
RETROSPECTIVE:

A Data Locality Optimizing Algorithm

Monica S. Lam
Computer Systems Laboratory

Stanford University

1. INTRODUCTION
“A Data Locality Optimizing Algorithm” was one of the first pa-
pers published as part of the SUIF parallelizing compiler research
project, which lasted from 1989 to 2001. The main research objec-
tive of the SUIF project was to improve data locality for uniproces-
sors and to maximize parallelism and minimize communication for
multiprocessors. We focused on two approaches: loop transforma-
tions on kernels and interprocedural analysis to find coarse-grain
parallelism. SUIF stands for the Stanford University Intermediate
Format, and the compiler infrastructure developed has been made
publicly available and used in many compiler research projects.

This paper presented a loop transformation algorithm to enhance
data locality for uniprocessors and multiprocessors. I would not
have guessed in 1991 when this paper was published that it would
take ten years before we arrived at a solution that I felt satisfactorily
solved the complete problem. I would like to take this opportunity
to describe our discoveries along this journey.

Michael Wolf and I started our research with the goal of improv-
ing data locality on uniprocessor machines by automating blocking.
We found ourselves solving the parallelization problem before we
came up with our data locality algorithm. Both our algorithms for
parallelism and data locality use unimodular transforms, which we
developed to unify loop interchange, reversal and skewing. Our
unimodular transformation algorithms are applicable only to per-
fectly nested loops and are built upon the imprecise abstraction
of direction vectors. Jennifer Anderson and I studied the prob-
lem of automatically decomposing computation and data across
multiprocessors, focusing on the minimization of communication
across sequences of loops. Amy Lim and I revisited data locality
and parallelization with the goal of handling general loop struc-
tures. We generalized unimodular transforms to affine partitioning,
which unifies in addition the techniques of fusion, fission, reindex-
ing, scaling and statement reordering. Operating directly on access
functions in the code instead of direction vectors, our paralleliza-
tion algorithm is provably optimal in maximizing parallelism and
minimizing communication. This approach also generalizes block-
ing and array contraction, two important optimizations for locality.

I wish I could claim that I have carefully broken down this chal-
lenging problem into a ten-year research plan. Instead, we had sim-
ply picked pressing research problems at the time and provided the
best solution we could at each step. We discovered the structure of
the problem part by part as we solved each subproblem. In fact, I
think that the success of this research rested partly on the fact that
each step along the way addressed some real-life problem. This

Copyright 2003 ACM 1-58113-623-4 ...$5.00.

helped us focus on important issues and ensured that the basic ap-
proach was correct.

2. SYSTOLIC ALGORITHMS
Our approach to loop transformations was inspired by systolic algo-
rithms, which were intended to be implemented directly in silicon.
Over a hundred papers have been written on systolic algorithms
showing that many numerical algorithms can be mapped onto reg-
ular arrays of processing units communicating in a simple and reg-
ular manner. Most of these numerical algorithms are trivially paral-
lelizable and the challenge in systolic array design is in minimizing
communication between processors, which of course is also the key
to effective parallelism on multiprocessors.

Not only did systolic array research teach us what efficient par-
allel algorithms look like, the design methodology that emerged
provided important insights to automatic parallelization. It was
shown that a systolic computation can be represented as an index
set and its data dependences can be represented as distance vec-
tors between points in the index set. Systolic array designs can be
captured by geometric transforms that project the index sets rep-
resenting the computations onto axes representing time and space.
Dependences must point forwards in time for the design to be valid,
and cross-processor dependences represent communication. This
geometric model forms the basis of our work on unimodular trans-
forms.

3. LOCALITY AND PARALLELISM
What has data locality got to do with parallelism? In each of my
attempts to optimize data locality, first with Michael Wolf then with
Amy Lim, we ended up finding an algorithm for parallelization
first before solving the locality problem. We did not realize that
parallelism is a special case of locality optimization.

Consider the special case where a computation is made up of to-
tally independent threads of operations that share no common data,
and that the target machine has only single-word data cache lines.
Since all data reuse happens within a single thread, clearly exe-
cuting these threads sequentially would maximize the advantage
of data reuse. That is, to maximize data locality, we must first
tease apart all the independent threads of computation, which is
precisely the basic parallelization problem. Data locality optimiza-
tion is more complicated as it must also consider the sharing of
common input data and multiple-word cache lines.

Moreover, if there is no parallelism in the program, all operations
must be sequentially ordered. Thus, parallelization analysis is also
useful for locality optimization in that it identifies the opportunities
for code transformations.

