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Abstract

Traditionally, software pipelining is applied either to the
innermost loop of a given loop nest or from the innermost
loop to the outer loops. In a companion paper, we propo-
sed a scheduling method, called Single-dimension Software
Pipelining (SSP), to software pipeline a multi-dimensional
loop nest at an arbitrary loop level.

In this paper, we describe our solution to SSP code ge-
neration. In contrast to traditional software pipelining, SSP
handles two distinct repetitive patterns, and thus requires
new code generation algorithms. Further, these two distinct
repetitive patterns complicate register assignment and re-
quire two levels of register renaming. As rotating registers
support renaming at only one level, our solution is based on
a combination of dynamic register renaming (using rotating
registers) and static register renaming (using code replica-
tion). Finally, code size increase, an even more important is-
sue for SSP than for traditional software-pipelining, is also
addressed. Optimizations are proposed to reduce code size
without significant performance degradation.

We first present a code generation scheme and subse-
quently implement it for the IA-64 architecture, making ef-
fective use of rotating registers and predicated execution.
We present some initial experimental results, which demon-
strate not only the feasibility and correctness of our code
generation scheme, but also its code quality.

1. Introduction

Software pipelining for loop nests is a challenging re-
search topic. While numerous algorithms have been propo-
sed for single loops [2, 1, 5, 6, 10], only a few address loop
nests [6, 8, 15]. They all modulo schedule a loop nest hier-
archically, starting from the innermost loop to the outermost

one. This approach, henceforth referred to as innermost-
loop-centric modulo scheduling, naturally extends the sin-
gle loop scheduling method to the multi-dimensional do-
main. However, the approach has two major shortcomings.
First, it commits itself to the innermost loop first with-
out considering how much parallelism the other loop lev-
els have to offer. Second, it cannot exploit the data reuse
potential that may be present in the outer loops.

In [14], we introduced a resource-constrained sche-
duling method for software pipelining of loop nests,
called Single-dimension Software Pipelining (SSP). In
contrast to the traditional innermost-loop-centric ap-
proach, SSP searches the entire loop nest and chooses the
most profitable loop level to software pipeline, consider-
ing both parallelism and data reuse in order to reduce the
actual execution time of the loop nest. SSP retains the sim-
plicity of the classical modulo scheduling of single loops,
yet achieves significantly higher performance than the tra-
ditional innermost-loop-centric approach.

SSP has three steps: (1)Loop selection: select the loop
level that may yield the best performance if software pi-
pelining is applied to this level. (2)Dependence simplifica-
tion and 1-dimensional schedule construction: simplify the
n-dimensional (n-D) scheduling problem to 1-dimensional
(1-D), and then schedule the operations. (3)Final schedule
computation: the 1-D schedule is mapped to an n-D itera-
tion space to form a final schedule, which is semantically
equivalent to the selected (serial) loop 1.

This paper presents a code generation scheme for the
SSP method. In the context of a modern compiler frame-
work, the scheme is shown in Fig.1. It basically follows
the three steps of the SSP method. First, it chooses a prof-

1 SSP transforms the selected loop only. Its outer loops, if any, remain
intact. Therefore, this paper discusses code generation only for the se-
lected loop.
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itable loop from the source loop nest. The selected loop is
then lowered into CGIR (Intermediate Representation for
Code Generation). Second, it simplifies dependences and
performs scheduling. The output is a kernel – called inter-
mediate kernel in the rest of this paper – that expresses the
1-D schedule for the selected loop. Lastly, the SSP code
generator (the bigger dotted box in the figure) translates the
intermediate kernel into target machine code. This is equiv-
alent to the third step of SSP (final schedule computation).
We focus on this step in this paper.

Figure 1. Compilation Flow

Code generation for the SSP method presents several in-
teresting issues and this paper addresses them in an effec-
tive way. More specifically:

� The intermediate kernel generated by the SSP method
leads to two, instead of one, repetitive patterns . These
patterns, referred to as the outermost and the innermost
loop patterns, introduce a more challenging code gene-
ration problem than traditional software pipelining.

� Because the SSP method overlaps different iterations
of an outer loop, their inner loops are also overlapped.
Consequently, the live ranges for a TN in each outer
loop iteration are overlapped not only in the outer loop,
but also in the inner loops. In this case, a two-level
rotating register file is required to handle register re-
naming [13]. In absence of this, in this paper, we com-
bine dynamic register renaming (using rotating regis-
ters) and static register renaming (using code replica-
tion) to address the problem.

� Code size increase in SSP schedules is more important
than in traditional software pipelining. The challenge
is how to limit the code size increase while retaining
the performance benefits of the SSP method.

In this paper, we discuss the code generation scheme and
then target it for the IA-64 architecture. We show how to ap-
ply to loop nests the traditional hardware support for soft-
ware pipelining of single loops, e.g., Intel IA-64 hardware
support (rotating registers, predication, and special opera-
tions). Initial experimental results demonstrate the feasibil-
ity and correctness of our code generation scheme. It also
reveals the code quality and performance of the SSP me-
thod. Due to the space limitation, this paper only addres-
ses code generation issues and the reader is referred to [14]
for details about the SSP method.

The rest of the paper is organized as follows. Section 2
motivates our study by a simple example. Section 3 out-
lines our code generation method, while Section 4 presents
in details the algorithms for the IA-64 architecture. Sec-
tion 5 presents extensions and optimizations to the basic
method. Experimental results are reported in Section 6. A
discussion on future work, related work and concluding re-
marks are then presented in the remaining sections.

