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Abstract
This paper describes Automatic Pool Allocation, a transformation
framework that segregates distinct instances of heap-based data
structures into seperate memory pools and allows heuristics to be
used to partially control the internal layout of those data structures.
The primary goal of this work is performance improvement, not
automatic memory management, and the paper makes several new
contributions. The key contribution is a new compiler algorithm
for partitioning heap objects in imperative programs based on a
context-sensitive pointer analysis, including a novel strategy for
correct handling of indirect (and potentially unsafe) function calls.
The transformation does not require type safe programs and works
for the full generality of C and C++. Second, the paper describes
several optimizations that exploit data structure partitioning to fur-
ther improve program performance. Third, the paper evaluates how
memory hierarchy behavior and overall program performance are
impacted by the new transformations. Using a number of bench-
marks and a few applications, we find that compilation times are
extremely low, and overall running times for heap intensive pro-
grams speed up by 10-25% in many cases, about 2x in two cases,
and more than 10x in two small benchmarks. Overall, we believe
this work provides a new framework for optimizing pointer inten-
sive programs by segregating and controlling the layout of heap-
based data structures.

Categories and Subject Descriptors D.3.4 [Processors]: Compil-
ers, Optimization, Memory management

General Terms Algorithms, Performance

Keywords Recursive data structure, data layout, cache, static
analysis, pool allocation

1. Introduction
One of the most important tasks for modern compilers and run-
time systems is the management of memory usage in programs,
including safety checking, optimization, and storage management.
Unfortunately, compilers have proved much more effective at an-
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alyzing and controlling memory access patterns for dense arrays
than for pointer-based data structures. A key difference between
the two is that compilers have precise knowledge of the runtime
layout of arrays in memory, whereas they have much less informa-
tion about complex data structures allocated on the heap. In such
(pointer-based) data structures, both the relative layout of distinct
data structures in memory (which affects working set sizes) and
the relative layout of nodes within a single data structure (which
affects memory traversal patterns) are difficult to predict. One di-
rect consequence is that irregular memory traversal patterns often
have worse performance, both because of poor spatial locality and
because techniques like hardware stride prefetching are not effec-
tive. A potentially more far-reaching consequence of the lack of
layout information is that many compiler techniques (e.g., software
prefetching, data layout transformations, and safety analysis) are
either less effective or not applicable to complex data structures.

Despite the potential importance of data structure layouts, com-
piler transformations for pointer-intensive programs are performed
primarily using pointer and dependence analysis, and not by con-
trolling and using information about the layout of pointer-based
data structures.

Several compiler techniques attempt to modify the layout of
pointer-based data structures by giving hints or memory layout di-
rectives to a runtime library [12], memory allocator [9], or garbage
collector [28, 29]. None of these techniques attempt to extract in-
formation about or to control the relative layouts of objects within a
data structure or of distinct data structures, nor can they be directly
extended to do so. Reliable data layout information and control are
necessary for data layout properties to be used as a basis for further
compiler transformations.

An alternative approach for segregating heap objects under
compiler control is the work on automatic region inference for
ML [45, 44, 24] and more recently for Java [14, 10]. These tech-
niques partition objects into heap regions based on lifetimes, with
the primary goal of providing automatic memory management with
little or no garbage collection for type-safe languages. In contrast,
our primary goal in this work is to improve program performance
by segregating heap data structures and by enabling further layout-
based optimizations on these data structures (in fact, we do not try
to reclaim memory automatically, except in limited cases). Because
of their different goals, these techniques do not explore how to ex-
ploit data structure partitioning to optimize memory hierarchy per-
formance and do not support non-type-safe languages like C and
C++, which are important for many performance-sensitive applica-
tions. These previous approaches are compared with our work in
more detail in Section 10.

This paper describes Automatic Pool Allocation, a transforma-
tion framework for arbitrary imperative programs that segregates
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distinct instances of pointer-based data structures in the heap into
seperate memory pools, and allows different heuristics to be used
to partially control the internal layout of those data structures. For
example, each distinct instance of a list, tree, or graph identified by
the compiler would be allocated to a separate pool. The paper also
describes several simple optimizations that exploit the partitioning
of data structures on the heap to further improve program perfor-
mance. These optimizations are possible because Automatic Pool
Allocation is a rigorous transformation performed by the compiler.
In other work, we have used Automatic Pool Allocation and its
underlying pointer analysis to develop other new, compiler tech-
niques operating at the “macroscopic” level, i.e., at the level of
entire data structures (rather than individual pointers or objects).
These include techniques for pointer compression [35] and mem-
ory safety without garbage collection [19]. These techniques are
very briefly summarized in Section 7. The goal of this paper is to
describe and evaluate the pool allocation transformation itself and
simple optimizations directly based on it.

More specifically, Automatic Pool Allocation takes a context-
sensitive, field-sensitive points-to graph representation and parti-
tions the heap so that objects represented by the same points-to
graph node are allocated in a common pool1. By using a context-
sensitive analysis with “heap cloning,” distinct data structure in-
stances that are created and processed by the same functions can be
segregated into different pools. The lifetime of each pool is deter-
mined by bounding the lifetime of pointers to objects in that pool.
The end result of pool allocation is a partitioning of the runtime
heap into pools, a transformed program that allocates and frees
memory from pools, and a mapping from each static pointer to the
pool it points into. Based on this information, subsequent optimiza-
tions and analyses may be applied to the program.

The Automatic Pool Allocation algorithm supports arbitrary
C and C++ programs, including programs with function point-
ers and/or virtual functions, recursion, varargs functions, non-type-
safe memory accesses (e.g., via pointer casts and unions), setjmp/-
longjmp, and exceptions. One of the key strengths of the algorithm
is a simple strategy for correctly handling indirect calls, which is
difficult because different functions called via a function pointer
may have different allocation and deallocation behavior and be-
cause (in C or C++) may even have different signatures. The al-
gorithm solves these complex issues via a relatively simple graph
transformation phase, while keeping the code transformation pro-
cess essentially unchanged. The transformation works correctly for
incomplete programs, by only pool allocating memory that does
not escape the scope of analysis.

Automatic Pool Allocation can directly improve program per-
formance in several ways. First, since programs typically traverse
and process only one or a few data structures at a time, segregating
logical data structures reduces the memory working sets of pro-
grams, potentially improving both cache and TLB performance.
Second, in certain cases, the allocation order within each data struc-
ture pool will match the subsequent traversal order (e.g., if a tree
is created and then processed in preorder), improving spatial local-
ity. Intuitively, both benefits arise because the layout of individual
data structures is unaffected by intervening allocations for other
data structures, and less likely to be scattered around in the heap.
Third, in some cases, the traversal order may even become a simple
linear stride, allowing more effective hardware prefetching than be-
fore. Note that Automatic Pool Allocation can also potentially hurt
performance in two ways: by separating data that are frequently
accessed together and by allocating nearly-empty pages to small

1 Less aggressive pointer analyses can also be used but may not distinguish data
structure instances or may give less precise information about their internal structure.

pools (some of the techniques described later are intended to ad-
dress these issues).

This paper describes several optimizations based on pool alloca-
tion that further improve program performance. First, we show that
in certain cases, individual free operations on objects in a pool
can be eliminated and the entire memory for the pool reclaimed
when the pool is destroyed (without increasing memory consump-
tion). Second, we describe several customized memory manage-
ment choices that can be used at run time for pools with specific
characteristics. The key to some of these optimizations is that dif-
ferent logical data structures tend to be used in different but well-
defined ways that can be exploited, whereas simply segregating by
type, lifetime, or runtime profile information would not typically
be sufficient to apply all these optimizations.

We evaluate the performance impact of Automatic Pool Alloca-
tion and the subsequent optimizations, using heap-intensive bench-
marks from the SPEC, PtrDist [2], Olden [39] and FreeBench [40]
benchmark suites, and a few standalone applications. We find that
many of these programs speed up by 10-25%, two by about 2x and
two small benchmarks by more than 10x. Other programs are unaf-
fected, and importantly, none are hurt significantly by the transfor-
mation. We also show that the total compile time for the transfor-
mation (including the context-sensitive pointer analysis that com-
putes its input points-to graphs) is very small, requiring 1.25 sec-
onds or less for programs up to 100K lines of source code. Finally,
the subsequent optimizations contribute improvements (over pool
allocation alone) by 10-40% for eight cases and 0-10% for the oth-
ers. We also show that cache and/or TLB performance improves
significantly in all case with significant speedups, and in many
cases hit rates are improved roughly similarly at all levels of the
memory hierarchy (L1 and L2 caches and TLB), indicating that the
performance improvements are primarily due to reduced working
sets.

Overall, this paper makes the following contributions:

• We propose a novel approach to improving performance of
pointer intensive programs: segregating and controlling heap
layout of pointer-based data structure instances and using fur-
ther compiler optimizations that exploit this layout information.

• We present a new compiler algorithm for partitioning heap ob-
jects in C and C++ programs that is based on a context-sensitive
pointer analysis, including a novel and simple strategy for cor-
rect handling of indirect function calls in arbitrary (including
non-type-safe) programs.

• We present several simple but novel optimizations that opti-
mize the performance of individual data structure pools based
on their specific patterns of memory deallocation or type infor-
mation for pool contents. In previous work [19, 35], we have
demonstrated other uses of Automatic Pool Allocation as well.

• We present a detailed experimental evaluation of the perfor-
mance impact of Automatic Pool Allocation, showing that the
transformation can significantly improve memory hierarchy
performance and overall running times of heap-intensive pro-
grams, and that the transformation has very low compilation
time in practice.