4. FROM UNIMODULAR TO AFFINE

ACM SIGPLAN 442 Best of PLDI 1979-1999

The following outlines the research that led us from unimodular
transforms to affine partitioning, highlighting the important lessons
we learned along the way. All the techniques described here are
applicable only to codes that access arrays using indices that are
affine functions of enclosing loop indices.

4.1 Unimodular Transforms
Blocking, also known as tiling, was a hot topic in 1991. Fast
on-chip floating-point units had just started to appear in general-
purpose microprocessors, making them attractive as computation
engines for numerical applications. However, unlike vector ma-
chines whose memory subsystems are designed to support scien-
tific computing, microprocessors rely on caches which have been
designed for integer applications. Blocked algorithms, originally
developed by numerical analysts to minimize disk accesses, are
found to be effective for machines with caches. Thus, blocking
helps establish microprocessors as a lower cost alternative to vec-
tor machines.

Most of the work on loop transformations at the time was based
on pairwise source-to-source transformations developed for vector-
ization. Influenced by systolic arrays, Michael Wolf and I modeled
transformations of perfect loop nests as unimodular transforms on
the iteration space, whereby unifying the transforms of loop in-
terchange, reversal and skewing[9]. The domain of systolic al-
gorithms was limited to computations whose dependences can be
represented as distance vectors, and can be executed in O(n) time
where n represents the number of iterations in each loop. We gen-
eralized the domain to include all perfect loop nests, augmenting
distance vectors with direction vectors from the vectorization liter-
ature. In this model, time may be multi-dimensional: a transform
is considered legal if and only if the transformed dependences are
lexicographically positive.

Both systolic synthesis and vectorization represent data depen-
dences by the differences between related iterations, and optimize
the code according to the principle that dependence vectors must
not cross iteration boundaries in a parallel loop. Direction vectors,
while grossly inaccurate, are adequate for unimodular transforms
for perfect loop nests. They are too imprecise, however, for the
more general transformation of affine partitioning on arbitrary loop
nests.

The most important and lasting contribution this work made was
the concept of a canonical form for parallelism. In this represen-
tation, each fully permutable subnest is made as large as possible,
starting with the outermost nest. (A sequential loop is trivially fully
permutable.) Each such subnest can be wavefronted, blocked, and
executed in at most O(n) time, where n is the number of iterations
in one loop. This hierarchical representation was instrumental to
the development of our parallelization algorithm based on affine
partitioning.

Our paper “A Data Locality Optimizing Algorithm” presented
an automatic blocking algorithm for perfect loop nests on unipro-
cessors and multiprocessors[8]. The paper’s most important contri-
butions are (1) a mathematical model for evaluating data reuse in
affine data access functions and (2) the basic principle that blocking
exploits reuse in multiple dimensions. Experimental results suggest
that our proposed heuristics work quite well as long as the loops are
perfectly nested. Unfortunately, many codes require optimization
across loop nests.

The industry at the time was quite eager to adopt results from
compiler research that improved locality. The fact that a matrix
multiplication routine was included in spec92, a popular bench-
mark used to evaluate processor performance, probably helped raise
the industry’s interest on blocking. Michael Wolf joined SGI and

implemented a version of unimodular transforms and blocking in
the SGI compiler. Many other commercial compilers implemented
some form of a blocking algorithm.

4.2 Data and Computation Decompositions
In the early part of the 1990s, many multiprocessor architectures,
with shared or distributed address spaces, were commercially avail-
able. Examples of distributed memory machines include the Cray
T3E, the IBM SP2, the Intel Paragon and Thinking Machine’s CM-
5; examples of shared memory machines include the Digital Al-
phaServer and the Silicon Graphics Power Challenge. Minimizing
communication between processors is critical to developing effi-
cient programs for these machines. Many companies and universi-
ties worked together to create High-Performance Fortran (HPF), a
Fortran-90 dialect augmented with user-specified data decomposi-
tions. HPF compilers must automatically determine, based on the
data decompositions, how the computation should be decomposed
across the processors and generate the necessary communication
code.

Jennifer Anderson and I recognized that data and computation
decompositions are inherently tied together and should be solved
at the same time. By the time users can specify the data decom-
positions properly, they must have already figured out where the
parallelism is. Furthermore, it may be simpler to derive both data
and computation decompositions automatically instead of having
to handle all the data decompositions that can be specified.