2. Motivation, Assumption, and Problem
Statement

2.1. Motivating Example

Fig.2(a) shows a perfect loop nest. Suppose the out-
ermost loop is selected by SSP. After lowering it into
an equivalent internal representation for code generation
(CGIR), it becomes imperfect (See Fig. 2(b), where the for
loops are shown in pseudo code for ease of understanding).
Every register in the CGIR is a logical register, i.e., Tempo-
rary Name (TN). TNf-1g refers to the instance of the TN in
the next outermost loop iteration.
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SSP schedules this internal representation of the outer-
most loop, and outputs an intermediate kernel in the form
shown in Fig. 2(c). The scheduling process of an imperfect
loop nest is similar to that of a perfect loop nest [14]. De-
tails are documented elsewhere [12] [14] (Technical memo
version) 2.

Like traditional software pipelining, the register alloca-
tor maps a TN to an architecture register. One possible plan
is to allocate r�� to TN1, r�� to TN2, and r�� to TN3.
Fig.2(d) shows the corresponding register-allocated kernel.
Note that in this kernel, the same TN in adjacent stages,
which come from adjacent outermost loop iterations, is al-
located registers with successive indexes. For instance, TN1
is allocated r��, r��, r��, and ��, respectively, in each of
the stages from right to left. TN1f-1g in the rightmost stage
is the register that will contain the TN1 value in the next
outermost loop iteration and therefore is assigned r��.

The main problem is then to generate the final executable
code in a compact form from the register-allocated kernel.

2.2. Assumptions

2.2.1. Source Loop Nest In this paper, we assume a n-
deep (n � �)3 source loop nest as shown in Fig. 3(a). With-
out loss of generality, we assume that the loop selected by
SSP for scheduling is the outermost loop L�.

In the loop nest, OPSETx represents a set of non-
branch operations at CGIR level between the beginnings of
two adjacent loops. We assume that there is no operation
between the end of the two loops for simplicity reasons,
although code generation for arbitrary loop nests is simi-
lar [12]. For the example in Fig. 2(b), OPSET� is com-
posed of the two add operations, and OPSET� is com-
posed of ld4 and st4 operations.

In the following sections, we assume that OPSETx
(� � x � n� �) is empty to simplify our discussion. The
code generation algorithms are then extended to the gen-
eral cases when OPSETx is not necessarily empty in Sec-
tion 5.2.

2.2.2. Intermediate Kernel Given the above loop nest,
SSP will generate an intermediate kernel of S different
stages, A�� A�� � � � � AS�� from right to left (Fig. 3(b)).
Each stage takes T cycles to execute. During each cycle,
one or more operations are executed.

The Sn leftmost stages consist of operations from the in-
nermost loop, i.e., from OPSETn. Other stages consist of

2 Code generation discussed in this paper is corresponding to the fi-
nal schedule with early-issue delay, shown in the Appendix of litera-
ture [14] (Technical memo version) and generalized in [12].

3 When n � �, the loop nest is a single loop, and SSP is equivalent to
traditional modulo scheduling [14]. Then the code generation is com-
pletely the same as that of modulo scheduling [11]. We do not discuss
this case in this paper.

int U[N�][N�];
int V[N�][N�];
L�:for (i�=0; i� � N�; i�++)f
L�: for (i�=0; i� � N�; i�++)f

V[i�][i�]=U[i�][i�];
g

g

(a) Source Loop Nest

L�:for (i�=0; i� � N�; i�++)f
a: add TN1f-1g=4*N� ,TN1
b: add TN2f-1g=4*N� ,TN2

L�: for (i�=0;i� � N�;i�++)f
c: ld4 TN3=[TN1],4
d: st4 [TN2]=TN3,4

g //end L�
g //end L�

(b) Intermediate Representation

(c) Intermediate Kernel

(d) Register-allocated Kernel, where r35 is allocated to TN1, r45 to
TN2, and r40 to TN3.

Figure 2. Motivating Example

operations from the outermost loop, i.e. fromOPSET� (the
other OPSET s are empty for the time being).

2.3. Problem Statement

Now we state the code generation problem addressed in
this paper as below:

Problem Statement: Given an intermediate kernel
generated by SSP and a target architecture, gen-
erate the SSP final schedule, while reducing code
size and loop control overheads.

In this paper, we propose to look at a code generation
scheme and then target it to the IA-64 architecture to make
use of the available hardware support, i.e. rotating registers,
predicated execution and specialized ISA (Instruction Set
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L�: for (i�=0; i� � N�; i�++) f
OPSET�

L�: for (i�=0; i� � N�; i�++) f
OPSET�
� � �

Ln: for (in=0; in � Nn; in++) f
OPSETn

g //end Ln
� � �

g end L�
g //end L�

(a) Generic Source Loop Nest

(b) Generic Intermediate (or Register-
allocated) Kernel

Figure 3. Generic Example

Architecture), which were originally designed for modulo
scheduling of single loops, and show how to apply them to
loop nests.

3. SSP Code Generation Overview

In this section, we present a high-level overview of the
code generation scheme and explain its components, based
on the repeating patterns in the SSP final schedule.