Section 2 defines the assumptions we make about the points-
to graph input to the transformation. Section 3 describes the main
pool allocation transformation, and Section 4 describes several im-
portant refinements. Sections 5 and 6 define a suite of simple pool
optimizations and describe heuristics for pool collocation (respec-
tively). Section 7 describes the key properties provided by Auto-
matic Pool Allocation and two example clients, Section 8 describes
our implementation, and Section 9 contains our experimental eval-
uation of the transformation. Finally, Section 10 contrasts this work
with prior work in the field and Section 11 concludes the paper.
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s t r u c t l i s t { l i s t ∗ Next ; i n t ∗ Data ; } ;
l i s t ∗ c r e a t e n o d e ( i n t ∗ Data ) {

l i s t ∗New = mal loc ( s i z e o f ( l i s t ) ) ;
New−>Data = Data ;
re turn New;

}
vo id s p l i t c l o n e ( l i s t ∗L , l i s t ∗∗R1 , l i s t ∗∗R2 ) {

i f ( L = = 0 ) { ∗R1 = ∗R2 = 0 ; re turn ; }
i f ( s o m e p r e d i c a t e ( L−>Data ) ) {

∗R1 = c r e a t e n o d e ( L−>Data ) ;
s p l i t c l o n e ( L−>Next , & (∗R1)−>Next , R2 ) ;

} e l s e {
∗R2 = c r e a t e n o d e ( L−>Data ) ;
s p l i t c l o n e ( L−>Next , R1 , & (∗R2)−>Next ) ;

}}
i n t p r o c e s s l i s t ( l i s t ∗ L ) {

l i s t ∗A, ∗B , ∗ tmp ;

/ / Clone L , s p l i t t i n g nodes i n l i s t A , and B .
s p l i t c l o n e ( L , &A, &B ) ;
p r o c e s s P o r t i o n (A ) ; / / P r o c e s s f i r s t l i s t
p r o c e s s P o r t i o n (B ) ; / / p r o c e s s second l i s t

/ / f r e e A l i s t
whi le ( A ) { tmp = A−>Next ; f r e e (A ) ; A = tmp ; }
/ / f r e e B l i s t
whi le ( B ) { tmp = B−>Next ; f r e e (B ) ; B = tmp ; }

}
(a) Input C program manipulating linked lists

s t r u c t l i s t { l i s t ∗ Next ; i n t ∗ Data ; } ;
l i s t ∗ c r e a t e n o d e ( Poo l ∗PD , i n t ∗ Data ) {

l i s t ∗New = p o o l a l l o c (PD , s i z e o f ( l i s t ) ) ;
New−>Data = Data ;
re turn New;

}
vo id s p l i t c l o n e ( Poo l ∗PD1 , Poo l ∗PD2 ,

l i s t ∗L , l i s t ∗∗R1 , l i s t ∗∗R2 ) {
i f ( L = = 0 ) { ∗R1 = ∗R2 = 0 ; re turn ; }
i f ( s o m e p r e d i c a t e ( L−>Data ) ) {

∗R1 = c r e a t e n o d e ( PD1 , L−>Data ) ;
s p l i t c l o n e ( PD1 , PD2 , L−>Next , & (∗R1)−>Next , R2 ) ;

} e l s e {
∗R2 = c r e a t e n o d e ( PD2 , L−>Data ) ;
s p l i t c l o n e ( PD1 , PD2 , L−>Next , R1 , & (∗R2)−>Next ) ;

}}
i n t p r o c e s s l i s t ( l i s t ∗ L ) {

l i s t ∗A, ∗B , ∗ tmp ; Poo l PD1 , PD2 ;
p o o l c r e a t e (&PD1 , s i z e o f ( l i s t ) , 8 ) ;
p o o l c r e a t e (&PD2 , s i z e o f ( l i s t ) , 8 ) ;
s p l i t c l o n e (&PD1 , & PD2 , L, &A, &B ) ;
p r o c e s s P o r t i o n (A ) ; / / P r o c e s s f i r s t l i s t
p r o c e s s P o r t i o n (B ) ; / / p r o c e s s second l i s t

/ / f r e e A l i s t : t h i s loop i s e v e n t u a l l y e l i m i n a t e d
whi le ( A ) { tmp = A−>Next ; p o o l f r e e (&PD1 , A ) ; A = tmp ; }
/ / f r e e B l i s t t h i s loop i s e v e n t u a l l y e l i m i n a t e d
whi le ( B ) { tmp = B−>Next ; p o o l f r e e (&PD2 , B ) ; B = tmp ; }
p o o l d e s t r o y (&PD1 ) ; p o o l d e s t r o y (&PD2 ) ; / / d e s t r o y p o o l s

}
(b) C code after the basic pool allocation transformation

Figure 1. Example illustrating the Pool Allocation Transformation
‘processlist’ copies a list into two disjoint lists (based on some predicate), processes each, then frees them. After basic pool allocation, the

new lists are put in separate pools (PD1 and PD2) which are each contiguous in memory. After subsequent optimization, the calls to
poolfree and the loops containing them are removed because pooldestroy frees all pool memory.
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Figure 2. BU DSGraphs for functions in Figure 1 (a)

2. Background: Points-To Graph & Example
In this section, we briefly introduce the running example used by
this paper and specify the points-to graph representation and prop-
erties that are used by our description of Automatic Pool Allocation
and its optimizations. Figure 1(a) shows the running example we
use to illustrate the pool allocation transformation. This program
fragment traverses an input list (L), creating two new lists (A and
B) based on the input list, processes the new lists separately, and
finally deallocates them.

Automatic Pool Allocation is driven by a points-to graph com-
puted by some pointer analysis that uses an explicit representation
of memory [27]. In our implementation, we use an algorithm we
call Data Structure Analysis (DSA) [32] to compute these points-to
graphs. DSA is context-sensitive (both in its analysis and in that it
distinguishes heap and stack objects by entire acyclic call paths),
unification-based, and field-sensitive, and we believe these prop-
erties are important for pool allocation for the reasons explained
below. We have shown that DSA is both extremely fast and scal-
able (it can analyze programs of 220K lines of code like 176.gcc in

under 2 seconds [32]), and requires a small fraction of the compi-
lation time taken by “gcc -O3.”

Context-sensitive naming of heap objects by (acyclic) call
paths is required to distinguish data structure instances that may be
created, processed, or destroyed by calling common functions. For
example, this property enables DSA to determine that lists A and B
are disjoint in Figure 1(a) even though their nodes are allocated at
a common allocation site, enabling pool allocation to assign them
to distinct pools. With less or no context-sensitivity (e.g., if heap
objects were distinguished only by allocation site), such data struc-
tures would not be segregated into distinct pools.

A unification-based pointer analysis [43] merges the potential
targets of a pointer into a single set of objects , yielding a points-
to graph where every pointer variable or pointer field points to at
most one node. We use a unification-based approach for two rea-
sons. First, as we argued in [32], it is crucial to making DSA both
extremely fast and scalable despite distinguishing memory objects
by call paths. Second, it greatly simplifies Automatic Pool Alloca-
tion because it ensures that every pointer points to a unique node
and hence a unique pool. Pool allocation without unification would
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require a mechanism (e.g., “fat pointers”) to track the pool pointed
to by each pointer value at run time, which is significantly more
complex and can hurt both performance and compatibility with ex-
ternal libraries. Furthermore, there is some evidence that adding
context-sensitivity substantially reduces the precision advantage of
subset-based over unification-based algorithms [36, 16, 32].

A field-sensitive pointer analysis distinguishes the targets of
distinct pointer fields within a record. This is important in prac-
tice for pool allocation with a unification-based algorithm because
merging the targets of unrelated pointer fields in a node would lose
most of the internal structural information for multi-level pointer-
based data structures. DSA is field-sensitive for memory objects
that are accessed in a type-consistent way, a property which it in-
fers during the analysis.

While we used DSA in our work, we know several other
context-sensitive analyses [20, 37, 10, 38] which provide all of the
properties required by the transformation or could be extended to
do so. We describe the properties of the points-to graphs and other
information required by the Automatic Pool Allocation transforma-
tion below.

2.1 Points-to Graph Assumptions

This section describes the properties of the points-to graphs used by
Automatic Pool Allocation, which we term Data Structure (or DS)
Graphs. A DS graph is a compile-time description of the memory
objects created by a function or program and their points-to prop-
erties. We assume that a DS graph is computed for each function,
representing the memory objects reachable from variables in that
function or from global variables. For reference, Figure 2 show the
graphs computed by DSA for the functions in the example.

Formally, a DS Graph is a directed multi-graph, where the
nodes and edges are defined as follows:

DS Node: A DS node is a 5-tuple {τ, F, M, A, G}. τ is some
(program-defined) scalar, array, record or function type, or ⊥ rep-
resenting an unknown type. In the transformation, ⊥ is treated like
an unknown-size array of bytes (the A flag, described below, is set
to true when τ = ⊥). F is an array of fields, one for each possible
field of the type τ . Scalar types and ⊥ have a single field, record
types have a field for each element of the record, array types are
treated as their element type (i.e. array indexing is ignored), and
functions do not have fields. M is a set of memory classes, writ-
ten as a subset of {H, S, G, U}, indicating Heap, Stack, Global and
Unknown memory objects respectively (multiple flags can be set
on one node due to the use of unification). A node with U ∈ M is
assigned type ⊥. Finally, if G ∈ M , then G is a non-empty set of
global variables and functions included in the objects for this node;
otherwise, G is empty. A is a boolean that is true if the node in-
cludes an array object. Finally, though this paper does not use the
information, DSA also infers Mod and Ref information, which are
shown as “M” and “R” in the figures.

DS Edge: A DS edge is a 4-tuple {s, fs, t, ft}. s and t are
DS nodes, while fs and ft are fields of s and t respectively.
Thus, the graph provides a field-sensitive representation of points-
to information. A field of a node may lack an outgoing DS edge
only if the field is known not to contain a pointer type, e.g., if
the node represents a function (the function itself doesn’t point
to anything else), is a floating point or small integer type, or if
M = {U}. In this paper, we use the notation “N(ptr)” to indicate
the node which the scalar pointer ptr points to.

Figure 2(b) shows the DS graph computed by our compiler for
function splitclone of the example. Note that each node of type
list has two fields2. The cycles indicate recursive data structures.

2 The diagrams in this paper show pointers to nodes in cases where the pointer targets
the first field of the node, due to limitations of the graph layout tool we use.

void poolcreate(Pool* PD, uint Size, uint Align)
Initialize a pool descriptor.

void pooldestroy(Pool* PD)
Release pool memory and destroy pool descriptor.

void* poolalloc(Pool* PD, uint numBytes)
Allocate an object of numBytes bytes.

void poolfree (Pool* PD, void* ptr)
Mark the object pointed to by ptr as free.

void* poolrealloc(Pool* PD, void* ptr, uint numBytes)
Resize an object to numBytes bytes.

void poolinit bp(Pool *PD, uint Align)
Initialize a bump-pointer pool descriptor.

void *poolalloc bp(Pool *PD, uint NumBytes)
Allocate memory from a bump-pointer pool.

void pooldestroy bp(Pool *PD)
Release a bump-pointer pool.