Our algorithm[1] to find data and computation decompositions
has two steps. It first applies unimodular transforms to find all the
parallelization opportunities in each loop nest. Second, it chooses
between the available ways to parallelize the loops so as to mini-
mize communication. This two-step approach makes the algorithm
simpler but suboptimal. This work’s main contributions are (1)
the basic communication minimization principle that “an iteration
and the data it uses should be assigned to the same processor to
avoid communication”, and (2) heuristics that operate on data ac-
cess functions in the code directly than direction vectors.

4.3 Affine Partitioning for Parallelism
In 1994, Amy Lim and I started working on an integrated algo-
rithm that improves parallelism and minimizes communication of
arbitrary loop nests. There were many outstanding questions to
answer: How should we generalize unimodular transforms to ar-
bitrary loop nesting structures? What is the analog of blocking,
which is defined only for perfect loop nests?

Our solution to the first question is to represent the structure of
an arbitrary program faithfully; it is simply not possible to find the
best transform otherwise. A simple statement is treated as a loop
with a single iteration. Thus, every dynamic operation is uniquely
identified by the values of the indices of the enclosing loops. Loop
indices can be organized as a tree reflecting the block structure of
the program. A transformed program has a new tree of indices. In
affine partitioning, an affine transform is created for each opera-
tion, mapping its old index values to new index values. This model
encompasses all the possible combinations of unimodular trans-
forms (interchange, skewing and reversal), fusion, fission, reindex-
ing, scaling and statement reordering.

Our technique does not use direction vectors, but operates di-
rectly on affine data access functions. To find parallelism without
synchronization, we require that “if two operations use the same
data, they should be mapped to the same processor”. By elimi-
nating the mention of data mappings from the principle Jennifer
and I used, this constraint allows arbitrary data mappings and is
thus more powerful. Using the Farkas lemma[7], which we learned

ACM SIGPLAN 443 Best of PLDI 1979-1999

from studying Feautrier’s work[2], we showed that we can reduce
the problem of finding synchronization-free parallelism to finding
all independent solutions to a set of linear constraints[3].

We solved synchronization-free parallelization quickly, but took
much longer to figure out how to find parallelism that requires syn-
chronization. From the work on unimodular transforms, we knew
that it is useful to find largest outermost fully permutable loop
nests. Data dependence considerations dictate that “if two oper-
ations from a sequential program use the same data, their relative
ordering must be preserved”. Our key discovery was to realize that
if there are multiple schedules that can satisfy the data dependence
constraints, then there must be flexibility in scheduling, which in
turn means that the code is parallelizable. The beauty is that we
can find the largest fully permutable loop nest in a manner simi-
lar to how we find the largest fully parallel loop nest: that is, by
finding all the independent solutions to a set of linear constraints.
The difference is that for permutability, we seek a mapping of the
computation to the time axes; whereas for parallelism, we seek a
mapping of the computation to the space (processor) axes.

To find all the parallelism in a program, the two basic steps are
repeated recursively to create the same canonical program repre-
sentation used in unimodular transforms. The difference is that
we introduced a small step to break apart the strongly connected
components in the body of each fully permutable subnest. Our
algorithm is proven to maximize the degree of parallelism while
minimizing the degree of synchronizations[4, 5].

4.4 Affine Partitioning for Locality
Almost exactly ten years after Michael Wolf and I published the
data locality algorithm for perfect loop nests, Amy Lim, Shih-wei
Liao and I published an algorithm for optimizing locality across
arbitrary loop nests based on affine partitioning[6]. The algorithm
first puts the code in the canonical form for parallelization. This
code minimizes synchronization but may not have good data local-
ity. Next, the algorithm analyzes data reuse in the program using
the techniques in the original locality optimization paper. To im-
prove locality, strongly connected components sharing reuse are
fused and parallel threads sharing reuse are interleaved. The lat-
ter is achieved by a generalization of blocking for imperfect loops.
Instead of “stripmine and interchange”, blocking now means “strip-
mine and distribute”. Here, outer parallel loops with reuse are strip-
mined and moved into the innermost loops. Moreover, by grouping
all the related instructions together, this approach exposes many
more opportunities for array contraction than ever possible before.

From our experiments, we see that this algorithm works well for
codes as long as their array access functions are affine. The trans-
formed code often looks significantly different from the original
code and can be much more efficient than code written by a reason-
ably experienced application developer.

5. CONCLUDING REMARKS
This work builds upon years of research on loop transformations for
vectorization and parallelization, most notably by research groups
led by David Kuck at University of Illinois at Urbana-Champaign,
Ken Kennedy at Rice University, Fran Allen at IBM research, Paul
Feautrier, and Francois Irigoin in Ecole des Mines. We have come
a long way starting with the pioneering work that discovered the
many equivalent ways of expressing the same computation, interac-
tive systems that help programmers apply transforms, and to the in-
vention of program abstractions and automatic transformation tech-
niques.