3.1. Components in a Final Schedule

Let us first identify the different components involved
in the SSP final schedule. It consists of 4 separate com-
ponents which we will refer to as the prolog, the outer-
most loop pattern, the innermost loop pattern and the epi-
log. These components for our example in Fig. 2 have been
shown in the SSP final schedule in Fig. 4, where o	x� y

refers to the instance of operation o with loop index i� � x

and i� � y. The corresponding IA-64 code for each com-
ponent is shown nearby, where o� is operation o in the first
cycle of the component under consideration, etc.

There are only two repeating patterns, independently of
the number of loops4. All operations, i.e. OPSET� and

4 It is because of the assumption in Section 2.2.1 that only the outer-
most and innermost loops have operations that makes only two repet-
itive patterns appear. However, even for general cases where the other
middle loops also have operations, we just need some extra transi-
tion code besides these two patterns, as to be described in Section 5.2.
In this paper, we will show how to generate such transition code, but

Figure 4. The SSP Final Schedule for Our Ex-
ample with N� � � and N� � �

OPSETn, appear in the outermost loop pattern, whereas
only operations in the innermost loop, i.e. OPSETn, ap-
pear in the innermost loop pattern.

Note that to make the outermost loop pattern appear
repetitively, ineffective operations need to be added. The in-
effective operations are circled in Fig. 4. They are ineffec-
tive because their first indexes are beyond the legal range of
i�, the outermost loop index variable (The range is assumed
to be [0,6) in Fig. 4). For the IA-64 architecture, predicate
registers will be used to make them ineffective.

3.2. Register Usage Strategy

An invariant in the loop nest can be assigned a non-
rotating register in conventional register allocation tech-
niques. In this paper, we discuss allocation of only (pred-
icate, integer and floating-point) rotating registers to vari-
ables in the loop nest.

From Fig. 4, we see that after the outermost loop pattern,
control will finally transfer to the innermost loop pattern. In
general, the code sequence is like that shown in Fig. 5.

It can be seen that the outermost loop pattern is com-
posed of Sn copies of the kernel in a stagger way. This re-
minds us of the traditional modulo scheduled code. For such
code, we can simply repeat the kernel for Sn times, with dy-
namic register renaming applied after each repetition. It is

will never take them as any repeating pattern, although they do re-
peat, to simplify our discussion. Therefore, there are only two repeat-
ing patterns in any case.
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Figure 5. Code Sequence from the Outermost
to the Innermost Loop Pattern

easy to find from Fig. 4 that prolog and epilog are similar to
the outermost loop pattern and can use dynamic register re-
naming as well.

The innermost loop pattern contains Sn copies of the Sn
leftmost stages in the kernel. As indicated by the arrows in
Fig. 5, the first copy of the kernel (copy 0) is formed by sim-
ply shift right by 1 stage the Sn leftmost stages of the last
kernel copy in the outermost loop pattern. The next copy
(copy 1) is simply a permutation of copy 0. Then copy 2
is a permutation of copy 1, etc. The permutation is to ro-
tate right by 1 stage the current copy. To achieve the ef-
fect of permutation, we have to statically rename registers
in each copy, unless there were hardware support for dy-
namic renaming.

In this paper, our strategy for register usage is to com-
bine dynamic (hardware) and static (software) register re-
naming. Dynamic register renaming, e.g., the rotating reg-
ister support, is used in the outermost loop pattern, prolog
and epilog. Static register renaming is used in the innermost
loop pattern.

Let us consider the compile flow in Fig. 1. For the in-
termediate kernel, we will assign rotating registers to the
TNs in this kernel. The first S predicate rotating registers
are used to control the issue of the outermost loop itera-
tions,like the traditional modulo scheduling [1]. For the IA-
64 architecture, p��, p��, � � �, p	�� � S � �
, are assigned
to each stage in the kernel from right to left. See the exam-
ple in Fig. 2(d).

For other rotating registers, in our current implemen-
tation, we made a simplistic choice of allocating S rotat-
ing registers per variable. This method is conservative and
some allocated registers might never be used. For instance,
in Fig. 2(d), TN1 is allocated rotating register r�� whose
value is referenced only in the first and the third stages of
the kernel, and thus r�� and r�� are not used by TN1 and
are not allocated to other TNs, either. An optimal/tight allo-
cation of rotating registers is left for future work.

After getting the register-allocated kernel, the code gen-

erator begins to generate the final schedule. In this process,
we will use the kernel directly to form the prolog, the outer-
most loop pattern, and the epilog, using dynamic register re-
naming. For the innermost loop pattern, however, the regis-
ter indexes of the operations in the kernel must be adjusted
to reflect the permutation of the kernel, as to be shown in
Section 4.

The register-allocated kernel will be used throughout
the subsequent code generation process. Thus from now
on, when we talk about kernel, we refer to the “register-
allocated kernel” by default.

3.3. Generated SSP Code Skeleton

Knowing the different components of the final schedule
and the register usage strategy, now we can show the skele-
ton of the generated code in Fig. 6.

The skeleton is written in pseudo-code. Each L�

i corre-
sponds to the Li loop in the original loop nest. Each for
loop structure is to be replaced by its equivalent in the tar-
get assembly language. This is straightforward and we do
not show the details here. The code in bold font is to be gen-
erated by the corresponding algorithms in Section 4.

In this skeleton, variable initial in is used to set the ini-
tial value of the innermost loop index in. When execution
reaches L�

n the first time, initial in is 1; Otherwise, it is 0.