Figure 3. Interface to the Pool Allocator Runtime Library

R1 and R2 point to distinct nodes, indicating that the two linked
lists are completely disjoint.

There are two other assumptions about DS graphs used in this
work. First, we assume that the DS Graph for each function in-
cludes information about that function and all of the functions that
it calls (but no information about its callers). Section 3.3 explains
why this assumption is safe. For example, a node with H ∈ M
indicates heap objects allocated or freed in the current function or
its callees, but not its callers. Several context-sensitive analyses, in-
cluding DSA and others [37, 38], compute separate “Bottom-Up”
(BU) and “Top-Town” (TD) graphs: the Bottom-Up graphs capture
exactly the information required. For example, the graph in Fig-
ure 2(b) incorporates the points-to, mod/ref, and flag effects of both
calls to “createnode”: it includes two copies (one for each call) of
the H flag and the edge from the list node to the integer data node
present in Figure 2(a).

Second, there are a few primitive operations on DS graphs used
in the transformation, including merging two graphs and matching
nodes between graphs for a callee and a caller. These are defined
and explained where they are used in the next Section.

3. The Core Transformation
The pool allocation transformation operates on a program contain-
ing calls to malloc and free, and transforms the program to use a
pool library, described below. The algorithm uses a points-to graph
and call graph, both of which are computed by DSA in our imple-
mentation. The transformation is a framework which has several
optional refinements. In this section, we present a “basic” version of
the transformation in which all heap objects are allocated in pools
(i.e., none are allocated directly via malloc) and every node in the
points-to graph generates a separate static pool (explained below).
In the next section, we discuss refinements to this basic approach.

3.1 Pool Allocator Runtime Library

Figure 3 shows the interface to the runtime library. Pools are iden-
tified by a pool descriptor of type Pool. The functions poolalloc,
poolfree, and poolrealloc allocate, deallocate, and resize
memory in a pool. The poolcreate function initializes a pool
descriptor for an empty pool, with an optional size hint (providing
a fast path for a commonly allocated size) and an alignment re-
quired for the pool (this defaults to 8, as in many standard malloc
libraries). pooldestroy releases all pool memory to the system
heap. The last three functions (with suffix “ bp”) are variants that
use a fast “bump pointer” allocation method, described in Section 5.

The library internally obtains memory from the system heap in
blocks of one or more pages at a time using malloc (doubling the
size each time). We implemented multiple allocation algorithms
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but the version used here is a general free-list-based allocator with
coalescing of adjacent free objects. It maintains a four-byte header
per object to record object size. The default alignment of objects
(e.g., 4- or 8-byte) can be chosen on a per-pool basis, for reasons
described in Section 5. The pool library is general in the sense that
it does not require all allocations from a pool to be the same size.

3.2 Overview Using an Example

The basic pool allocation transformation is illustrated for the ex-
ample program in Figure 1(b), which shows the results of our basic
transformation in C syntax. The incoming list L and the two new
lists have each been allocated to distinct pools (the pool for L is not
passed in and so not shown; the new lists use pools PD1 and PD2).
The list nodes for A and B will be segregated in the heap, unlike
the original program where they will be laid out in some unpre-
dictable fashion (and possibly interleaved) in memory. The items
in each pool are explicitly deallocated and the pools are destroyed
within processList when the data they contain is no longer live.

We can use this example to explain the basic steps of the trans-
formation. The DS graphs are shown in Figure 2. First, we use each
function’s DS graph to determine which H nodes are accessible
outside their respective functions, i.e., “escape” to the caller. The
H nodes in createnode and splitclone do escape, because they
are reachable from a returned pointer and a formal argument, re-
spectively. The two in processlist (A and B) do not. The latter
are candidates for new pools in processlist.

The transformation phase inserts code to create and destroy the
pool descriptors for A (PD1) and B (PD2) in processlist (see
Figure 1(b)). It adds pool descriptor arguments for every H node
that escapes its function, i.e., for nodes pointed to by R1 and R2
in splitclone and the node pointed to by New in createNode.
It rewrites the calls to malloc and free with calls to poolalloc
and poolfree, passing appropriate pool descriptors as arguments.
Finally, it rewrites other calls to (e.g., the calls to splitclone
and createnode) to pass any necessary pool descriptor pointers
as arguments. At this point, the basic transformation is complete.

Further refinements of the transformation move the pool-
destroy for PD1 as early as possible within the function process-
list, and then eliminate the calls to free items in the two lists
(since these items will be released by pooldestroy before any new
allocations from any pool) and hence the loop enclosing those calls
to free. The final resulting code (Figure 8) puts each linked list into
a separate pool on the heap, made the list objects of each list con-
tiguous in memory, and reclaims all the memory for each list at
once instead of freeing items individually. In the example, the list
nodes are placed in dynamic allocation order within their pool.

3.3 Analysis: Finding Pool Descriptors for each H Node

The analysis phase identifies which pool descriptors must be avail-
able in each function, determines where they must be created and
destroyed, and assigns pool descriptors to DS nodes. We use the
term static pool to refer to a single poolcreate statement in the
generated code. By definition, H ∈ M for a node if the objects of
that node are returned by malloc or passed into free by the cur-
rent function or any of its callees, since we assume a Bottom-up
DS graph (see Section 2.1). These identify exactly those nodes for
which a pool descriptor must be available in the current function.

Automatic Pool Allocation computes a map (pdmap) identify-
ing the pool descriptor corresponding to each DS node with H ∈
M . We initially restrict pdmap to be a one-to-one mapping from
DS nodes to pool descriptor variables; Section 6 extends pdmap to
allow a many-to-one mapping. We must handle two cases: 1) the
pool escapes the current function and 2) the pool lifetime is bound
by the function. In the first case, we add a pool descriptor argument
to the function, in the second, we create a descriptor on the stack for

the function and call poolcreate/pooldestroy. These two cases
are differentiated by the “escapes” property for the DS node.

The “escapes” property is determined by a simple escape anal-
ysis on the bottom-up DS graphs, implemented as a depth-first
traversal. In particular, a node escapes iff 1) a pointer to the node is
returned by the function (e.g. createnode) 2) the node is pointed
to by a formal argument (e.g. the R1 node in splitclone) 3) the
node is pointed to by global variable and the current function is not
main, or 4) (inductively) an escaping node points to the node.

A subtle point is that any node that does not escape a function
will be unaffected by callers of the function, since the objects at
such a node are not reachable (in fact, may not exist) before the
current function is called or after it returns. This explains why it
is safe to use a BU graph for pool allocation: Even though the
BU graph does not reflect any aliases induced by callers, the non-
escaping nodes are correctly identifiable and all information about
them is complete, including their type τ , incoming points-to edges,
and flags. In fact, in DSA, the escapes property is explicitly com-
puted and all non-escaping nodes are marked using a “C”omplete
flag [32]. It can be computed easily using the above definition by
any context-sensitive algorithm that has similar points-to graphs.

3.3.1 The Basic Transformation

Figure 4 shows the pseudocode for a basic version of the Auto-
matic Pool Allocation transformation, which does not handle indi-
rect function calls. The algorithm makes two passes over the func-
tions in the program in arbitrary order. The first (lines 1–11) adds
arguments to functions, creates local pool descriptors, and builds
the pdmap. The second (lines 12–20) rewrites the bodies of func-
tions using pdmap.

basicpoolallocate(program P )
1 ∀F ∈ functions(P )
2 dsgraph G =DSGraphForFunction(F )
3 ∀n ∈ nodes(G) // Find pooldesc for heap nodes
4 if (H ∈ n.M)
5 if (escapes(n)) // If node escapes fn
6 Pool* a = AddPoolDescArgument(F , n)
7 pdmap(n) = a // Remember pooldesc
8 argnodes(F ) = argnodes(F ) ∪ {n}
9 else // Node is local to fn
10 Pool* pd = AddInitAndDestroyLocalPool(F , n)
11 pdmap(n) = pd

12 ∀F ∈ functions(P )
13 ∀I ∈ instructions(F ) // Rewrite function
14 if (I isa ‘ptr = malloc(size)’)
15 replace I with ’poolalloc(pdmap(N(ptr)), size)’
16 else if (I isa ‘free(ptr)’)
17 replace I with ‘poolfree(pdmap(N(ptr)), ptr)’
18 else if (I isa ‘call Callee(args)’)
19 ∀n ∈ argnodes(Callee)
20 addCallArgument(pdmap(NodeInCaller(F, I, n)))

Figure 4. Pseudo code for basic algorithm
For each node that needs a pool in the function, the algorithm

either adds a pool descriptor argument (if the DS node escapes)
or it allocates a pool descriptor on the stack. Non-escaping pools
are initialized (using poolcreate) on entry to the function and de-
stroyed (pooldestroy) at every exit of the function (these place-
ment choices are improved in Section 4.2). Because the DS node
does not escape the function, we are guaranteed that any memory
allocated from that pool can never be accessed outside of the cur-
rent function, i.e., it is safe to destroy the pool, even if some mem-
ory was not deallocated by the original program. Note that this may
actually eliminate some memory leaks in the program!

In the second pass (lines 12–20), the algorithm replaces calls to
malloc() and free()3 with calls to poolalloc and poolfree.

3 Note that “malloc wrappers” (like calloc, operator new, strdup, etc) do not
need special support from the pool allocator. Their bodies are simply linked into
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We pass the appropriate pool descriptor pointer using the pdmap
information saved by the first pass. Since the DS node must have
an H flag, a pool descriptor is guaranteed to be available in the map.

Calls to functions other than malloc or free must pass ad-
ditional pool descriptor arguments for memory that escapes from
them. Because the BU Graph of the callee reflects all accessed
memory objects of all transitive callees, any heap objects allocated
by a callee will be represented by an H node in the caller graph (this
is true even for recursive functions like splitclone). This prop-
erty guarantees that a caller will have all of the pool descriptors that
any callee will ever need.