Programs whose data access functions are affine are special in
that dynamically executed operations have very simple relation-

ships with the data elements they access. Such information is fully
exploited by array partitioning. Affine partitioning solves the fun-
damental scheduling constraints, as imposed by a program’s data
dependences and the goal to eliminate communication, without in-
troducing any imprecise abstractions. Affine partitioning appears
also to be sufficiently general and powerful, as it covers most of
the loop transformations discovered through years of paralleliza-
tion and vectorization research.

6. ACKNOWLEDGMENT
I would like to thank John Hennessy for his help through the years;
I cannot imagine a better research environment to have started my
career than the one he provided. I also want to thank the many
members of the SUIF group for their dedication to the project:
Gerald Aigner, Saman Amarasinghe, Jennifer Anderson, Gerald
Cheong, Amer Diwan, Robert French, Anwar Ghuloum, Mary Hall,
David Heine, Shih-wei Liao, Amy Lim, Jing Yee Lim, Vladimir
Livshits, Dror Maydan, Todd Mowry, Brian Murphy, Karen Pieper,
Patrick Sathyanathan, Mike Smith, Steven Tjiang, Chau-Wen Tseng,
Robert Wilson, Christopher Wilson and Michael Wolf. The funding
of the SUIF project was provided by DARPA, NSF and the Depart-
ment of Energy. I wish to thank my DARPA program managers,
Gil Weigand, Bob Lucas and Frederica Darema, for their support
of this project.

REFERENCES
[1] J. M. Anderson and M. S. Lam. Global optimizations for

parallelism and locality on scalable parallel machines. In
Proceedings of the ACM SIGPLAN ’93 Conference on
Programming Language Design and Implementation, pages
112–125, June 1993.

[2] P. Feautrier. Dataflow analysis of scalar and array references.
Journal of Parallel and Distributed Computing, 20(1):23–53,
February 1991.

[3] A. W. Lim and M. S. Lam. Communication-free
parallelization via affine transformations. In Proceedings of
the Seventh Workshop on Languages and Compilers for
Parallel Computing, pages 92–106. Springer-Verlag, August
1994.

[4] A. W. Lim and M. S. Lam. Maximizing parallelism and
minimizing synchronization with affine transforms. In
Conference Record of the 24th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, Paris,
France, January 1997.

[5] A. W. Lim and M. S. Lam. Maximizing parallelism and
minimizing synchronization with affine partitions. Parallel
Computing, 24(3–4):445–475, May 1998.

[6] A. W. Lim, S.-W. Liao, and M. S. Lam. Blocking and array
contraction across arbitrarily nested loops using affine
partitioning. In ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pages 102–112, June 2001.

[7] A. Schrijver. Theory of Linear and Integer Programming.
Wiley, Chichester, 1986.

[8] M. E. Wolf and M. S. Lam. A data locality optimizing
algorithm. In Proceedings of the ACM SIGPLAN ’91
Conference on Programming Language Design and
Implementation, pages 30–44, June 1991.

[9] M. E. Wolf and M. S. Lam. A loop transformation theory and
an algorithm to maximize parallelism. Transactions on
Parallel and Distributed Systems, 2(4):452–470, October
1991.

ACM SIGPLAN 444 Best of PLDI 1979-1999

ACM SIGPLAN 445 Best of PLDI 1979-1999

ACM SIGPLAN 446 Best of PLDI 1979-1999

ACM SIGPLAN 447 Best of PLDI 1979-1999

ACM SIGPLAN 448 Best of PLDI 1979-1999

ACM SIGPLAN 449 Best of PLDI 1979-1999

ACM SIGPLAN 450 Best of PLDI 1979-1999

ACM SIGPLAN 451 Best of PLDI 1979-1999

ACM SIGPLAN 452 Best of PLDI 1979-1999

ACM SIGPLAN 453 Best of PLDI 1979-1999

ACM SIGPLAN 454 Best of PLDI 1979-1999

ACM SIGPLAN 455 Best of PLDI 1979-1999

ACM SIGPLAN 456 Best of PLDI 1979-1999

ACM SIGPLAN 457 Best of PLDI 1979-1999

ACM SIGPLAN 458 Best of PLDI 1979-1999

ACM SIGPLAN 459 Best of PLDI 1979-1999