[Initialization]
[Prolog]

L�
�

:
[Outermost loop pattern]
initial in = 1;

L�
�

: for (i� � �;i� � N�;i�++) f
L�
�

: for (i� � �;i� � N�;i�++) f
� � �

L�n: for (in � initial in;in � Nn;in++) f
[Innermost loop pattern]

g //end L�n
initial in = 0;
� � �

g //end L�
�

g //end L�
�

br.ctop L�
�

;
[Epilog]

Figure 6. Generated Code Skeleton

Br.ctop is a branch operation in the IA-64 ISA, which ro-
tates registers automatically for dynamic register renaming,
and decrements the loop counter register LC if LC � �, or
decrements epilog control register EC if LC � �. Fig. 6
shows only one br�ctop, which will either branch back to
L�

�, or fall through to the epilog. Other br.ctop operations
will appear in the prolog, the outermost loop pattern,and
the epilog, as to be shown later.
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Based on the above skeleton, the final code produced by
our code generation method for our example (depicted in
Fig. 2) is shown in Fig. 7. The generated code is shown in
IA-64 assembly language and pseudo code. We can distin-
guish all the components: the initialization (1-6), the pro-
log (7-9), the outermost loop pattern (10-20), the innermost
loop pattern (22-25) and the epilog (28-36). Initial in is
not explicitly shown here, since it is always 1 for double
loops, according to Fig. 6.

1: clrrrb;;
2: r35=start address of array U
3: r45=start address of array V
4: LC=N� � �
5: EC=3 if N� is odd, =2 otherwise
6: mov pr.rot=1��16;;

7: (p16) add r34=4*N� ,r35;;
8: br.ctop end prolog 0;;
9: end prolog 0:

L�
�

:
10: (p19) st4 [r48]=r43,4
11: (p18) ld4 r42=[r37],4
12: (p17) add r45=4*N� ,r46
13: (p16) add r34=4*N� ,r35;;
14: br.ctop end outermost pattern 0;;
15: end outermost pattern 0:
16: (p19) st4 [r48]=r43,4
17: (p18) ld4 r42=[r37],4
18: (p17) add r45=4*N� ,r46
19: (p16) add r34=4*N� ,r35;;
20: end outermost pattern 1:
21: L�

�
: for(i�=1;i� � N�;i�++) f

22: (p18) st4 [r47]=r42,4
23: (p17) ld4 r41=[r36],4;;
24: (p17) st4 [r46]=r41,4
25: (p18) ld4 r42=[r37],4;;
26: g

27: br.ctop L�
�

;;

28: LC=0
29: EC=2;;
30: (p19) st4 [r48]=r43,4
31: (p18) ld4 r42=[r37],4;;
32: br.ctop end epilog 0;;
33: end epilog 0:
34: (p19) st4 [r48]=r43,4;;
35: br.ctop end epilog 1;;
36: end epilog 1:

Figure 7. Final Code of Our Example

4. Code Generation for the IA-64 Architec-
ture

The algorithms to generate the different components will
now be described in detail in the context of the IA-64 archi-
tecture. The code generation scheme, however, is general

and can be easily adapted to any architecture with similar
architectural support. Note that, there is more than one way
to generate code for a given SSP final schedule and that we
are describing here only one possible solution.

In the following descriptions, we use emit op to emit an
operation and emit label to create a label. We will keep us-
ing the example from Fig. 2 to illustrate each algorithm.

4.1. Prolog

Prolog occurs only once for a given SSP final sched-
ule. It accounts for S � Sn � � copies of the kernel, with
some stages peeled off in each copy. There is no prolog if
S � Sn � � � �. The prolog for the example appears on
lines 7-9 in Fig. 7. The br�ctop operation ensures that the
rotating registers are rotated and the LC or EC counter is
decremented. Since the branch label (end prolog �) imme-
diately follows the branch, control simply falls through.

The algorithm for generating the prolog is shown in
Fig.8, where function emit stages	
 emits operations cy-
cle by cycle from a series of stages, as shown in Fig.8. Here
we simply emit a stop bit “;;” when all operations in a cy-
cle are emitted.

4.2. The Outermost Loop Pattern

The outermost loop pattern (See Fig. 5) is composed of
Sn identical copies of the entire kernel shifted by one out-
ermost loop iteration between each copy. Therefore, to gen-
erate the code associated with the outermost loop pattern,
we use rotating registers and rotating branches: we emit Sn
copies of the kernel alternated with a br�ctop operation to
force the rotation of the registers. Once again the br�ctop

operation is not used for control flow transfer, but for regis-
ter rotation.

Furthermore, the last kernel copy issued is not immedi-
ately followed by a br�ctop operation. This is to freeze the
hardware register renaming process until new iterations of
the outermost loop are initiated again, which is to happen in
the next occurrence of the outermost loop pattern.

Lines 10-20 in Fig. 7 shows the outermost loop pattern
for our example. Note that we have exactly Sn � � copies
of the kernel: one is within lines 10-13, and another within
lines 16-19. After the first copy, there is one br�ctop opera-
tion (in line 14). The second copy, however, is not immedi-
ately followed by a br�ctop, which is delayed to be after the
innermost loop pattern and appear in line 27.

The code generation algorithm for the outermost loop
pattern is shown in Fig. 8.
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4.3. The Innermost Loop Pattern

As shown in Fig. 5, after the outermost loop pattern, con-
trol will finally transfer to the innermost loop pattern. Since
the outermost loop pattern freezes hardware renaming in the
end, as said above (Section. 4.2), to keep ensuring that over-
lapping live ranges of the same TN from different outer-
most loop iterations do not use the same register, some kind
of register renaming must be done. However, the available
hardware register renaming is used for the outermost loop
pattern, and the IA-64 architecture provides only one rotat-
ing register base. Hence, the register renaming in the inner-
most loop pattern must be handled by software.

