomposed
direct-access STM. In overview, a transaction uses strict two-phase
locking for updates, and it records version numbers for objects that
it reads from so it can detect conflicting updates. A roll-back log is
used for recovery upon conflict or deadlock.

The use of pessimistic update locking is motivated by our work-
load assumption that conflicts are rare: locking enables the owning
thread to update objects in place. The use of optimistic concurrency
control on reads is motivated by our goal to offer scalable perfor-
mance: all of the cache lines holding read-only data can remain in

void DTMStart(tmmgr tx)
void DTMAbort (tm mgr tx)
bool DTMCommit (tm mgr tx)
bool DTMIsValid(tm_mgr tx)

void DTMOpenForRead(tm-mgr tx, object obj)
void DTMOpenForUpdate(tm_mgr tx, object obj)
object DTMAddrToSurrogate(tmmgr tx, addr a)

void DTMLogFieldStore(tm.mgr tx, object obj, int offset)
void DTMLogAddrStore(tmmgr tx, addr a)

The first two sets are straightforward, providib@MGetTMMgr to

get the current threadtsansaction manager and the usual transac- LFor an indirect field access this means converting an interior pointer into a
reference to the containing object.
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Figure 2. Ensuring atomicity: the commit operation checks that Figure 3. Multi-use word states: the STM word is held explicitly
objects read are unchanged during the upper gray arrow. Objectwhere shaded and is implicitly O in objects that have not yet been
updated are held under exclusive access during the lower arrow. opened for update in a transaction.

shared mode in all of the readers’ data caches. This would not be word GetSTMWord(Object o)
possible with a traditional lock because even an MRSW variant will bool OpenSTMWord(Object o, word prev, word next)
use atomic read-modify-write operations for synchronization. void CloseSTMWord(Object o, word next)

Note that this combination of forms of concurrency control snapshot GetSTMSnapshot (Object o)

means that update locks must be acquired on objects that a thread word SnapshotToWord(snapshot s)

allocates within a transaction: this ensures that a second thread en-

countering a reference to such an object in shared memory is awareAn object’s STM word has two fields. The first, a single bit, indi-

that the first thread has exclusive update access to it. However, ascates whether or not the object is currently open for update by any

we discuss in Sections 4.2 and 5.1, we can streamline the way thattransaction. If set then the remainder of the word identifies the own-

log entries are managed for this kind of transactionally-allocated ing transaction. Otherwise the remainder of the word holds a ver-

object. sion numberOpenSTMWord attempts an atomic compare-and-swap
Figure 2 illustrates the operations performed by a simple trans- on the STM word (fromprev t0 next). CloseSTMWord updates

action: it callsDTMStart, then opens objects for reading and for the word to a specified value.

update, and it concludes by callidyMCommit to attempt to per- An object’s STM snapshot provides a hint about the object’s
form those accesses atomically. Each callD@M0penForRead transactional state. The implementation must guarantee that the
records a version number for the object in question. Each call to snapshot changes whenetapseSTMWord is called on the object
DTMOpenForUpdate acquires an update lock on the object. —thatis, whenever a thread releases update-access to the object. As
Internally, the commit operation begins by attemptingvab- we shall see, this provides sufficient information to detect conflicts.

idate the objects that have been opened for reading by checking  The Bartok runtime associates a singelti-use header word
that the recorded version numbers are still current. This ensureswith each object, using this to associate locks and hashcodes with
that no updates have been made to them by other transactions sincebjects. As Figure 3 shows, we extend this design with an addi-
they were opened. If validation fails then a conflict has been de- tional state to hold the STM word of objects that have ever been
tected: the transaction’s updates are rolled back and the objects itopened for update in a transaction. If the multi-use word is needed
opened for update argtosed, whereupon they can be opened by for more than one of these purposes then inftated and an ex-
other transactions. If validation succeeds then the transaction hagernal structure holds the object’s lock word, hashcode, and STM
executed without conflicts: the objects that it opened for update are word.
closed, retaining the updates. The STM snapshot is simply the value of the object’'s multi-

Validation checks that there were no conflicting updates to the use word. Note that this will naturally change when the STM word
objects that the transaction read during the timespan indicated byis stored directly in the multi-use word. If the multi-use word has
the upper gray arrow on Figure 2. Holding locks on objects open been inflated the@loseSTMWord creates a new inflated structure
for update prevents conflicts during the timespan of the lower gray and copies the contents of the previous structure to it.
arrow. Consequentlythere was no conflicting access to any of The idea of inflating a header word has been widely used to
the objects opened during the intersection of these timespans; the associate locks or hash values with objects [4, 1, 8]. The key
transaction appears to take place atomically in this interval. This novelty of our work is to extend the design to include an STM
linearizability [18] argument is common in transactional memory word while avoiding the need to interrogate the inflated structure
systems [10]. in DTMOpenForRead.

We present the details of this implementation in three sections.
We show how we extend the objects’ structure to support the 3.1.2 Transaction log structure
version numbers and locks used by our STM. We then show how
we implement th®TMOpen* andDTMLog* operations. Finally, we
present th®TMCommit operation.