A key primitive computable from DS graphs is a mapping,
NodeInCaller(F, C, n). For a call instruction, C, in a function
F , if n is a DS node in any possible callee at that call site, then
n′ = NodeInCaller(F, C, n) identifies the node in the DS graph
of F corresponding to node n due to side-effects of the call C (i.e.,
n′ includes the memory objects of node n visible in F due to this
call). The mapping is computed in a single linear-time traversal
over matching paths in the caller and callee graphs, starting from
matching pairs of actual and formal nodes, matching pairs of global
variable nodes, and the return value nodes in the two graphs if
any. If n escapes from the callee, then the matching node n′ is
guaranteed to exist in the caller’s BU graph (due to the bottom-up
inlining process used to construct the BU graphs), and is unique
because the DS graphs are unification-based [32].

Identifying which pool of the caller (F ) to pass for callee pool
arguments at call instruction I is now straightforward: for each
callee node n that needs an argument pool descriptor, we pass the
pool descriptor for the node NodeInCaller(F, I, n) in the caller’s
DS graph. We record the set of nodes (“argnodes”) that must be
passed into each function, in the first pass.

Variable-argument functions do not need any special treatment
in the transformation because of their representation in the BU
graphs computed by DSA. In particular, the DS graph nodes for
all pointer-compatible arguments passed via the “...” mechanism
(i.e., received via va arg) are merged so that they are represented
by a single DS node in the caller and callee. If the DS node pointed
to by this argument node has H ∈ M , a single pool argument is
added to the function. At every call site of this function, the nodes
for the actual argument (corresponding to the merged formals) will
also have been merged, and the pool corresponding to this node
will be found by NodeInCaller(F, I, n) and passed in as the
pool argument. Note that explicit arguments before the ... are not
merged and can have distinct pools.

3.3.2 Passing Descriptors for Indirect Function Calls

Indirect function calls make it much more complex to pass cor-
rect pool descriptor arguments to each function. There are multiple
difficulties. First, different functions called via a function pointer
at the same call site may require different sets of pools. Figure 5
shows a simple example where func1 needs no pools but func2
needs one pool, and both are called at the same site. Second, dif-
ferent indirect call sites can have different but overlapping sets of
callees, e.g., {F1, F2} and {F2, F3} at two different call sites. In
order to avoid cloning F2 into two versions, we must pass the same
pool arguments to all three functions F1, F2 and F3. This raises a
third major problem: because the call graph says that F3 is not a
callee at the first call-site, its DS graph was never inlined into that
of the caller at that call-site. This means that the matching of nodes
between caller and callee graphs, which is essential for passing pool
descriptors, may be undefined: NodeInCaller(F, C, n) may not
exist for all escaping n. Programs that violate the type signatures

the program and treated as if they were a user function, getting new pool descriptor
arguments to indicate which pool to allocate from.

i n t ∗ func1 ( i n t ∗ i n ) { ∗ i n = 1 ; re turn i n ; }
i n t ∗ func2 ( i n t ∗ i n ) { f r e e ( i n ) ;

i n = ( i n t ∗ ) ma l loc ( s i z e o f ( i n t ) ) ;
∗ i n = 2 ; re turn i n ; }

i n t c a l l e r ( i n t X) {
i n t ∗ (∗ fp ) ( i n t ∗ ) = (X > 1 ) ? func1 : func2 ;
i n t ∗ p = ( i n t ∗ ) ma l loc ( s i z e o f ( i n t ) ) ;
i n t ∗ q = fp ( p ) ;
re turn ∗ q ;

}

(a) Input C program with an indirect function call

i n t ∗ func1 ( Poo l ∗ P , i n t ∗ i n ) { ∗ i n = 1 ; re turn i n ; }
i n t ∗ func2 ( Poo l ∗ P , i n t ∗ i n ) { p o o l f r e e ( P , i n ) ;

i n = ( i n t ∗ ) p o o l a l l o c ( P , s i z e o f ( i n t ) ) ;
∗ i n = 2 ; re turn i n ; }

i n t c a l l e r ( i n t X) {
Poo l PD1 ; p o o l c r e a t e (&PD1 , . . . ) ;
i n t ∗ (∗ fp ) ( i n t ∗ ) = (X > 1 ) ? func1 : func2 ;
i n t ∗ p = ( i n t ∗ ) p o o l a l l o c ( PD1 , s i z e o f ( i n t ) ) ;
i n t ∗ q = fp ( PD1 , p ) ;
p o o l d e s t r o y (&PD1 ) ; re turn ∗ q ;

}

(b) C code after pool allocation

int: HM

 

 in  tmp returning

(c) Merged EBU Graph for
func1 and func2

int* (int*): GU
 %func1
 %func2

int: HMR

 

qfp  p

(d): EBU Graph for caller

Figure 5. Example with function pointers
Though func1 and func2 are called at the same call site, only

one needs a pool descriptor. The algorithm puts them in a single
equivalence class, merges their DS graphs, adds a pool argument
to both functions.

of functions at call sites (not uncommon in C code) exacerbate all
three problems because any attempt to match pool arguments ex-
plicitly for different callees must account for mismatches between
the actual and formals for each possible callee.

Our solution is composed of two key principles, described be-
low, and shown in pseudocode in Figure 6. The first principle is to
partition into equivalence classes so that all potentially callees at an
indirect call site are in the same class. We then treat all functions in
the same equivalence class as potential callees for that call site. For
example, func1 and func2 in the example figure are put into the
same class, and so are F1, F2 and F3 in the example above. Lines
1-2 uses the call graph to partition all the functions of the program
into disjoint equivalence classes in this manner.

The second principle is to simplify matching nodes between dif-
ferent callees at a call site with the nodes of the caller by merging
the graphs of all functions in an equivalence class, and then updat-
ing the caller graphs to be consistent with the merged callee graphs.
Merging the graphs ensures that an identical set of pool descriptor
formal arguments will be inferred for all functions in the class. Up-
dating the caller graphs to be consistent with the callee graphs (as
explained below) ensures that the third problem above — finding
matching nodes between callee and caller — is always possible.

In the example, the algorithm merges the DS graphs of func1
and func2 into the common graph shown in Figure 5(c), and uses
this common graph to transform both functions. This results in a
matching set of pool arguments for both functions, even though the
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pool will be unused in func1. This common graph is merged into
the caller, resulting in the graph shown in Figure 5(d). Using this
graph, one descriptor is passed to both functions at the call site.

The implementation of these graph merging and inlining steps
(lines 3-8 of Figure 6) use two primitive DSA operations – merging
two graphs and performing a bottom-up inlining pass on strongly-
connected components (SCCs) of the call graph. To merge the
graphs of two functions in an equivalence class (lines 3-4), we copy
one graph into the other, then unify corresponding formal argument
nodes (ignoring any extra nodes in one of the graphs if the formal
argument lists do not match), global nodes, and the return value
node of each graph. Unifying nodes causes recursive merging and
can potentially cause loss of some type information if merged nodes
have incompatible types.

Finally, we perform a bottom-up “inlining” pass on the strongly
connected components (SCCs) of the call graph, inlining merged
graphs of the callees into their callers. This simply requires repeat-
ing the bottom-up inlining pass of the DSA algorithm (starting with
the merged equivalence-class graphs of each function). This step is
described in detail in [32].

We call the resulting DS graphs the EBU (“equivalence bottom-
up”) graphs. The EBU graph is more conservative than the original
DS graph because functions known not to be called at a call-site
may be merged into the caller along with those that are (because
they are in the same equivalence class). Such cases do not arise
often in practice, and the merging of equivalence class graphs
greatly simplifies the overall transformation algorithm by solving
the above three problems with a uniform strategy based on existing
DS graph primitives.

completepoolallocate(program P )
1 ∀cs ∈ callsites(P ) // Build equivalence classes
2 unify equivclasses(callees(cs))
3 ∀ec ∈ equivclasses(functions(P )) // Build graph for each class
4 ECGraph(ec) = mergeGraphs(DSGraphs(members(ec)))
5 ∀scc ∈ tarjansccfinder(callgraph(P ))
6 ECGraph(scc) = mergeGraphs(ECGraphs(functions(scc)))
7 ∀cs ∈ callsites(scc) // Inline callees into caller
8 ECGraph(scc) = mergeGraph(cs, ECGraph(callees(cs)))
9 basicpoolallocate(P )

Figure 6. Pseudo code for complete pool allocator

Given the EBU graphs for a program, the pool allocator is now
guaranteed to have all of the pool descriptors required at an indirect
call site for any of the potential callees of the call site, allowing it
to apply the basicpoolallocate algorithm safely. Note that lines
17-19 simply have to use the common graph for all callees even
though there may now be multiple callers for the call at line 17.

A detailed discussion of the complexity of the Automatic Pool
Allocation algorithm is outside the scope of this work but is avail-
able in [32]. Briefly, all parts of the algorithm with the exception of
lines 5-8 of Figure 6 are linear in the total size of all DS graphs and
the number of instructions in the program, and Θ(nα(n)) in the
number of call graph edges. The complexity of lines 5–8, the EBU
phase, is similar to the BU phase of DSA, i.e., Θ(nα(n)+kα(k)c),
if n, k and c denote the total number of instructions, the maximum
size of a DS graph for a single procedure, and the number of edges
in the call graph. In practice, k is very small, typically on the order
of a hundred nodes or less, even for large programs [32].