To equivalently express the innermost loop pattern in
Fig. 5, we can perform renaming in this way: From their
original values in the register-allocated kernel, the indexes
of the rotating registers in the operations of stage Aj (S �
Sn � j � S � �) in the kernel copy i	� � i � Sn
 must be
adjusted by:

offset	j� i
 �
n

�� if i � ��
�j � i � S��Sn � j � S � Sn � � otherwise�

where “%” is the modulo division.
In another word, the first copy of the kernel (copy 0) in

the innermost loop pattern is formed by decrementing by
1 the indexes of the rotating registers in each operation in
the leftmost Sn stages. From that on, indexes of the rotat-
ing registers must be permuted between copies of the kernel
(copy 1 to copy Sn � � in the innermost pattern in Fig. 5).

For our example, the Sn � � copies of the leftmost 2
stages of the kernel are shown in Fig. 7, lines 22-25. Note
how the registers in the original register-allocated kernel
have been renamed to make sure each operation uses the
correct registers. Take the load operation for instance, which
is operation c, and appears from the cycle 3 to cycle 4 in
Fig. 4 in this form:

cycle 3 ... c(1,0) (in copy 0 of the kernel)
cycle 4 c(0,1) ... (in copy 1 of the kernel)

After mapping to real code, it becomes the following,
which corresponds to line 23 and 25 in Fig.7.

line 23 ... (p17)ld4 r41=[r36],4(in copy 0 of the kernel)
line 25 (p18)ld4 r42=[r37],4 ...(in copy 1 of the kernel)

For the ld operation in copy 0 of the kernel,
offset	j� i
 � offset	�� �
 � ��(j � � since the ld op-
eration is in stageA�, as shown in Fig. 2(d). And i � � since
we are solving the offset for copy 0). For the ld operation
in copy 1 of the kernel, offset	j� i
 � offset	�� �
 � �.
Therefore, in the first copy, the rotating registers used in
the load operation are renamed from p18, r42 and r37 in
the register-allocated kernel to p17, r41 and r36. Then in
the second copy, they are renamed back to p18, r42 and r37
again.

The corresponding algorithms for generating the inner-
most loop pattern and adjusting the rotating registers’ in-
dexes are shown in Fig. 8, where index	r
 refers to the in-
dex of register r. Function TS() transforms a stage with a
given adjustment.

4.4. Epilog

The final phase of the SSP schedule is the epilog, which
consists of Sn copies of the kernel, except that only a sub-
set of the Sn leftmost stages of the kernel are executed. In a
sense, it is similar to the prolog, and thus the code genera-
tion algorithm (shown in Fig. 8) is also similar.

4.5. Initialization

The initialization part in Fig.6 sets the LC and EC reg-
isters provided by the IA-64 architecture. Their values will
control all the generated code except the initialization it-
self and the epilog (Epilog has its own setting of LC and
EC, as shown in Fig. 8). The setting of the values is cru-
cial to the correctness of the generated code. The formulas
found below assure that when 	LC�EC
 becomes 	�� �
,

1. We have issued all the outermost loop iterations, and
have not issued any more iterations.

2. The next br�ctop to be executed must be the one shown
in Fig. 6. According to the behavior of br�ctop [1], the
control flow definitely goes to the epilog.

There are totally N� number of outermost loop itera-
tions. One br�ctop issues one iteration. Therefore, LC is
initialized to:

LC � N� � ��

To find the correct value for EC, let us reconsider Fig. 4.
Since EC is used only by br�ctop, which is not used in the
innermost loop pattern at all, if we remove all the occur-
rences of the innermost loop pattern from Fig. 4, we get
Fig. 9. To be clear, we have explicitly shown the br�ctops.
A br�ctop operation is controlled by two registers LC and
EC. For clarity, we use br�ctop	LC�EC
 to represent a
br�ctop operation with 	LC�EC
 as its input parameters.
For example, br�ctop	�� �
 (in the prolog) means that the
current value of the 	LC�EC
 pair is 	�� �
, and from this
value, br�ctop rotates the registers once, and modifies the
value to be 	�� �
, according to the semantics of this op-
eration [1]. Therefore, the next br�ctop is represented as
br�ctop	�� �
, as shown in the first occurrence of the out-
ermost loop pattern in Fig. 9.

We observe the figure vertically and horizontally, in or-
der to find the correct initial value of EC.

Vertically, there areS���dN�

Sn
e�Sn number of br�ctops.

The prolog and the first occurrence of the outermost loop
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Generate Prolog():
1: for (i � �;i � S � Sn � �;i++)f
2: emit stages(Ai� Ai��� � � � � A�);
3: emit op(“br.ctop end prolog i;;”);
4: emit label(“end prolog i:”);
5: g

Generate Outermost Loop Pattern():
1: for(i � �;i � Sn;i++)f
2: emit stages(AS��� AS��� � � � � A�);
3: if (i != Sn � �)f
4: emit op(“br ctop end outermost pattern i;;”);
5: g
6: emit label(“end outermost pattern i:”);
7: g

Generate Innermost Loop Pattern():
1: for(i � �;i � Sn;i++) f
2: emit stages(TS(AS��� offset�S � �� i�),
3: TS(AS��� offset�S � �� i�),
4: � � �,
5: TS(AS�Sn