Each thread has a separate transaction manager with three logs. The
read-object log andupdated-object log track objects that the trans-
action has open for read or for update. Tinelo log tracks updates

. that must be undone on abort. All logs are written sequentially and
311 Object structure never searched. We use separate Iggs because theqentries)i/n them
We now turn to the structures used to support the validation of read- have different formats and because, during commit, we need to it-
only objects and the open and close operations on objects that areerate over entries of different kinds in turn. Each log is organized
updated. The STM requires two abstract entities on each object:into a list of arrays of entries, so they can grow without copying.

an STM word, used to coordinate which transaction has the object ~ We illustrate the structure of the logs using the running list
open for update, and a8TM snapshot, used in fast-path code to  example. Figure 4(a) shows the initial state of a list holding a single
detect conflicting updates to objects the transaction has read: node with valuet0. We assume that the multi-use header words of



the objects are both being used to hold STM words — in this case List: —=5 [o] o Nodet: ——-= [o] o

the objects are at versions 90 and 100. List VTable Node VTable
The first operation from Figure 1(d) opemais for update, Head - Value = 10

usingOpenSTMWord to atomically replace the version number with Tail Next = nul

a pointer to a new entry in the updated-object log. Figure 5(a) Sum =42

defines this in pseudo-code and Figure 4(b) shows the fesult
The list-summing example proceeds to open each list node for
read. DTM makes this straightforward: for each object we log the

(a) Before the transaction begins. Tlhet object has version number v90
and the single node in the ligl¢del) has version v100.

object reference and its current STM snapshot. Figure 5(b) shows List: [T Nodet: — o]
this in pseudo-code and Figure 4(c) shows the log entry it creates. Ty~ T~
We donot attempt to detect conflicts when opening an object for e ] Vae 1o
reading. This follows the design assumption that contention is rare, Tai Next =l
so the benefits of discovering it early are outweighed by the cost Sum=42
of checking. One could also imagine attempting to avoid writing
duplicate log entries at this point, either by searching the log (as et !
we did in previous work [12]), or by updating the object to record veo  [o] oo
that we have already opened it for reading (as in several object- Transaction manager
based transactional memories that uisible reads [16, 23]). We Offset in log chunk
do ”e'the?f of these. Searf:hlng the !Og 1S practlca_l onl_y for short (b) TheList object is opened for update. A new entry is added to the
transacuons' and updating the object prevents it being cached atupdated-object log and the object’s STM word is set to point to that entry.
multiple processors. ) . The entry includes the object's previous STM word (version v90), and a
. After reading the list nodes, the final step_ IS 1o updates_tlne pointer to the transaction manager to identify the thread involved.
field. DTMLogFieldStore records the overwritten value with an
entry in the undo log as shown in Figure 4(d). We omit the pseudo- Read-object odo
code for this — the particular record we use is influenced by the GC log entres: Voo o]

support in Bartok, and other designs will be appropriate in other _ , _ _ _
systems. Thando log entry records the address of the overwritten (c) TheList andNodel objects are opened for reading, adding two entries
value as andbject, offset) pair. This avoids using interior pointers,  © the transaction manager’s read-object log. Each entry refers to the object
which are expensive to process in some garbage collectors. The that’s been opened and contains a copy of the object’s STM snapshot.
entry also distinguishes between scalar or reference-typed stores.

This type information is also useful to the GC. Finally, it records Undolog SCALAL:‘FIELD
the overwritten value. In principle, a shorter two-word log entry ' e —
could be used that holds just an address and the overwritten word, s

at the cost of more work during garbage collection.
(d) Before theList.Sumfield is updated, the old value is written to the undo

313 Commit log in case of roll-back. The log entry identifies the object holding the
There are two phases to DTMCommit: the first checks for conflict- field, whether the field is a reference or a scalar, the offset of the field, and
ing updates to the objects opened for reading and the seboses the value overwritten in it.
the objects that were opened for update. There is no need to explic- List Node-:
itly close objects opened for reading because that fact is recorded i [o] o vioo Jo] oo
only in thread-private transaction logs. LotViabe | | Node VTable
Figure 5(c) shows the structure @falidateReadObject. Head Value =10
There are a large number of cases in the code, but the overall Su:’:m Next = nul

design is clearer if you consider them in terms of the operations on
the DTM interface: (e) After committing the transaction the list is as in (a), but with the

. L version number incremented in the updated objects.
V1 The object was not open for update at any point in the transac- P :

tion’s duration.

) ) Figure 4. Transaction log structure for our running example.

V2 The object was open for update by us for the whole duration.
V3 The object was originally not open for update, and we were the

next transaction to open it for update. Figure 5(d) shows th€loseUpdatedObject operation used
to close an object that was open for update. Figure 4(e) shows the
resulting update to the list structure, with the new version number
) o 91 placed in the list object’s header.
V5 The object was originally not open for update, and another | the pseudo-code we have not considered the fact that version

transaction was the next to open it for update. numbers may overflow and that, with 29 bits available, we are

These cases are marked in the pseudo-code. Some occur multipléimited to around 500M distinct versions. Notice that, in our design,
times because we must distinguish between occasions where thdt IS safe for version numbers to overflow: what is problematic is
test made on the STM snapshot fails because of an actual conflict,"Ot the actual overflow, but rather theeuse of a version number in
and where it fails without conflict (e.g. because the STM snapshot the Same object while a running transaction has the object open for
changed when the object’s multi-use-word became inflated). read. This A-B-A problem [20] can allow a reading transaction to
commit successfully without detecting there may have been some
2The ‘offset in log chunk field is used during GC as a fast way to map an  900M updates to the number. . .
interior pointer into the log (such as that from thist node in the figure) to For correctness, we prevent this by (a) performing a GC at
a reference to the array of log entries holding it. least once every 500M transactions, and (b) validating running