4. Algorithm Refinements and Implementation
4.1 Argument Passing for Global Pools

A DS node reachable from a global variable requires a pool created
in main because the heap objects at that node may be live through-
out the lifetime of the program. This introduces a major source of
runtime overhead because such a pool would have to passed down

i n t p r o c e s s l i s t ( l i s t ∗ L ) {
l i s t ∗A, ∗B, ∗ tmp ;
Poo l PD1 , PD2 ; / / i n i t i a l i z e p o o l s
p o o l c r e a t e (&PD1 , . . . ) ; p o o l c r e a t e (&PD2 , . . . ) ;
s p l i t c l o n e (&PD1 , & PD2 , L , &A, &B ) ;
p r o c e s s P o r t i o n (A ) ; / / P r o c e s s f i r s t l i s t
p r o c e s s P o r t i o n (B ) ; / / p r o c e s s second l i s t

whi le (A ) { tmp=A−>Next ; p o o l f r e e (&PD1 , A ) ; A=tmp ; }
p o o l d e s t r o y (&PD1 ) ; / / NOTE : t h i s moved up

whi le (B ) { tmp=B−>Next ; p o o l f r e e (&PD2 , B ) ; B=tmp ; }
p o o l d e s t r o y (&PD2 ) ; / / d e s t r o y poo l PD2

}
Figure 7. After moving pooldestroy(&PD1) earlier

i n t p r o c e s s l i s t ( l i s t ∗ L ) {
l i s t ∗A, ∗B, ∗ tmp ;
Poo l PD1 , PD2 ;
p o o l c r e a t e (&PD1 , . . . ) ; p o o l c r e a t e (&PD2 , . . . ) ;
s p l i t c l o n e (&PD1 , & PD2 , L , &A, &B ) ;
p r o c e s s P o r t i o n (A ) ; / / P r o c e s s f i r s t l i s t
p r o c e s s P o r t i o n (B ) ; / / p r o c e s s second l i s t
p o o l d e s t r o y (&PD1 ) ; / / d e s t r o y poo l ( i n c l u d i n g nodes )
p o o l d e s t r o y (&PD2 ) ; / / d e s t r o y poo l ( i n c l u d i n g nodes )

}
Figure 8. After eliminating poolfree calls and dead loops

through many layers of function calls to be available in each func-
tion that actually allocates or frees data in the pool. In practice, we
have found that programs which have many heap nodes reachable
from globals may get thousands of arguments added to the pro-
gram.

The solution is simple: we create a global variable to hold the
pool descriptor for each heap node reachable from a global and
use this where needed, instead of passing the pool descriptor in
via function arguments. In practice, this refinement greatly reduces
the number of pool arguments that must be passed to functions
in some C programs. Most importantly, it ensures that the only
pool arguments that must be passed to a function are for nodes
reachable from pointers passed in as function arguments, making
the number of pool arguments grow with the number of formal
pointer arguments in the original function.

4.2 poolcreate/pooldestroy Placement

The algorithm described above places poolcreate/pooldestroy
calls at the entry and exits of each function. In practice, the lifetime
of the data objects in a pool may begin at a later point in the function
and may end before the end of the function. Moving the pool
create/destroy calls later and earlier within the function reduces the
lifetime of objects in the pool. This refinement can also make it
more likely that the refinement in Section 4.3 can apply.

We modified the basic algorithm so that it initially does not
insert poolcreate / pooldestroy calls but performs all other
transformations. For each pool that must be created in a function,
we use two simple depth-first traversals of the CFG to identify
all basic blocks where the pool descriptor must be live, based on
its uses, and then place poolcreate/pooldestroy calls at edges
entering or leaving a live block from or to a non-live block. The
overall algorithm is extremely simple and linear in the size of CFG.

Figure 7 illustrates this placement for the processlist func-
tion in our example. The call to pooldestroy(&PD1) has been
moved earlier in the function, to immediately after the while loop
that reads the Next field from nodes in PD1 pool. The poolcreate
calls for both pools cannot be moved any later.

In general, the poolcreate and pooldestroy calls can be
moved interprocedurally to further reduce the lifetime of pools,
similar to Aiken et al.’s work [1]. However, that would likely
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require a more expensive, flow-sensitive interprocedural algo-
rithm [1] and we have not attempted this so far.

4.3 poolfree Elimination

The final refinement is to eliminate unnecessary poolfree calls.
Many short-lived data structures have a “build-use-destroy” pat-
tern, in which all allocations happen before any deallocations. For
example, consider Figure 7. Between the call to poolfree(&PD1,
A) and the call to pooldestroy(&PD1), there are no allocations
out of any pool. This means that it is unnecessary to release the
memory in pool PD1 any earlier than the pooldestroy(&PD1),
when all the memory of the pool will be released back to the sys-
tem. We eliminate the call to poolfree(&PD1, A), which also
allows the compiler to eliminate the enclosing loop (similarly
for PD2). Effectively, we have performed a simple kind of static
garbage collection for the objects in this pool [31]. Note that mov-
ing pooldestroy calls earlier in the code can increase the oppor-
tunities for finding candidate poolfree calls to eliminate.

Again, we implemented this optimization as a simple, backward
dataflow analysis on the CFG, without interprocedural information.
The analysis looks for any occurrence of poolfree(P) such that
no path from the poolfree to the pooldestroy calls for P con-
tains any allocation out of any pool (including P ). The result for
processlist is shown in Figure 8.

5. Pool Allocation Optimizations
We describe four simple optimizations that exploit the partitioning
of heap objects and the differences in behavior of different pools.
The benefits of all four optimizations are evaluated in Section 9.

1) Avoiding pool allocation for singleton objects: Our sim-
plest optimization avoids pool-allocating nodes that appear to be
used for a single object. We identify such pools by finding H nodes
not pointed to by any other memory object (including itself), e.g.
they are only pointed to by local scalar variables. This optimiza-
tion avoids creating and destroying a pool descriptor (minor) and
avoids significant wasted space when the object is much smaller
than the smallest internal page (potentially significant when many
such pools are created). We term this “Selective PA”.

2) Eliminating poolfree operations: The refinement de-
scribed in Section 4.3 is an optimization that can eliminate the final
poolfree operations of a data structure, which we term “Pool-
FreeElim.” In some cases, this optimization can make entire data
structure traversals dead, as in the example above. As noted, this
optimization is enhanced by smart pooldestroy positioning.

Note that segregating data structures into distinct pools is what
enables this optimization to exploit the “build-use-destroy” pattern
shown by (some) data structures. For example, if there were any
allocations for the second list between pooldestroy(&PD1) and
the second while loop, the optimization would not be possible
without separating the lists into distinct pools.

3) “Bump-pointer” allocation: If memory is never free’d back
to a pool, there is no need for the pool library to maintain freelists
or the 4-byte header on each object. The bump pointer optimization
detects pools whose memory is only released by a pooldestroy, as
explained below. It then changes the pool operations to use the
“ bp” versions of the pool routines for such pools. This allocator
has a shorter allocation path than the normal pool allocator and
packs objects more densely in memory and cache (due to the
missing object header). This optimization is clearly enhanced by
the poolfree elimination optimization, which allows both pools in
the example to be changed into bump pointer pools.

We implemented this as a simple post-pass over the program.
Our implementation walks the use chain of each pool descriptor
looking for any use that is not a poolcreate, pooldestroy, or
poolalloc. If only these uses occur, the pool is promoted to use

a bump pointer by replacing the ordinary pool library calls with
the “ bp” versions. Note that our implementation currently cannot
promote any pools whose descriptors are passed into any other
function, including user functions like those in the example.

4) Intelligent object alignment: A traditional malloc library
must be conservative about memory alignment because it lacks type
information for the memory it allocates. Many architectures (e.g.,
Sparc V9) require that certain 8-byte values (e.g., C doubles) must
be 8-byte aligned, while others (e.g., x86) impose significant per-
formance penalties if such values are misaligned. This forces many
system malloc libraries to use 8-byte alignment for all objects, in-
creasing memory consumption and reducing cache density. For ex-
ample, two successive 16 byte objects will be placed 24 bytes apart
because 4 bytes are typically used as a malloc object header, forc-
ing an extra 4 bytes of padding per object for proper alignment.

Because many pools are type homogeneous, we have reliable
compile-time information about data types in such pools. There-
fore, we use 4-byte alignment when it is provably safe (i.e., a pool
is type homogenous and no field of the object will be improperly
aligned for the target architecture). Otherwise we use 8-byte align-
ment. The alignment is specified when the pool is created.

6. Node Collocation Heuristics
The pool allocation algorithm so far provides a framework for
segregating heap data structures but never collocates objects of
two DS nodes into the same pool. We can adapt the algorithm to
collocate a set of nodes by changing line 9 so that poolcreate
and pooldestroy are inserted for only one of the nodes, and
initializing pdmap to use the same descriptor for the other nodes.

Since heap objects are laid out separately and dynamically
within each pool, collocating objects can give the compiler some
control over internal layout of data structures. Even more so-
phisticated control might be possible using additional techniques
(e.g., [9]) customized on each pool.

We propose two example static options for choosing which H
nodes should share a common pool. We define a Collection to be
either a node with A = true, or any non-trivial strongly connected
component (i.e., containing at least one cycle) in the DS Graph.
Given this, any H node reachable from a Collection represents a set
of objects that may be visited by a single traversal over the objects
of the Collection.

OnePoolPerCollection: All candidate H nodes in a collection
are assigned to a single pool. Any other H node reachable from a
collection (without going through another collection) is assigned to
the same pool as the collection. This choice effectively partitions
the heap so that each minimal “traversable” collection of objects
becomes a separate pool. Intuitively, this gives the finest-grain par-
titioning of recursive data structures, which are often hierarchical.
It favors traversals over a single collection within such a hierarchi-
cal (i.e., multi-collection) data structure.

MaximalDS: A maximal connected subgraph of the DS graph
in which all nodes are H nodes are assigned to a single pool.
This partition could be useful as a default choice if there is no
information about traversal orders within and across collections.

Our implementation supports flexible colocation policies, but
in practice we have found that using a static collocation heuristics
rarely outperform (and is often worse than) assigning each H node
to a separate pool (see [32] for a discussion). We expect that
more sophisticated static analysis of traversal patterns combined
with profile data will be needed to statically choose the optimal
colocation configuration. We leave it to future work to develop an
effective approach for profitable collocation. The discussion above,
shows, however that (a) collocation of pools can be implemented
easily, and (b) qualitatively, the pointer analysis and pool allocation
provide a useful basis for per-data-structure choices.
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7. Compiler Applications of Pool Allocation
We believe that Automatic Pool Allocation combined with the un-
derlying pointer analysis provides a new framework for analyzing
and optimizing pointer-intensive programs, operating at the level of
entire data structure instances, instead of individual load/store op-
erations or individual data types. This is because Automatic Pool
Allocation provides four fundamental benefits to subsequent com-
piler passes:

1. Data structure-specific policies via segregation: Allocating dis-
tinct data structures from different pools allows compiler and
run-time techniques to be customized for each instance. These
techniques can use both static pool properties (e.g., type in-
formation and points-to relationships) and dynamic properties
(anything recordable in per-pool metadata).