� offset�S � Sn� i�));
6: g

Generate Epilog():
1: emit op(“LC=0”);
2: emit op(“EC=Sn ;;”);
3: for(i � �;i � Sn;i++)f
4: emit stages(AS��� AS��� � � � � AS�Sn�i);
5: emit op(“br.ctop end epilog i;;”);
6: emit label(“end epilog i:”);
7: g

stage TS(stage STAGE, int ofst):
1: copy STAGE to STAGE�;
2: for each operation o in STAGE� f
3: for each rotating register r in o f
4: index�r� � index�r� � ofst;
5: g
6: g
7: return STAGE�;

emit stages(stages STAGES):
1: for (t � �;t � T ;t++)f
2: for each stage in STAGES f
3: for each operation o at cycle t in the stage f
4: emit op(o);
5: g
6: g
7: emit stopbit(); //emit a ”;;”
8: g

Figure 8. SSP Code Generation Algorithms

pattern account for the first S � � br�ctops. From that on,
there are dN�

Sn
e � � occurrences of the outermost loop pat-

tern and 1 epilog. Each of them consists of Sn kernels, and
each kernel is followed by a br�ctop 5. This accounts for the
remaining dN�

Sn
e � Sn br�ctops.

5 As said in Section 4.2, the last kernel copy in the outermost loop pat-
tern is not followed by a br�ctop until after the innermost loop pattern.
It is so in Fig. 9 because the innermost loop pattern is removed.

Figure 9. Find the Setting of EC for Our Ex-
ample. Here N� � �.

Assume EC has an initial value of x. Then horizontally,
there are N� � � � x � Sn br�ctops. First, 	LC�EC
 is
changed from 	N� � �� x
 to 	�� x
, and that uses N� � �
br�ctops. LC is initialized to this value. Then 	LC�EC
 is
changed from 	�� x
 to 	�� �
, and that uses x br�ctops. EC
is initialized to this value. As we said before, we assure that
when 	LC�EC
=	�� �
, we will definitely fall through to
epilog, where we need another Sn br�ctops to completely
drain the pipelines.

Therefore, we have the following equation:

S � � � d
N�

Sn
e � Sn � N� � � � x� Sn�

From that, we easily find that EC should be initialized to

x � S � �� 		N� � �
Sn
�

In our example, S � � and Sn � �. Therefore, EC � ��
		N� � �
�
. That is, EC � � when N� is odd, and 2
when N� is even.

The initialization phase should also prepare the live-in
values for the rotating registers when needed and the bit
mask for rotating register base. The final code for our ex-
ample is shown in Fig. 7.

5. Extensions & Optimizations

Based on the basic algorithms introduced in the previous
section, this section presents some skills on code-size re-
duction. We further generalize the algorithms to more gen-
eral loop nests.
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5.1. Code-Size Optimizations

To facilitate understanding, the code generation algo-
rithms presented in the previous section are not optimized
for code size. The prolog, the outermost loop pattern, and
the epilog might contain several copies of the kernel that
could be avoided.

If code size is an issue, the multiple copies of the ker-
nel can be replaced by a single copy enclosed in a loop. The
corresponding code generation algorithm for the outermost
loop pattern is shown in Fig. 10(a). In this code, pd desig-
nates a non-rotating predicate register used for storing con-
ditional, and rc a non-rotating integer register used as a loop
counter.

Generate CS-Optimized Outermost Loop Pattern():
1: emit op(“rc � Sn;;”);
2: emit label(“outermost begin:”);
3: emit stages(AS��� AS��� � � � � A�);
4: emit op(“rc � rc� �;;”);
5: emit op(“pd,p0 = cmp.eq rc,0;;”);
6: emit op(“(pd) br outermost end;;”);
7: emit op(“br.ctop outermost begin;;”);
8: emit label(”outermost end:”);

(a) Algorithm for Generating Code-Size Optimized
Outermost Loop Pattern

Generate CS-Optimized Epilog():
1: emit op(“LC � �”);
2: emit op(“EC � Sn � �”);
3: emit op(“pe � �”);
4: emit op(“br outermost begin;;”);
5: emit label(“exit:”);

(b) Realizing Draining by Reusing
the Outermost Loop Pattern

Figure 10. Code Size Optimizations

Note that the above algorithm generates the outermost
loop pattern with a single copy of the kernel. The same op-
timization can also be applied to the prolog and epilog.

To further reduce the code size, we can merge the epi-
log and the outermost loop pattern. As seen in Fig.4, the
epilog and the outermost loop pattern contain the same op-
erations. The stages that are not used by the epilog in the
outermost loop pattern can be peeled off by setting LC and
EC correctly. Then predicate registers will turn off the op-
erations that do not need to be executed. In order to achieve
this, in the initialization phase in Fig. 6, we first initialize a
non-rotating predicate register pe to false to indicate that
we are not draining the pipeline yet. The register is used at
the end of the outermost loop pattern to force the control

flow to exit the loop nest at the end of the draining. This is
done by adding an instruction emit op(“(pe)br exit”) at the
end of the algorithm for generating the outermost loop pat-
tern, where exit is a label. Correspondingly, we change the
epilog generation algorithm to the one shown in Fig. 10(b),
where pe is set to true, and the control branches back to
reuse the outermost loop pattern.

5.2. Extension to Generic Source Loop Nest

In previous sections, we have considered the case when
the OPSET s are empty for the loops between the out-
ermost and the innermost loops. Let us now consider a
more generic case when these OPSET s are not necessar-
ily empty. Let the leftmost Sx stages in the kernel consist of
operations executed by loop Lx and its inner loops.