V4 The object was open for update by another transaction for the
whole duration.




void ValidateReadObject(tm_mgr tx, object obj, read_entry *entry) {

void DTMOpenForUpdate(tm_mgr tx, object obj) {
word stm_word = GetSTMWord(obj);

snapshot old_snapshot =
snapshot cur_snapshot =

entry -> stm_snapshot;
GetSTMSnapshot (obj) ;

word cur_stm_word = SnapshotToWord(cur_snapshot);

if (!IsOwnedSTMWord(stm_word)) {
entry -> obj = obj;
entry -> stm_word = stm_word;
entry —-> tx = tx;

if (old_snapshot == cur_snapshot) {
// Snapshot match: no-one has closed the object

if (!IsOwnedSTMWord(cur_stm_word)) {

word new_stm_word = MakeOwnedSTMWord(entry) ;

// V1i: Snapshot unchanged, no conflict

if (OpenSTMWord(obj, stm_word, new_stm_word)) { } else if (GetOwnerFromSTMWord(cur_stm_word) == tx) {
// Open succeeded: advance our log pointer // V2: Opened by us for update before read
entry ++; } else {
} else { // V4: Opened for update by another tx
// Open failed: make the transaction invalid BecomeInvalid(tx);
// (and/or invoke contention manager) }
BecomeInvalid(tx); } else {
} // Snapshots mismatch: slow-path test on STM word

} else if (GetOwnerFromSTMWord(stm_word) == tx) {
// The object is already open for update by the
// current transaction: nothing more to do

} else {
// The object is already open for update by another
// transaction: abort our transaction (and/or invoke }
// contention manager)
BecomeInvalid(tx);
¥ ¥

(a) Pseudo-code to open objects for update.

void DTMOpenForRead (tm_mgr tx, object obj) {
snapshot stm_snapshot = GetSTMSnapshot(obj);

word old_stm_word = SnapshotToWord(old_snapshot);
if (!IsOwnedSTMWord(old_stm_word)) {
if (old_stm_word == cur_stm_word) {

// Vi: OK: STM word inflated during the transaction

else if (!IsOwnedSTMWord(cur_stm_word)) {

// V5: Conflicting update by another tx

BecomeInvalid(tx);

else if (GetOwnerFromSTMWord(cur_stm_word) == tx) {

// We opened the object for update...

update_entry *update_entry = GetEntryFromSTMWord(cur_stm_word) ;

if (update_entry -> stm_word != SnapshotToWord(old_snapshot)) {
// V5: ...but another tx opened and closed the
// object for update before we opened it

entry -> obj = obj; BecomeInvalid(tx);
entry -> stm_snapshot = stm_snapshot; } else {
entry ++; // V3: No intervening access by another tx
} }
} else {
(b) Pseudo-code to open objects for read. // V5: The object was opened by another transaction
BecomeInvalid(tx);
void CloseUpdatedObject (tm_mgr tx, }
object obj, } else if (GetOwnerFromSTMWord(cur_stm_was) == tx) {
update_entry *entry) { // V2: Opened by us for update before read
word old_stm_word = entry -> stm_word; } else {
word new_stm_word = GetNextVersion(old_stm_word); // V4: STM word unchanged, but previously open for
CloseSTMWord (obj, new_word) ; // update by another transaction
¥ BecomeInvalid(tx);
}
(d) Pseudo-code to close objects opened for update. }

(c) Pseudo-code to validate objects opened for read.

Figure 5. Pseudo-code for opening objects, for validating objects during commit, and for closing objects at the end of commit. For brevity,

theDTMOpen* operations assumentry refers to the next log entry.

transactions at every GC. An entry in the read-object log is only

The sequencing rules from Section 3 betweasfMOpenx,

valid if the logged version number matches the current one: the DTMLog* and subsequent data accesses are expressed as data de-

result is that each GC ‘resets the clock’ of 500M transactions
without needing to visit each object.

4. Compiler optimizations

pendences. We introduce extra output values for earlier operations
that are used as extra input values by later operations.

The DTMGetTMMgr operation is implemented by fetching the
current transaction manager for a thread from a per-thraadad
object (and creating the transaction manager if necessary). The Bar-

This section describes the static analyses that we have developed 9ok compiler also treat§etCurrentThread as a constant opera-

try to improve the placement offM* operations.

4.1 Extending existing code-motion optimizations

We have extended existing compiler optimizations to the new op-
erations on the decomposed STM interface. D#GetTMMgr

tion subject to code motion.

4.2 Avoiding log operations on newly allocated objects
We use a simple flow-sensitive interprocedural analysis to identify

operation is constant and can be subject to common subexpresvariables that are always bound to objects that were allocated since

sion elimination (CSE) or code motion. TlE@MOpenForRead,
DTMOpenForUpdate, and DTMLog* operations are idempotent
within a transaction. They are also eligible for CSE or code motion,
with their availability being killed at transaction boundaries. We ex-
tend CSE so that an availatl@MOpenForUpdate operation can
replace a correspondiifMOpenForRead because update access
subsumes read access.

the start of a transaction. We remove tieMLog* operations for

assignments to fields and array elements through those variables.
The analysis works as follows. For each basic block, there is

a map from object-typed variables to lattice elements. The map

represents the kinds of values that may be assigned to a variable

at any point in the block. The lattice has three elements iToip:

(may not be newly allocatediew (must be newly allocated), and



Bottom (absence of information). Allocation operations generate 4.7 Decomposing log management
New for the variables to .WhICh they are assigned. Assignments e can reduce the cost of log management further by decom-
and casts propagate their abstract value. Calls propagate abStra%(/)sing log operations. This allows the amortization of the cost
values to the call formals and from the return value. All other 1,0 302 gement work across multiple operations. In particular,
operations generatp fo_r the variable to which they are _as&gned. DTMOpen* andDTMLog* operations start with a check that there is
Transaction start operations generade values for all variables. space in the current array. FDTMOpenForRead, this is the only
__The analysis initializes all maps Botton. It then propagates  cpocy that must be performed in the fast-path version of the code.
information forward and iterates until a fixed point is reached. At

. o . To amortize the cost of these checks, we introduce a new op-
a block that is a join point, the maps from predecessor blocks P

. . ; . - eration,EnsureLogMemory, taking an integer that indicates how
are point-wise coml_:)lne_d with }he existing map for the bloc;k. The many slots to reserve in a given fogSpecialized versions of the
beginning of a function is considered a join point from all of its call

sites DTMOpen* andDTMLog* operations can assume that space exists.
) To reduce runtime bookkeepingpsureLogMemory operations

43 Treating DTM operationsas calls are not additive: two successive operations reserve the maximum
. ) requested, not the total. For simplicity, we do not place the special-

There are several points at which we can replace the abstract DTM;;eq operations where we would require reserved space after a call

operations with calls to the methods that implement them. We ex- o hack edge. In one version of the optimization, we simply com-

plore how two options affect performance. By default, we introduce  ine reservations for all operations between calls within each basic

calls when lowering Bartok’s medium-level intermediate represen- pock. In another version we use a backwards analysis to eagerly

tation (IR) to target machine instructions. Alternatively, we canin- yeserve space as early as possible, being forced to stop at all calls

troduce calls earller,_w_h|_le still working in a higher-level IR. This g4 loop headers. This has the advantage of combining more reser-

exposes the calls to inlining. vations but may introduce reservation operations on paths that do

4.4 Mapping staticsto surrogates at compiletime not require them.

When accessing static fields, we can perfofMAddrToSurrogate : . :
at compile time. This avoids a runtime address-to-surrogate map-5' Runtime log filtering
ping and exposes further CSE opportunities for operations on dif- In this section we describe runtime techniques to filter duplicates.

ferent addresses but the same surrogate. There are three techniques: in Section 5.1 we describe how we track
) ) objects allocated in the current transaction. Updates to such objects

45 Moving logging to callers do not need to be logged because, since the object is guaranteed

We observe that many methods begin by perfornTimyopenx* to be dead on abort, there is no need to roll back updates to it. In

operations on parameters that may have already been opened b§SeCti0n 5.2 we describe a probabilistic hashing scheme to filter du-

the caller. To reduce this kind of redundant logging we (a) identify Plicates from the read-object log and the undo log. Finally, in Sec-

any DTMOpens operations on parameters that postdominate the t!On 5.3, We describe a bitmap-based scheme to deterministically

method’s entry point on non-exception paths, (b) create a cloned filter duplicates from the undo log.

version of the method without these operations, (c) replace any . .

non-virtual (or devirtualized) calls to the original method with the -1 Track transaction-local objects

removedTMOpen* operations and a call to the replacement. If we can dynamically identify objects allocated by the current
To some extent this is reminiscent of work such as Diniz and transaction, then we can filter out any undo-log entries for them

Rinard’s on computation lock coarsening [9]: unsurprisingly, a that the static analysis in Section 4.2 is unable to avoid. This is safe

DTMOpenForUpdate operation can be moved from a method out because the objects will be dead if the current transaction aborts.

to its caller in much the same way as a lock acquire-release pair.  We do this by (a) adding a version bfMOpenForUpdate that

However, there are a number of differences. First, the STM infras- is specialised to work on newly allocated objects, (b) having this

tructure provides fodeadlock recovery rather than restricting usto  operation write a designated STM word value to mark the object as

transformations that avoid deadlock. Second, M+ operations transactionally allocated.

are idempotent, letting us remove many operations if they are guar-  Figure 6 depicts the structures used at runtime. In the example,

anteed to be preceded by an equivalent operation, rather than reobjectsList and Nodel have been allocated in the current trans-

quiring us to re-arrange earlier operations to ensure a lock remainsaction. Each has an updated-object log entry as usual: these are

held. needed so that the objects can be closed when the transaction com-
o mits. However, the STM words refer to a singtensaction-local

4.6 Avoiding read-to-update upgrades log entry (TLLE) instead of entries in the updated-object log.

A remaining case where unnecessary logging occurs is when a  From the point of view of the current transaction, this lets

DTMOpenForRead operation is followed by 8TMOpenForUpdate DTMLogFieldStore perform a cheap test of whether or not a

operation. This arises from fragments likkis . count++ which prospective store is to a transactionally allocated object: a single

first openthis for reading and then open it for updating. comparison is needed against the current transaction’s TLLE. From

We handle the specific case of read-to-update upgrades withinthe point of view of other transactions, thest andNodel objects
a basic block by a straightforward dataflow analysis, upgrading look like ordinary objects that are currently locked for update.
DTMOpenForRead operations if followed by 8TMOpenForUpdate.