2. Mapping of pointers to pool descriptors: The transformation
provides a static many-to-one mapping of heap pointers to pool
descriptors. This information is key to most transformations
that exploit pool allocation because it enables the compiler to
transform pointer operations into pool-specific code sequences.
It is used by both the example applications described below.

3. Type-homogeneous pools: Many pools are completely type-
homogeneous, as shown in Section 9, even C programs.
Novel compiler and run-time techniques are possible for type-
homogeneous pools that would not be possible on other pools
or the general heap (e.g. the alignment optimization).

4. Knowledge of the run-time points-to graph: One way to view
pool allocation is that it partitions the heap to provide a run-
time representation of the points-to graph. The compiler has full
information about which pools contain pointers to other pools
and, for type-homogeneous pools, where all the intra-pool and
inter-pool pointers are located. Such information is useful any
time pointers need to be traversed or rewritten at run-time.

The optimizations described earlier show some simple exam-
ples of how compiler techniques can exploit these benefits. In other
work, we developed two new compiler techniques that are much
more sophisticated and exploit many or all of the above properties
of pool allocation. We summarize these very briefly here; each is
described in detail elsewhere [19, 35]:

Transparent Pointer Compression: After pool allocation, the
static mapping of pointers to pool descriptors allows us to use pool
indices (i.e., byte offsets relative to the pool base) instead of point-
ers to identify objects in a pool. Since most individual data struc-
tures are likely to have far less than 232 distinct nodes, segregating
data structure instances allows us to represent these indexes with
integers smaller than the pointer size (e.g., 32 bits on a 64-bit host).
In [35], we implement this transformation and show that it can have
a significant and sometimes dramatic impact on both the perfor-
mance and the memory footprint of pointer-intenstive programs on
64-bit systems. This transformation exploits the segregation of data
structures into pools (which allows small indices), type homogene-
ity (which allows compression of indices by rewriting structure ac-
cesses and allocations), and of course the mapping of pointers to
pools (making the pool base implicit).

We also describe a dynamic version of the algorithm where the
pool runtime library dynamically rewrites nodes to grows pointers
in data structures when the 232nd node is allocated. This allows us
to speculatively compress pointers to 32-bits while retaining the
ability to dynamically expand them to 64-bits if full addressing
generality is needed.

Program Safety Without Garbage Collection: All the previous
applications of pool allocation focus on improving performance.
Another major application of pool allocation has been to enforce

program safety while allowing explicit memory deallocation for C
progams (the techniques for a type-safe subset of C are described
in [19] and a major extension to nearly arbitrary C is in progress).
This work exploits two key properties: pools in type-safe programs
are type homogeneous, and the segregation of individual data struc-
tures into pools ensures that many pools are relatively short-lived.
The type-homogeneity means that even with explicit deallocation,
we can prevent dangling pointers into the pool from being able to
cause unintended type violations. The short pool lifetimes ensure
that memory consumption does not increase significantly.

8. Implementation
We implemented Automatic Pool Allocation as a link-time trans-
formation using the LLVM Compiler Infrastructure [34]. Perform-
ing cross-module, interprocedural techniques (like automatic pool
allocation) at link-time has two advantages [3]: it preserves most of
the benefits of separate compilation (requiring few or no changes to
Makefiles for many applications), and it ensures that as much of the
program is available for interprocedural optimization as possible.

Our system compiles source programs into the LLVM repre-
sentation (for C and C++, we use a modified version of the GCC
front-end), applies standard intraprocedural optimizations to each
module, links the LLVM object files into a single LLVM module,
and then applies interprocedural optimizations. At this stage, we
first compute the complete Bottom-up DS graphs and then apply
the Pool Allocation algorithm in Figure 6. Finally, we run a few
passes to clean up the resulting code, the most important of which
are interprocedural constant propagation (IPCP), to propagate null
or global pool descriptors when these are passed as function ar-
guments, and dead argument elimination (to remove pool pointer
arguments made dead by IPCP). The resulting code is compiled
to either native or C code using one of the LLVM back-ends, and
linked with any native code libraries (i.e., those not available in
LLVM form) for execution.

Our implementation of Data Structure Analysis and Automatic
Pool Allocation are publicly available from the LLVM web site
(http://llvm.cs.uiuc.edu/), together with the LLVM infras-
tructure, front-ends for C and C++, and most of the benchmarks
used in the experimental evaluation in Section 9.

9. Experimental Results
We evaluated Automatic Pool Allocation experimentally in order to
study several issues: compilation time, overall performance impact
of pool allocation, the contributions of the later optimizations it en-
ables, and the effect on the performance of the memory hierarchy.

For our experiments in this paper, we used the LLVM-to-C
back-end and compiled the resulting C code with GCC 3.4.2 at
-O3. The experiments were run on an AMD Athlon MP 2100+
running Fedora Core 1 Linux. This machine has exclusive 64KB
L1 and 256KB L2 data caches. The C library on this system im-
plements malloc/free using a modified Lea allocator, which is
a high quality general purpose allocator. This allocator is used in
all our experiments below, either directly from the application or
the pool runtime library. All runtimes reported are the minimum
user+system time from three executions of the program.

For this work, we are most interested in heap intensive pro-
grams, particularly those that use recursive data structures. For
this reason, we include numbers for the pointer-intensive SPECINT
2000 benchmarks, the Ptrdist suite [2], the Olden suite [39], and the
FreeBench suite [40]. We also include a few standalone programs:
Povray3.1 (a widely used open source ray tracer, available from
povray.org), espresso, fpgrowth (a patent-protected, data min-
ing algorithm [25]), llu-bench (a linked-list microbenchmark) [46],
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and “chomp” from the McGill benchmark suite. All but SPEC, fp-
growth and povray31 are available from llvm.cs.uiuc.edu.

For lack of space, we elide many benchmarks from these suites
that were unaffected by pool allocation. This happens for several
reasons. Some of the benchmarks, including 181.mcf, 186.crafty,
256.bzip2, and several FreeBench benchmarks, have very few
dynamic memory allocations. A few (e.g. 197.parser, 254.gap,
255.vortex) have custom memory allocators, which prevents dis-
ambigution of allocated memory objects and causes all objects to
be placed in a single pool. As an experiment, we removed the cus-
tom memory allocator from 197.parser and replaced it with wrap-
pers that just call malloc/free; this is called 197.parser-b below.
We can do this to 197.parser (but not the others) because its custom
allocator has semantics identical to malloc/free. Finally, almost
all the codes in the McGill benchmark suite have run times that are
too small to be measured reliably.

9.1 Pool Allocation Statistics

Table 1 shows several basic statistics about pool allocation for each
program. The StatPools column shows the number of static pools
created in the program (when using Selective PA). The NumTH
column shows the static number of type homogenous pools, and
TH% is percentage of static pools that are type-homogenous. The
DynPools column lists the number of dynamic pools created by
the program. Tot Args and Max Args are the total number of
formal arguments added to the program across all functions, and
the maximum number for a single function.

Program LOC Stat Num TH% Dyn Tot Max
Pools TH Pools Args Args

164.gzip 8616 4 4 100% 44 1 1
175.vpr 17728 107 91 85% 44 23 4
197.parser-b 11204 49 48 98% 6674 76 16
252.eon 35819 124 123 99% 66 549 41
300.twolf 20461 94 88 94% 227 1 1
anagram 650 4 3 75% 4 0 0
bc 7297 24 22 32% 19 6 2
ft 1803 3 3 100% 4 0 0
ks 782 3 3 100% 3 0 0
yacr2 3982 20 20 100% 83 0 0
analyzer 923 5 5 100% 8 0 0
neural 785 5 5 100% 93 0 0
pcompress2 903 5 5 100% 8 0 0
llu-bench 191 1 1 100% 2 0 0
chomp 424 4 4 100% 7 10 8
fpgrowth 634 6 6 100% 3.4M 10 6
espresso 14959 160 160 100% 100K 191 13
povray31 108273 46 5 11% 14 290 4
bh 2090 1 0 0% 1 0 0
bisort 350 1 1 100% 1 1 1
em3d 682 12 12 100% 12 3 2
health 508 2 2 100% 2 4 2
mst 432 4 4 100% 4 0 0
perimeter 484 1 1 100% 1 1 1
power 622 3 3 100% 3 9 7
treeadd 245 6 6 100% 6 1 1
tsp 579 1 1 100% 1 1 1

Table 1. Basic Pool Allocation Statistics

The programs vary greatly in terms of the ratio of dynamic
pool instances (Dyn Pools) to static pools (Stat Pools). fpgrowth
has a particularly high ratio because it creates a new pool (for a
local search tree) in each call to a recursive function. The number
of arguments added to the programs is generally modest. 252.eon
has a large number of arguments added because the standard C++
library is statically linked in, providing a large amount of cold code.

The Th% column also shows that for most pools, DSA is able
to successfully prove that memory in the pool is used in a type-
consistent manner, which we have found true across a wide range
of C programs. This allows intelligent alignment decisions, gives
the pool runtime information about expected size for single objects,

and enables other novel compiler techniques described briefly in
Section 7.

Program BP BP% PFE
164.gzip 1 25% 9
175.vpr 27 25% 29
197.parser-b 3 6% 0
252.eon 0 0% 28
300.twolf 61 65% 1
anagram 2 50% 0
bc 3 13% 0
ft 2 67% 0
ks 3 100% 0
yacr2 7 35% 0
analyzer 5 100% 0
neural 5 100% 0
pcompress2 0 0% 0

Program BP BP% PFE
llu-bench 1 100% 0
chomp 0 0% 0
fpgrowth 0 0% 0
espresso 1 1% 3
povray31 6 13% 28
bh 1 100% 0
bisort 1 100% 0
em3d 6 50% 0
health 2 100% 0
mst 4 100% 0
perimeter 1 100% 0
power 3 100% 0
treeadd 2 33% 0
tsp 1 100% 0

Table 2. Statistics for Pool Optimizations

Table 2 shows the static number of pools that can use a bump
pointer after poolfree elimination (BP), and number of poolfree
calls deleted when PoolFree Elim is enabled (PFE). The table
shows that in many programs (the larger such examples are vpr,
twolf, yacr2, and povray), a significant fraction of pools are iden-
tified as eligible bump-pointer pools, i.e., individual pool objects
are never freed back to the pool. For vpr, twolf and povray, this is
enabled by the elimination of several poolfree operations. This
elimination indicates the presence of the build-use-destroy pattern
explained in Section 5. In 175.vpr, for example, pool allocation
eliminates 29 poolfree calls.