Each time we finish an iteration of such an inner loop
Lx	� � x � n
, we should fill the pipeline with its next it-
eration, if any 6. So the generated code skeleton is a little
different, as shown in Fig.11(a).

To fill the pipelines, the stages from AS�� to AS�Sx

need to be permuted using the algorithm shown in
Fig. 11(b).

In the algorithm, offsetx is defined as:

offsetx	j� i� x
 �
n

�� if i � ��
�j � i � S��Sx � j � S � Sx � � otherwise�

which is an extension of function offset	j� i
 defined be-
fore.

Function TSx(Aj � ofst) in the algorithm returns an
empty stage if ofst�j � S�Sn. In this case, the stage Aj

after permutation is not within the current group of the out-
ermost loop iterations. So we simply ignore it. Otherwise,
the algorithm is the same as TS() shown in Fig. 8.

6. Experiments

6.1. Experimental Setup

The code generation algorithms have been implemented
as a tool set on an IA-64 Itanium workstation. For simplic-
ity reasons, our method was implemented as a stand-alone
module working at the assembly level. The Gnu assembler
is then used to assemble the resulting code. The 1-D sched-
uler (Step 2 of the SSP method [14]) was implemented us-
ing a standard modulo scheduling method [5]. We have im-
plemented two versions of SSP code generation, one with

6 Detailed explanations are omitted here due to the paper size limit. In-
terested reader may refer to the Appendix in the technical memo ver-
sion of literature [14] for an example final schedule with the early-
issue delay to see the transition code for filling pipelines for an inner
loop.
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[Initialization]
[Prolog]

L�
�

:
[Outermost loop pattern]
initial in = 1;

L�
�

: for(i� � �;i� � N�;i�++)f
L�
�

: for(i� � �;i� � N�;i�++) f
� � �

L�n: for(in � initial in;in � Nn;in++)
[Innermost loop pattern]

g //end L�n
initial in = 0;
if (in�� � Nn�� � � && Sn�� � Sn) f

[Fill Ln�� Pipelines]
initial in = 1;

g
� � �

g //end L�
�

if (i� � N� � � && S� � Sn) f
[Fill L� Pipelines]
initial in = 1;

g
g //end L�

�

br.ctop L�
�

:
[Epilog]

(a) Generated Code Skeleton for the Generic Loop
Nest

Generate Fill Lx Pipelines(x):
1 for(i � �; i � Sx;i++) f
2 emit stages(TSx(AS��� offsetx�S � �� i� x�),
3 TSx(AS��� offsetx�S � �� i� x�),
4 � � �
5 TSx(AS�Sx

� offsetx�S � Sx� i� x�));
6 g

(b) Fill Pipelines for an Inner Loop

Figure 11. Code Generation for A Generic
Loop Nest

and the other one without code size optimization. We re-
fer to them as SSP and code size optimized SSP (CS-SSP),
respectively.

We have compared SSP and CS-SSP method with two
other methods: a traditional modulo scheduling method of
the innermost loop (MS) [5], and an extended modulo sche-
duling method (xMS) which overlaps the draining and fill-
ing part of an outer loop [8]. We compare the different meth-
ods for their performance, code size, and bundling capabil-
ity.

For the experiments we chose important loops extracted
from scientific applications. Because SSP is equivalent to
MS when applied to the innermost loop of a loop nest, we
considered only loops where SSP would select a loop level
other than the innermost one. The following benchmarks

extracted from the Livermore Loops suite [9] have been
used: matrix multiply (MM), modified 2-D hydrodynam-
ics (HD), LU decomposition (LU) and Successive Over-
Relaxation (SOR). For matrix multiply with a loop body of
A�i��j�� � B�i��k� � C�k��j�, we have considered 6 differ-
ent versions, corresponding to the 6 different ways in which
the loops can be interchanged, in order to fully demonstrate
the impact of data reuse and parallelism upon the final code
quality. These version are referred to as: ijk, jik, ikj, kij,
jki and kji, according to the order of the indexes of the loop
nest. We also applied loop tiling to jki with loops k and i

tiled, for further comparisons. The chosen tile size was the
one giving the best performance. Upon tiling, we further
applied unroll-and-jam, also known as register tiling. The
tiled and register-tiled versions are named as jki � T and
jki � UJ for short. Here we report the results for the ma-
trix size ���� � ����, with double precision floating point
values. Other matrix sizes were considered in [14].

6.2. Results & Analysis

In this section we report the performance results by run-
ning the code, generated by our code generation method, on
an IA-64 Itanium workstation equipped with a 733MHZ Ita-
nium1 processor, 2GB of main memory, 16KB/96KB/2MB
of L1/L2/L3 caches, and running Red Hat Linux 7.2 operat-
ing system. In reporting the performance results, our goal
is three-fold. First, the results demonstrate the feasibility
and correctness of the proposed code generation method.
Second, we would like to know whether the code genera-
tion scheme retains the predicted performance benefits of
SSP final schedules. In particular we would like to answer
whether the use of static register renaming or code size in-
crease due to our code generation scheme hinders the per-
formance? To address these questions we report the speedup
of xMS, SSP, and CS-SSP schedules over the MS version,
for each of the benchmarks, by directly measuring the exe-
cution time of the respective loops on the Itanium worksta-
tion. We also report performance numbers relating to code
size and bundle density for the code generated by our code
generation scheme.