We handle the general case by insertifi0penForUpdate 5.2 Hashing
operations at the beginning of all basic blocks from which all non-  The hashing scheme probabilistically detects duplicate logging re-
exception paths perform the sarb&M0OpenForUpdate (without quests to the read-object log and the undo-log. We use per-thread

intervening stores to the variables involved). CSE then attempts to tables that map a hash of an address to details of the most recent
eliminate the extr®TMOpenForUpdate operations as well as any

subsequerTMOpenForRead operations on the same object. If an 3 As our results show, reservation sizes are vastly smaller than the arrays

exception occurs at runtime, then more objects may be opened forfrom which the log is built; reservations that leave unused space at the end

update than otherwise — but this will not affect correctness. of an array do not yield noticeable fragmentation.
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Figure 6. Tracking transaction-local objects: until the transaction
that allocated them commits, their STM words refer to a special
per-transaction log entry. The example here supposes thésthe
andnode objects were allocated earlier in the current transaction.

Figure 8. Red-black tree performance.

To support bitmaps we extend entries in the updated-object log
by four words when compared with the structure in Figure 4(b).
The first three words provide flags that indicate if the transaction
has written an undo log entry for each of the first3 = 96 words
within the object. The fourth word is a pointer to an external bitmap
with one bit for each word in the full object.

Why do we use these particular sizes? The three bits reserved
at the low end of STM words (Figure 5(a)) mean that entries in the
updated-object log are 8-byte aligned, and so extra words must be
added to log entries in pairs. We chose to add four words based
on the sizes of objects in our benchmarks in Section 7. Of course,

alternative implementations are possible.
logging operation relating to addresses with that hash. Stores to the

read-object log use the address of the object’s header word; stores
to the undo log use the address of the word being logged. These6. GC-time log compaction
sets of addresses are disjoint so a single table serves both purposes.” _ i _ )

Hashing schemes have been used before to remove duplicatedn this section, we turn to the final technique we use: GC-time com-
in an undo log; not least in our earlier work [29, 12]. However, paction of the logs. Previous STMs have had limited integration
previous work requires the table to be cleanade per transaction. with the GC: either all transactions are aborted when the GC is in-
This is inefficient when the table is large enough to be an effective voked [12], or the GC considers object references in the transaction
filter. logs as roots [13, 16]. The first option cannot support long-running

Figure 7 shows our new design. The word-aligned address on transactions. The second option can retain objects unnecessarily.
which duplicate-detection is performed is split into a hash index ~ We avoid these problems by making the GC aware of the struc-
and a tag. Instead of storing the full address in the table, we ture of the transaction logs and which references from them need
combine a portion of a thread-local transaction sequence numberto be treated as strong and which as weak. Furthermore, we use
with the hash index. The hash index is identical for all values GC time as an opportunity to compact the logs, removing duplicate
stored in the table entry. Thus, an entry from another transaction entries, or entries t_hat_are now super_fluous. This _Work sc_:ales with
will not be confused with an entry from the current transaction. the number of entries in the transaction logs (as it must if the GC
We only need to clear the table when the bits for the sequenceis to visit all the log entries). We do not perform operations which
number overflow. Because the count of sequence numbers betweemnust visit objects not currently involved in transactions — doing so
overflows is the same as the number of table entries, on average wds incompatible with generational collection.
clear only one table entry per transaction. We remove entries in the read-object log in three cases:

We use exclusive-or to form the modified value that is stored

in the hash table. This is faster than replacing the bits occupied by 1. If the object was allocated after the transaction began and is
hash. now unreachable. It will be lost whether or not the transaction

commits. We detect this by simply treating the reference as
weak and visiting the log after visiting the undo log, because
the undo log entries ensure all objects predating the transaction
remain strongly reachable.

(s [ o]

1. Use hash | I

value to
g Jrash e o)

select slot
in table N [ - R

2. Modify value stored in table to distinguish

| entries for different transactions

Figure 7. Hashing scheme to detect duplicate logging.

5.3 Updated-word bitmaps

The final runtime scheme we use is to add per-object bitmaps to
detect all duplicate stores to the undo log. This is a deterministic

scheme that can be compared against hashing. Similar schemes?: If the object is open for update by the same transaction and there

were no intervening conflicting updates. We use a specialized

have been used in DBMSs to remove all but the most recently
logged write from a log of updates [21]. Conceptually our scheme
can be seen as an analogue that removes all but the first write
from an undo log. Of course, the implementation of this idea is 3.
much different because it has to be performed online by concurrent
threads and the bitmaps must be managed without introducing
conflicts between otherwise-unrelated transactions.

version ofvalidateReadObject from Section 3.1.2 in which
cases V2 and V3 cause the log entry to be dropped.

If there are duplicate entries. We set a bit in the object’s header
the first time we find an entry for a given object. We then
remove log entries relating to objects with this bit set. We use a
second pass over the read-object log to clear the bits.