9.2 Pool Allocation Compile Time

Table 3 shows the compile times for pool allocation on programs
bigger than 1000 lines of code. It breaks down this time into three
components: the total time for DSA (which can be used by other
clients as well), the time to compute the EBU graphs described in
Section 3.3.2 (which are specific to pool allocation), and the time to
perform the pool allocation transformation itself. The GCC column
lists the time to compile the program with GCC 3.4.2 at -O3.

The total compilation time for pool allocation is extremely
modest, taking less than 1.25 seconds in all cases on our Athlon
2100+. The largest amount of time is spent analyzing 252.eon
(which has a large portion of the standard C++ library statically
linked into it), followed by povray31; these are the only programs
that took more than 1 second. Furthermore, much of the time is
spent in DSA, which can be used for a variety of applications
besides pool allocation [32]. Our implementation of the EBU and
PA passes have not been optimized substantially, so they could
probably be further reduced. Overall, these compilation times are
extremely small for a sophisticated interprocedural optimization.

Program LOC GCC DSA EBU PA Total GCC%
164.gzip 8616 2.67 0.02 0.01 0.01 0.03 1.1%
175.vpr 17728 9.39 0.06 0.03 0.05 0.14 1.5%
197.parser-b 11204 9.03 0.08 0.05 0.05 0.18 1.9%
252.eon 35819 131.13 0.51 0.30 0.42 1.23 0.9%
300.twolf 20459 17.21 0.09 0.07 0.03 0.19 1.1%
bc 7297 3.55 0.03 0.02 0.01 0.06 1.7%
ft 1803 0.68 0.01 0.01 0.01 0.02 2.9%
yacr2 3982 1.79 0.02 0.01 0.01 0.03 1.7%
espresso 14959 10.28 0.14 0.08 0.08 0.30 2.9%
povray31 108273 39.20 0.58 0.33 0.27 1.18 3.0%
bh 2090 0.85 0.01 0.01 0.01 0.01 1.2%

Table 3. Compile time (seconds) for programs > 1000 LOC

To put these times in perspective, the GCC% column (computed
as (Total/GCC)*100), shows that the pool allocation transforma-
tion takes 3% or less of the time taken by GCC to compile these
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programs. This is significant because GCC -O3 performs no cross-
module optimizations and inlining is the only interprocedural op-
timization it performs within a module. Overall, we believe these
compilation times are quite acceptable for a production compiler.

9.3 Baselines and Pool Allocation Overheads

Program GCC NoPA One - OnePool Only - OnlyOH
Pool Run % OH Run %

164.gzip 25.11 28.16 28.44 101.0% 28.17 100.0%
175.vpr 10.54 10.88 10.86 99.8% 10.87 99.9%
197.parser-b 12.59 12.42 17.86 142.7% 13.36 106.7%
252.eon 1.15 0.86 0.85 98.8% 0.88 102.3%
300.twolf 20.26 20.10 19.98 99.4% 20.50 102.0%
anagram 3.46 3.02 3.01 99.7% 3.02 100.0%
bc 1.71 1.55 1.48 95.5% 1.71 110.3%
ft 63.74 68.73 66.08 96.1% 68.94 100.3%
ks 4.56 4.43 5.30 119.6% 4.39 99.1%
yacr2 3.76 3.86 3.94 102.0% 3.89 100.8%
analyzer 324.54 312.25 314.69 100.8% 313.69 100.5%
neural 88.82 87.34 87.35 100.0% 87.60 100.3%
pcompress2 38.61 37.77 37.44 99.1% 38.04 100.7%
llu-bench 106.63 106.50 108.86 102.2% 106.76 100.2%
chomp 17.26 16.71 10.63 63.6% 16.82 100.6%
fpgrowth 36.27 36.62 36.49 99.7% 39.30 107.3%
espresso 1.25 1.22 1.20 98.3% 1.26 103.3%
povray31 9.41 9.79 9.69 98.9% 9.81 100.2%
bh 14.02 9.33 9.32 99.9% 9.35 100.2%
bisort 12.59 13.06 13.14 100.6% 13.20 101.1%
em3d 9.55 6.80 6.76 99.4% 6.80 100.0%
health 14.11 13.99 13.39 95.7% 13.98 99.9%
mst 12.79 13.14 13.23 100.7% 13.34 101.5%
perimeter 3.02 2.92 2.58 88.4% 3.00 102.7%
power 4.61 2.91 2.93 100.7% 2.92 100.3%
treeadd 17.48 17.41 17.29 99.3% 17.6 101.1%
tsp 7.17 7.24 7.08 97.8% 7.42 102.5%

Table 4. Baseline (NoPA), allocator, and overhead comparisons

Table 4 shows data to characterize the baseline we use for
comparison and isolate the overheads added to a program by pool
allocation. The GCC column is the execution time of the program
with the GCC 3.4.2 compiler (at -O3). The NoPA column is the
program compiled with LLVM using exactly the same sequence
of transformation and cleanup passes as we do for pool allocation
(see Section 8), but with the pool allocator and all pool-based
optimizations disabled. Using NoPA as a baseline for comparison
below isolates the speedup of the pool allocator transformation
and its optimizations by factoring out the impact of other LLVM
compiler passes. Comparing GCC to NoPA shows that the LLVM-
generated code is no worse than 12% slower than GCC code and
is sometimes much better. This indicates that the code quality of
NoPA is reasonable to use a baseline for comparisons.

Another key question is how the difference between the allo-
cator in our pool runtime library (used after pool allocation) and
the standard libc malloc library (used by NoPA) affect the compar-
isons. This is significant because our pool library implementation
is currently not thread-safe (though it is otherwise fully general),
and this or other implementation details could skew the results in
our favor. To measure this, we transformed the programs to allo-
cate out of a single global pool (this transformation does not add
pool arguments or other overhead to the program), effectively us-
ing our allocator to replace malloc and free for the program (the
OnePool column). Comparing with NoPA shows that in all but 4
cases (197.parser-b, ks, chomp and perimter), OnePool is within
about 5% of NoPA. The large slowdown for parser-b occurs be-
cause we use a singly-linked free list and the order of frees pre-
vents coalescing adjacent free blocks. chomp is much faster with
our allocator because our allocator has a fast path for fixed size
allocations (to exploit type homogeneous pools) and nearly all al-
locations in chomp are (multiples of) this fixed size. As shown be-
low, in all cases except perimeter, any such advantages from our

runtime library (even chomp) are much smaller than the aggregate
performance improvements due to pool allocation.

Finally, the OnlyOH column aims to isolate the performance
overheads in the transformed code, namely, extra pool arguments
on functions and initializing and destroying pool descriptors. It is
computed by pool-allocating the program, but modifying the run-
time library so that poolalloc/free simply call malloc/free. Com-
paring to NoPA shows that this overhead is negligible or quite low
(less than about 5%) in nearly all cases, but is slightly higher in
197.parser-b (7%), bc(10%), and fpgrowth (7%). The pool allo-
cator must overcome this overhead to provide a net performance
improvement.

9.4 Pool Allocation and FullPA Aggregate Performance

Table 5 shows the program running time and speedups (rela-
tive to NoPA) for automatic pool allocation alone (BasePA) and
for pool allocation with all pool-based optimizations (FullPA).
FullPA therefore represents the aggregate performance impact of
this work. As the table shows, FullPA improves the performance
of many programs from 5% to 20%, improves analyzer and llu-
bench by roughly 2x, and ft and chomp more than 10x. In no case
does FullPA hurt the performance of other programs relative to
NoPA. Not surprisingly, there is no obvious correlation between the
speedups obtained and the number of static or dynamic pools. The
causes and breakdown of these improvements are studied below.

Program NoPA BasePA BasePA/ FullPA FullPA/
NoPA NoPA

164.gzip 28.09 27.93 0.99 28.40 1.01
175.vpr 10.88 10.85 1.00 10.30 0.94
197.parser-b 12.52 10.14 0.81 9.84 0.79
252.eon 0.86 0.84 0.98 0.84 0.98
300.twolf 20.10 17.59 0.88 17.01 0.85
anagram 3.02 3.00 0.99 3.00 0.99
bc 1.55 1.26 0.81 1.24 0.80
ft 68.73 5.89 0.09 4.98 0.07
ks 4.43 4.38 0.99 4.39 0.99
yacr2 3.89 3.89 1.01 3.87 1.00
analyzer 312.25 183.64 0.59 130.53 0.42
neural 87.60 87.33 1.00 87.15 1.00
pcompress2 38.04 37.52 0.99 37.68 1.00
llu-bench 106.50 108.37 1.02 60.96 0.57
chomp 16.71 1.71 0.10 1.46 0.09
fpgrowth 36.62 31.13 0.85 30.42 0.83
espresso 1.22 1.15 0.94 1.09 0.89
povray31 9.79 9.31 0.95 9.12 0.93
bh 9.33 9.41 1.01 8.88 0.95
bisort 13.06 13.02 1.00 11.04 0.85
em3d 6.80 6.82 1.00 6.62 0.97
health 13.99 13.35 0.95 12.02 0.86
mst 13.14 11.67 0.89 11.39 0.87
perimeter 2.92 2.59 0.89 2.45 0.84
power 2.91 2.91 1.00 2.91 1.00
treeadd 17.41 17.19 0.99 16.85 0.97
tsp 7.24 7.03 0.97 5.95 0.82

Table 5. Run time (seconds) and runtime ratios vs. NoPA

9.5 Locality improvements

Figure 10 shows the measured cache miss ratio of FullPA compared
to NoPA, for each program that sped up at least 5%. The runtime
ratios for these programs are shown in Figure 9 to help correlate
the improvements in cache misses and running times. The figure
includes data for the number of accesses that miss the Athlon’s L1
D-cache, the number of accesses that miss the L2 D-cache, and
the number of DTLB misses as measured by the Athlon perfor-
mance monitoring counters. The graph shows that the programs
with the largest speedups generally have dramatically reduced miss
rates at every level of the cache hierarchy. The benefits for twolf
and llu-bench are primarily at the TLB and those of ft are much
greater at the cache. For all other cases, the reductions are closely
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Figure 9. Aggregate execution time ratios (1.0 = NoPA)
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Figure 10. Ratio of misses at L1/L2/TLB: FullPA/NoPA

correlated at all the three levels of the memory hierarchy. This in-
dicates that in these cases, the performance benefits are primarily
due to smaller working sets, which would be produced by defrag-
menting the heap.