6.2.1. Correctness To ensure that our code generation
method produces correct code, we compared the outputs
produced by SSP, MS and xMS with those generated by
a serial version of the code (without any software pipeli-
ning). In certain cases, we have also manually checked the
generated code. In all benchmarks, the outputs produced by
MS, xMS, SSP, and CS-SSP match exactly with those gen-
erated by the serial version.

6.2.2. Performance As reported in [14] and as shown in
Fig 12, SSP schedules perform significantly better than
xMS and MS schedules for every benchmark tested. The
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speedup achieved by SSP is between 1.1 and 4.24 times
faster than MS or xMS with an average speedup of 2.1.
This significant performance improvement of SSP is due to
the fact that it is able to take advantage of available paral-
lelism or data reuse in outer loop levels. The two SSP ver-
sions seem to perform equally well. SSP performed better
in ikj and LU, while the code-size optimized SSP performs
slightly better for other benchmarks.

We note that neither the static register renaming method
nor the code size increase has resulted in SSP final sched-
ules performing worse than MS or xMS schedules. Obtain-
ing more performance numbers that further indicate the im-
pact of these two is left for future work.

Figure 12. Speedup

6.2.3. Bundle Density Bundle density is the average
number of operations per bundle, excluding NOPs (Null
OPerations). Larger bundling density implies more com-
pact code, and probably more parallelism. We point
out here that bundling density is a measure of paral-
lelism in the static code, and does not necessarily equal to
the instruction-level parallelism exploited at run time.

The bundle density of all schedule methods for the differ-
ent benchmarks are shown in Fig. 13. While MS and xMS
achieve a bundle density of 1.90 on average, the average
bundle densities of SSP and CS-SSP are, respectively, 1.91
and 2.1. The improvement in the bundle density of CS-SSP
is especially better than those of MS and xMS.

6.2.4. Code Size Last, we compare the code size of the
different scheduling methods in Fig 14. Despite our precau-
tions to avoid code duplication during code generation, the
code size produced by SSP is between 3.6 and 9.0 times big-
ger than MS or xMS. The increase due to CS-SSP schedules
is between 2 and 6.85 larger than MS or xMS.

Although the code size increase in SSP and CS-SSP code
is high, it is not a surprise. There are several reasons for this
code size increase. First, SSP method uses two patterns (the
outermost and the innermost loop patterns) instead of one

Figure 13. Bundle Density

Figure 14. Code Size

like MS does. Second, and most important, SSP replicates
the kernel several times to accomplish static register renam-
ing. The Sn copies of the kernel in the innermost loop pat-
tern accounts for about 60% or more of the final code size.

The code size increase, although noticeable, does not re-
sult in any performance degradation. In particular, the mea-
sured L1 instruction cache misses were still extremely low.
Second, we observe that the maximum size of the gener-
ated SSP code, among all the benchmarks considered, is
less than 4.2KB, which is less than a typical L1 I-cache size.
Thus as long as the schedules for the loops can be held in
the I-cache, the code size increase does not affect the perfor-
mance significantly. As we see in all our experiments, SSP
and CS-SSP perform as well or significantly better than MS
and xMS schedules. Thus we observe that the code size is
largely outweighed by the improvement in execution time,
a result quite acceptable in general purpose computing.

7. Future Work

Our experiments revealed that most of the code expan-
sion is caused by the multiple copies of the kernel for the in-
nermost loop pattern. The copies were introduced because
there was no rotating register file available for the inner
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loops. Therefore one possible future direction is to inves-
tigate hardware support and ISA extensions (more afford-
able than that in [13]) to generate kernel-only code.

As explained in Section 3.2, our method currently allo-
cates rotating register conservatively. More efficient register
allocation for SSP will be investigated in the future.

Lastly, we will introduce the extension of our code gene-
ration scheme to non-rectangular iteration spaces.

8. Related Work

Code generation schemes for modulo scheduling of sin-
gle loops are discussed for VLIW architectures with and
without hardware support in [11]. The considered hardware
support include rotating registers, predicated execution, and
iteration control registers [3]. The code generation approach
for modulo scheduling in the Cydra-5 compiler has been
discussed in [3]. Code size reduction for software pipelined
loops has been discussed in [7, 4]. All these works consider
software pipelining only for the innermost loop.

In contract, this paper deals with code generation issues
for the SSP method, which deals with multi-dimensional
loop nests. Code generation for architectures supporting ro-
tating registers and predicated execution has been consid-
ered in this paper. Dynamic and static register renaming are
combined smoothly to address the issue of life range over-
lapping at multiple levels.

9. Conclusion

The Single-dimension Software Pipelining (SSP) me-
thod for a multi-dimensional loop nest [14] chooses the
most profitable loop level in the loop nest and software
pipelines it. This paper discusses a code generation scheme
for the SSP method. In particular, it proposes a code genera-
tion skeleton and targets it for the IA-64 architecture. It ad-
dresses several interesting issues in code generation, includ-
ing (1) code generation of the outermost and the innermost
loop patterns, with dynamic and static register renaming to
assure that overlapping live ranges of different instances of
the same TN use different registers; (2) code generation of
the prolog and the epilog; (3) code generation using predi-
cated execution; and (4) code size reduction. We have im-
plemented our code generation scheme for the IA-64 archi-
tecture. Initial experimental results demonstrate the feasi-
bility and advantages of the proposed scheme.
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