Test Read-object  Updated-object Undo  Description

tree original 235601949 5778625 54655135000 000 red-black tree operations from SXM [15]. 6:1:1 mix of
static 88573474 3456692 3592 242lookup:insert:delete uniformly distributed on a 0..65535 key space.
dynamic 85458 480 2380391 3154563

skip original 181062984 17785320 322182921 000 000 skip-list operations from SXM [15]. Maximum node
static 114 925456 1724370 883 056height 32. Same operation workload as trees.
dynamic 37143730 1503507 566 808

go original 39697435 5790969 5688272 Playing on a 10x10 board, computing each move in a separate
static 12016 600 3410033 5502 127atomic block. 69 blocks executed.
dynamic 37996 112669 244300

sort original 357596 090 107483100 107483 040Merge sort an array of 256210 integers 065535, ten repetitions,
static 114481920 54362230 107483 01Ceach in a separate atomic block.
dynamic 50 70 262175

xlisp  original 96 347 281 31890055 30516 996Lisp interpreter runningu andctak lisp benchmarks, each in a
static 47616579 19581233 29233 487separate atomic block.
dynamic 3506713 1378265 65732

Figure 9. Log entries written without any optimization (‘original’), with static optimization but no dynamic filtering (‘static’) and with
dynamic filtering to remove duplicates (‘dynamic’). Workloads were sized so that they could be completed without optimizations (hence the
small board size igo and the lisp scripts chosen).

The log entries written bypTMOpenForUpdate are straightfor- Specialized versions of the test harness are used to optimize the
ward: only the first case applies because the function itself avoids performance of each STM: the WSTM variant uses local variables
duplication via the atomic compare-and-swap on the STM word.  to avoid repeated reads from the heap, while the OSTM and DSTM
Similarly, for the undo log, we can remove updates logged for variants attempt to avoid opening objects more than once. Follow-
objects which are dead whether or not the transaction commits.  ing this approach, the harness for decomposed direct-access STM
mirrors the optimizations made by Bartok. Consequently, the re-
sults indicate the possible performance that could be achieved by a
7. Results compiler with knowledge of the semantics of each particular STM.
We use three sets of benchmarks. First, we look at concurrent ~ The red-black tree workload performs a 6:1:1 ratio of lookup:
data structures which provide a comparison with results from other insert: delete operations uniformly on a 0..65535 key space. We use
STMs. Second, we use longer running tests derived from C# imple- & 4*2-core Opteron machine and record the CPU-time required per
mentations of th@99.go, 129. compress and130.11i programs operation. Figure 8 shows the results: a scalable implementation is
from the SPEC CINT95 suite and an in-memory sequential merge indicated by a flat line, while a fast implementation is indicated by
sort. These, of course, are not concurrent algorithms, but they servea line close to the x-axis.
to assess the effectiveness of the compile-time optimizations on  The performance of relaxed locking, OSTM and DSTM agrees
longer code sequences which run without contention (as we assumavith Fraser’s results [10]. WSTM's scalability is similar under low
is true of many sections of a well-designed concurrent workload). contention but, as one would expect, it is not as fast: it incurs per-
Of course, as we discussed in Section 1.2, atomic blocks are usefuword costs that are comparable with the per-object costs of OSTM,
in single-threaded applications for exception recovery. Finally, we and most operations on red-black trees access at least two words in
look at the use of atomic blocks within the ASP.NET Cassini Web each object. In comparison, the direct-access STM scales well but
Server running on the Singularity Research OS [19]. incurs much lower per-object costs when compared with OSTM.
We split our evaluation into two section: Section 7.1 looks at ~ The graph also shows the performance of a similar red-black
the multi-processor performance of the underlying STM, while tree harness implemented in C# and compiled using Bartok with all
Section 7.2 looks at the effect of the compiler optimizations and our optimizations enabled. As expected the performance tracks that
runtime integration. of the C version in which we have manually incorporated the results
of the optimizations. The C# implementation does not currently
scale beyond the 8 hardware threads available because of a spin-

R . lock used elsewhere in the runtime system.
It is difficult to directly compare the performance of our new de-

composed direct-access STM with that of previous designs: the in-
terface is different, and only our new interface is integrated in the o o )
Bartok compiler. This means that we cannot simply ‘plug in’ the 7.2 Optimizationsand runtimeintegration

new STM in an existing test infrastructure, nor can we readily in- Results in this section use a 3GHz Pentium 4 CPU with sufficient
clude an alternative STM in the Bartok compiler’s runtime. physical memory to avoid any disk activity. Results are normalized
In order to get a fair assessment of the performance of the new ggainst the single-threaded run time of the benchmarks without
STM we based this part of our evaluation on a re-implementation gny concurrency control in the benchmark itself, so a result of 2.0
of the new STM in C. We used the STM implementations and red- means that a run took twice as long. Results are the best of five runs
black tree test harness from Fraser’s thesis work which provides re-tg reduce perturbations from background processes.
laxed per-node locking based on Hanke’s design [14], WSTM[12],  The GC is a two-generation copying collector with a 4MB
OSTM [10], and DSTM [16]. nursery. A full collection occurs every 8 nursery collections. When
using STM, transaction logs are allocated in the same heap as the
4DSTM is configured to use a ‘polite’ contention manager that uses expo- application state and each chunk in the log holds 1024 entries.
nential backoff. However, little contention is seen in the test workload. When using hashing (Section 5.2), the table holds 2048 entries.

7.1 STM performance
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Figure10. The effect of optimizations on the number of log entries
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We tested the sensitivity of results to these settings: Our short-

running tests generate little garbage and perform essentially un-

changed with nursery sizes from 128MB down to 1MB, the size of

timizations are enabled. Each cluster of bars deals with a single
benchmark and successive optimizations are enabled left-to-right.

The most significant reductions in logging work occutiree,
go, sort andxlisp — primarily by exposing decomposed STM
operations to CSE. Imree the code for traversing down the tree
is identical to careful manual placement of logging operations;
runtime filtering culls further duplicate log entries written during
rotations.