To characterize this effect, we discuss chomp in more detail.
Chomp allocates three different nodes, which we call L, P, & D. L is
an 8-byte object of type list, P is a 16-byte object of type play,
and D is an array of int. Chomp uses an irregular allocation pat-
tern, but generally intermixes object allocations (e.g. it starts with
DPDLDPDLDLDDDPDLDL...). When using malloc, these objects
are interspersed on the heap, roughly corresponding to allocation
order (reuse of freed memory makes it inexact). When using the
pool allocator, the three different objects are put in separate pools,
and objects in each pool are roughly in allocation order (P is exactly
in allocation order).

These layout patterns mean that, without Pool Allocation, the L
and P list nodes are dispersed in memory (e.g. with variable strides
of 100-500 bytes for the P objects) whereas the pool allocator packs
them together (achieving a perfect stride of 20 bytes for the P
objects, 16 for the object and 4 for the object header). This change
dramatically reduces the cache footprint of linked list traversals
over the P and L nodes. In the case of the P list, it yields optimal
cache density and provides the hardware stride prefetcher with a
linear access pattern. This combination provides a reduction from
251M L1 misses to 63M L1 misses. While chomp is an extreme
case, it illustrates exactly the effect we aim for.

9.6 Contributions of Individual Optimizations

Figure 11 shows the runtime ratio of each program with one op-
timization disabled at a time, and compares it to a baseline of all
optimizations on. This shows how much the program slows down
when a particular optimization is disabled, which is correlated to
how much the optimization helps the performance of the code. Note
that if two optimizations can provide the speedup (e.g. either use of
alignment-opt or bump-pointer to reduce inter-object padding), dis-
abling either will not show a slowdown. Despite this, this analysis
does provide useful insight into the effect of the optimizations.
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Figure 11. Optimization contributions (1.0 = FullPA, all optzns)

All of the optimizations except SelectivePA contribute no-
ticeable improvements to at least one program. SelectivePA pro-
vides no significant speedup but does not hurt performance and
it is useful because it can improve memory consumption signifi-
cantly in some cases. The poolfree optimization improves 175.vpr,
197.parser-b, espresso, and povray31. The bump pointer optimiza-
tion appears to be the most significant of the three, being partic-
ularly valuable to 175.vpr, 300.twolf, ft, analyzer, llu-bench, and
several Olden programs. Close inspection of 175.vpr is particularly
interesting: BasePA is not faster than NoPA, but a combination of
poolfree elimination and the bump pointer optimization reduces the
runtime of the program to 95.7% of NoPA (SelectivePA reduces
it further to 94.6%). Finally, several programs benefited from the
alignment optimization, particularly ft, chomp, health and tsp.

The speedup potential of these simple pool optimizations are
particularly notable because they are all very simple optimizations,
but can only be performed only once the heap has been segregated
into pools.

10. Related Work
The primary goal of the pool allocation transformation is to give
the compiler some control over the layout of data structures in the
heap. We achieve this using a context-sensitive points-to graph to
distinguish data structure instances and object lifetimes. We first
contrast this work with previous approaches for influencing the
layout of heap objects, and then with previous work on partitioning
the heap for automatic (region-based) memory management.

Chilimbi et al. [12] describe a semi-automatic tool called
ccmorph that reorganizes the layout of homogeneous trees at run-
time to improve locality. It relies on programmer annotations to
identify the root of a tree and to indicate the reorganization is
safe. We automatically identify and segregate instances of many
kinds of logical data structures, but do not yet identify when a run-
time reorganization would be safe. They also describe another tool,
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ccmalloc, which is a malloc replacement that accepts hints to
allocate one object near another object. These hints only provides
local information for an object pair and not any global information
about entire data structures.

Hirzel et al. [28] describe a technique to improve the effective-
ness of Garbage Collection by partitioning heap objects according
to their connectivity properties. Unlike our work, their partitions
are not segregated on the runtime heap, are not directly related to
distinct data structures, and the graph of partitions is restricted to
be a DAG, which prevents fine grained partitioning of mutually re-
cursive structures (like graphs).

Several proposed techniques aim to improve storage allocation
or GC performance by relating objects based on their predicted life-
times [26, 18, 4, 15, 13, 41]. These techniques use heuristics such
as allocation site, call stack, or object size, combined with profiling
information, to predict lifetime properties approximately. In con-
trast, our approach uses a more rigorous analysis to group objects
both by structural relationships and statically derived lifetimes.

Other authors have developed techniques (usually profile-
based) to reorganize fields within a single structure or place objects
near each other to improve locality of reference [23, 9, 41, 11, 29].
These placement decisions are orthogonal to the choices made by
Automatic Pool Allocation, and could therefore be combined with
our transformation. This an important direction for future work.

There has been significant work on runtime libraries for region-
based memory management [5], and on language mechanisms
for manual region-based memory management as an alternative
to garbage collection, e.g., Real-time Java [7], RC [21], Cy-
clone [30, 22], and others [21, 17, 8]. Compared with our approach,
these library- or language-based techniques are much easier to im-
plement, but require significant manual effort to use. In addition,
although the region-based libraries and languages expose the rela-
tionship between objects and regions to the compiler, they do not
expose any notion of higher-level data structures or how they re-
late to objects and regions. Therefore, the compiler does not obtain
information about data structures and traversals that could enable
optimizations on logical data structures.

There is a rich body of work on automatic region inference as
a technique for memory management, for both functional [45, 44,
1, 24] and object-oriented languages [14, 10]. Unlike this body of
our work, our primary goal is to segregate and control the layout of
data structures in the heap for better performance and to enable sub-
sequent compiler techniques that exploit knowledge of these lay-
outs. We describe several optimizations that exploit data structure
pools, and explore the performance implications of data structure
segregation on program performance in some detail. There are also
some key technical differences between this prior work and ours.
First, all these previous techniques except the work of Cherem and
Rugina [10] are based on type inference with a region-based type
system. It does not appear straightforward to extend the type in-
ference approaches to work for weakly-typed languages like C and
C++, which can contain pointer casts, varargs functions, unions,
etc., on which type information is difficult to propagate statically.
In contrast, both our underlying pointer analysis and our transfor-
mation algorithm correctly handle all the complex features of C
and C++, by distinguishing objects with known and unknown type
(in the points-to graph) and by using a conservative and very effi-
cient graph merging technique (the same as in DSA) to deal with
potentially type-unsafe uses of pointers during the transformation.
Second, using a pointer analysis as the basis for our transformation
enables additional optimizations by exploiting the explicit relation-
ship between a points-to graph and pools. Finally, the use of type
inference and a rich type-system is not well suited for modern op-
timizing compilers, which are usually based on a mid-level or low-
level internal representation supporting multiple source languages.

Our approach is specifically designed for use in such compilers,
and relies only a simple, mid-level intermediate representation and
pointer analysis.

The work of Cherem and Rugina [10] was performed concur-
rently with ours and our approaches are technically similar in some
key ways. They describe a region inference approach for Java based
on a flow-insensitive, context-sensitive points-to analysis. Because
their primary focus is automatic memory management, they are
much more aggressive about computing region lifetimes, includ-
ing loop-carried regions. Our regions can be placed as flexibly as
theirs, but we use a simpler placement analysis. Like the type-
inference approaches, however, their work also does not support
weakly typed languages like C. Although the underlying pointer
analysis could be extended to do so (using our approach, for ex-
ample), we believe the transformation would be more difficult to
extend. Furthermore, they too focus on automatic memory man-
agement, and do not explore the impact of their work on memory
hierarchy performance or consider other optimizations that could
exploit their region information. We expect that our optimization
techniques could be fruitfully combined with their region inference
algorithm for Java programs.

There is a wide range of work on techniques for stack allocation
of heap objects as well as techniques for static garbage collection,
both of which are based on analyzing the lifetimes of objects in
programs (e.g., see [6, 42, 31] and the references therein). These
techniques do not attempt to analyze or control the layout of logical
data structures in the heap per se, and are largely orthogonal to
our work. A minor exception is that our optimization to eliminate
poolfree for a pool (when there are no intervening allocations
before the subsequent pooldestroy) essentially replaces explicit
deallocation with static reclamation of memory in the pool. This is
the inverse of (and much more limited than) the work on static GC,
which aims to replace or optimize runtime GC.

Finally, in an early workshop paper [33], we proposed the basic
idea of Automatic Pool Allocation. That work did not consider how
to handle the key difficult cases for this transformation, namely,
function pointers and efficient handling of recursion. It relied on an
early, non-scalable version of DSA (which did not support practical
handling of non-type-safe data structures), did not describe any
optimizations to exploit pool allocation, and did not evaluate the
performance impact of pool allocation. The current algorithm is
general, practical and efficient, and supersedes the previous work.

11. Conclusions and Future Work
The primary contribution of this paper is a practical, efficient com-
piler algorithm to segregate distinct instances of logical data struc-
tures into separate pools in the heap. Our implementation of the
algorithm applies to the full generality of C and C++ programs
and performs several additional optimizations that take advantage
of pool allocation. Our results show that for many programs, the
transformation achieves the major goal stated in the Introduction,
namely, that it can improve program performance, sometimes quite
substantially. The complete implementation and most of our bench-
marks are publicly available at llvm.cs.uiuc.edu.

We believe that the combination of Data Structure Analysis
and Automatic Pool Allocation together provide a new founda-
tion for analyzing and transforming pointer-intensive programs,
not in terms of individual memory references or data elements but
rather in terms of how such programs create and use entire logical
data structures. We term this a “macroscopic” approach to pointer-
intensive data structures. The broad goal of our ongoing work is
to continue investigating novel macroscopic techniques for pro-
gram optimization, program monitoring, memory safety, and au-
tomatic memory management. The first two major examples de-
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scribed briefly in Section 7 illustrate the potential power of this ap-
proach for enabling novel solutions to difficult compiler problems.
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