Although we statically eliminate around half sért’s logging,
almost all of the remaining entries are duplicates: our current intra-
procedural CSE-based techniques are ineffective for merge-sort’s
recursive structure. Looking at the three logs individually shows
that the analysis to identify newly allocated objects is very effective
in the skip test where temporary objects are used as a mechanism
for returning multiple values.

Figure 11(a) shows how this translates to wall-clock execution
times when the optimizations are useftthout runtime filtering.
sort andxlisp perform extremely poorly, even with all of the
optimizations enabled. This is no surprise: without filtering there is
a vast number of duplicate entries in the read-object log, triggering
frequent GCs. Although duplicates can be removed at GC time, the
volume of logging means that over 77% wafrt’s execution time
and 90% ofk1lisp’s is spent in GC.

We were surprised that further decomposition of log opera-

the L2 data cache. Little log space is used, so performance is flattions did not give noticeable performance improvements (Sec-

with log chunk sizes beyond 256 entries. For long-running tests,
settings below a 4MB nursery, 1024-entry log chunk and 1024-

tion 4.7). The analysis identifies several opportunities for decompo-
sition: in tree almost allDTMOpenForRead operations are decom-

entry hashtable give poor performance because of memory pressur@0sed, with oneEnsureLogMemory per 5.8 logging operations.

from log chunks, frequent chunk overflows and hash collisions.
All results here have GC-time log compaction enabled. The cost

The same is true igo andx1lisp for stores to the undo log (one
EnsureLogMemory per 1.9 operations and 2.3 operations respec-

of this scales with the volume of the transaction logs at the points tively). We suspect that performance is limited by the memory traf-
where GC occurs; it never adds more than 12% to the total GC fic of the stores to the log and that, on the superscalar Pentium 4,
time (on the longest benchmarks with no optimizations or filtering No benefitis achieved by avoiding the comparisons and predictable
to reduce the volume of the log). branch involved in checking for log space.

Figure 9 shows the number of logging operations produced by ~ Figure 11(b) shows the impact of runtime filtering alongside
our test programs: in some cases millions of operations per block. compile-time optimization. The leftmost bar in each cluster shows
The ‘original’ lines indicate the baseline performance without any the performance with the full set of compile-time optimizations en-
attempt to remove logging work. The ‘static’ lines show the impact abled for that benchmark. Note that hashing alone is ineffective for
of the optimisations in Section 4. The ‘dynamic’ lines also perform sort andxlisp (this remains the case if we vary the table size: an
runtime filtering to remove duplicates. impractically large table is needed to avoid collisions). Although

We first investigate the effect of each of our optimizations in the hashing and bitmap schemes slightly degrade the performance
contributing to the reduction from ‘original’ to ‘static’. Figure 10  ©Of the shortest benchmarks, they are necessary for practical perfor-
shows the cumulative reduction in the log entries written as op-



mance from the longer running benchmarks. Runtime adaptation erence. This allows writers to be provided with thread-local copies

may give some benefit here. of the object and so it is not necessary to record a separate undo-
As well as the techniques from Section 5, we also studied the log (and therefore it is not necessary to filter duplicates from it).
impact of visibly opening objects for read. Thiguarantees that Of course, the runtime structures used to represent an object-based

there are no duplicate entries in the read-object log and reflects STM would differ substantially from those in Section 3.1: existing
another popular design choice in STMs [16]. However, because object-based STMs add at least one level of indirection between an
it requires two atomic compare-and-swap operations per object object reference and the object’s current contents.

logged, it vastly reduces performance on the short benchmarks with  The evolving designs for the Fortress [2], Chapel [7] and
little change to the performance of the longer ones when comparedX10 [6] languages for high-performance computing all specify

with our hash-based filtering. forms of atomic block. The optimizations and runtime techniques
With runtime filtering enabled, GC occurs only durinjisp. we have developed will be applicable to these new languages.
Log compaction eliminates almost all of the entries in the read- The System.Transactions namespace in the .NET Frame-

object log: 7.34M related to objects that were subsequently openedwork 2.0 provides resource managers for transacted access to
for update, and 19K were duplicate entries that, due to hash col- databases, file systems and the configuration registry. Unlike
lisions, had not been removed by filtering. Similarly, almost all of atomic blocks, memory accesses within transactions are per-
the entries in the updated-object log (1.6M of 1.8M) were removed formed directly. A combination of this work withtomic blocks
because they were related to dead objects; in this case temporaries/ould address many of the questions about how I/O operations
created during the evaluation of expressions in the LISP programs.should be integrated with memory transactions [11].
We saw similar trends when forcing GCs in other benchmarks. Hardware transactional memory was originally proposed by
Given the benefits seen from runtime filtering, we investigated Herlihy and Moss [17]. Early designs buffered a processor’s trans-
if the compile-time optimizations were necessary at all. They are: actional accesses in a local cache and used slight extensions to
starting from the best performing combination of filtering tech- MESI cache management protocols to detect conflict between
niques in Figure 11(b), runningithout optimization degrades per-  transactions. This approach inevitably exposes hardware limits:
formance by 17%, 16%, 50%, 72% and 25% respectively on the six transactions must be aborted on context switches, and all of the
benchmarks. This is roughly due in equal portions to optimizations transactional accesses must fit within the capacity and associativity
that can make individual STM operations faster and optimizations limits of the cache in which they are buffered.
that reduce the number of STM operations executed. We investi-  Researchers have only recently turned to the question of how to
gated where time is spent within the longer benchmag&shows a allow transactions of unbounded size while still being able to enjoy
15%:85% split between time in ‘real’ STM work (writing to thelog  hardware support. Hardware-based speculative lock elision uses a
and performin@®TMCommit) and time spent filteringsort shows TM-like mechanism to speculatively run lock-based code without
a 27%:73% split, and1lisp a 56%:44% split. actually taking a lock [24, 25]. If hardware limits are reached then
Finally, we performed a whole-system test using atomic blocks execution can fall back to ordinary locking.
in the Cassini web server running on the Singularity Research  Rajwaret al.’s virtualizing transactional memory splits transac-
OS. We modified Cassini with an atomic block around its request tion state between buffers in fast per-processor memory and over-
parsing code: around 150 lines of C# spread over four methodsflow buffers held in an application’s virtual address space [26].
making heavy use of object-oriented string parsing routines. If a Common-case operations (short transactions that commit success-
request’s headers are malformed then the atomic block performsfully) run without using the overflow buffers.
automatic roll-back before returning an error to the client. We load Ananian and Rinard showed how hardware and software trans-
the web server using a SpecWeb99-derived test harness configuredctional memory could be combined by using special ‘flag’ values
to use up to 10 parallel connections, and measure the time takento identify where transactions may be operating [3].
to execute the request parsing code for both the original server and
our modified version. After warm-up, the baseline parses requests9. Conclusion
in 53+ 1us, and the new version in 154 3us when using all our
optimizations. Of course, since the server is ultimately 1/0 boun
this extra work does not effect the overall throughput.

d This paper has taken a four-pronged approach to speeding up
" word-based transactional memory: direct-access memory to avoid
searching logs, compile-time decomposition and optimization to
reduce the use of logging operations, fast runtime filtering of du-

8. Related work plicate logging requests, and GC-time compaction of logs to de-
A number of early languages included support for features like terministically remove dead objects and any duplicates that were

atomic blocks without building them on transactional mem- missed.
ory. These are either safe only for uniprocessors or they are ex-  The overall results vary between programs: in micro-benchmarks,

tremely pessimistic and serialize non-conflictiagomic blocks. where the optimizations approach the quality of hand-placed calls
distributed applications based on strict two-phase locking of atomic to an STM, execution takes around 1.5x that of the same code with-
objects [22]. out any concurrency control. At the other extreme, on long-running

Early work on STM has focused on libraries, such as Hedihy  transactions with millions of transactional accesses, execution takes
al.'s [16] and Fraser’s [10]. Aside from our own work on language around 2.5-4.5x that of single-threaded versions.
integration, Welcet al. [30] showed how STM-like techniques For short blocks, these results are promising and suggest that
can increase the concurrency available in systems based on Java’software-only approaches may be sufficient for some applications.
synchronized blocks and Ringenburg and Grossman showed how For longer blocks, acceptable speed may require additional hard-
atomic blocks could be added to OCaml [27]. ware support to complement the techniques we have developed,
Although this paper has focused on word-based transactional although there may be applications where the software engineering
memory, many of the techniques would apply to object-based de- benefits ofatomic blocks or their parallelism-preserving perfor-
signs [16, 10, 23]. There is one notable change in the operations ex-mance make current performance acceptable.
posed in the compiler’s intermediate representation: object-based We remarked in Section 4 that our techniques build on earlier
designs returrnandles when an object is opened and updates are work for optimising the placement of lock/unlock operations. It
made relative to these handles rather than to the original object ref-would be interesting to explore this relationship further: can we



perform the analogue afata lock coarsening [9] to vary the gran-
ularity with which STM meta-data is associated with objects? One

can imagine cases where a single STM word could be used to man-
age an aggregate object or, conversely, where separate STM words

might be used on independent fields of a single object.

Our final conclusion is about how hardware can support atomic
blocks. Previous research has suggested ‘fall back to software’

models in which short blocks execute entirely in hardware and

longer ones are implemented using STM. Our results suggest that
hardware support for short running blocks needs to be considered in
the context of an optimized software implementation. Furthermore,

it may be worthwhile to investigate hardware support for long run-

ning blocks. It is in these cases that duplicate log removal at run-

[11] HARRIS, T. Exceptions and side-effects in atomic blocks. In
PODC 2004 Workshop on Concurrency and Synchronization in Java
programs (CSIP) (Jul. 2004), pp. 46-53. Proceedings published as
Memorial University of Newfoundland CS Technical Report 2004-01.

[12] HARRIS, T., AND FRASER, K. Language support for lightweight
transactions. 1Object-Oriented Programming, Systems, Langauges
& Applications (OOPSLA) (Oct. 2003), pp. 388-402.

[13] HARRIS, T., HERLIHY, M., MARLOW, S.,AND PEYTON-JONES, S.
Composable memory transactions. §ymposium on Principles and
Practice of Parallel Programming (PPoPP) (Jun. 2005), pp. 48—60.

[14] HANKE, S., O'TMANN, T., AND SOISALON-SOININEN, E. Relaxed
Balanced Red-Black Trees. Italian Conference on Algorithms and
Complexity (1997), vol. 1203 ofpringer-Verlag LNCS, pp. 193-204.

time and GC-time is necessary, and so an effective implementation [15; HeriHy, M. SXML.1: Software transactional memory package for

of long-running transactions could benefit from hardware support

for log filtering as well as simply multi-word concurrent updates.
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