15-745

Software Pipelining

Copyright © Seth Copen Goldstein 2000-8
(some slides borrowed from T Callahan \& M. Voss)

Goal of SP

- Increase distance between dependent operations by moving destination operation to a later iteration
$A: a \leftarrow \quad$ Id [d]
Assume all have latency of 2
B: $b \leftarrow a^{*} a$
C: $\quad s t[d], b$
$D: d \leftarrow d+4$

A
B \square D

Software Pipelining

- Software pipelining is an IS technique that reorders the instructions in a loop.
- Possibly moving instructions from one iteration to the previous or the next iteration.
- Very large improvements in running time are possible.
- The first serious approach to software pipelining was presented by Aiken \& Nicolau.
- Aiken's 1988 Ph.D. thesis.
- Impractical as it ignores resource hazards (focusing only on data-dependence constraints).
- But sparked a large amount of follow-on research.

Can we decrease the latency?

- Lets unroll

> A: $a \leftarrow I d[d]$
> B: $b \leftarrow a^{\star} a$
> C:
> D: $\quad d \leftarrow d+d], b$
> A1: $a \leftarrow \operatorname{dd}[d]$
> B1: $b \leftarrow a^{\star} a$
> C1: $\quad s t[d], b$
> D1: $d \leftarrow d+4$

Schedule

A: $a \leftarrow \quad$ Id [d]
 B: $b \leftarrow a^{*} a$

$C:$
D: $d 1 \leftarrow d+4$
A1: $\mathrm{a} 1 \leftarrow \mathrm{ld}$ [d1]
B1: $b 1 \leftarrow a 1 * a 1$
C1: $\quad s t[d 1], b 1$
D1: $\mathrm{d} \leftarrow \mathrm{d} 1+4$

A		B		C		$D 1$
D		$A 1$		$B 1$		$C 1$

Unroll Some More

D2: $d \leftarrow d 2+4$

A		B		C		$D 2$	
D		$A 1$		$B 1$		$C 1$	
	$D 1$		$A 2$		$B 2$		$C 2$

A: $a \leftarrow \operatorname{ld}[d]$
A: $a \leftarrow \operatorname{ld}[d]$
B: $b \leftarrow a * a$
B: $b \leftarrow a * a$
C: $\quad s t[d], b$
C: $\quad s t[d], b$
A1: a1 $\leftarrow \mathrm{Id}$ [d1]
A1: a1 $\leftarrow \mathrm{Id}$ [d1]
B1: b1 $\leftarrow a 1 * a 1$
B1: b1 $\leftarrow a 1 * a 1$
C1:
C1:
$s t$ [d1], b
$s t$ [d1], b
A2. ${ }^{2}$
A2. ${ }^{2}$
B2: $2 \leftarrow \mathrm{dd}[\mathrm{d} 2]$
B2: $2 \leftarrow \mathrm{dd}[\mathrm{d} 2]$
B2: $\mathrm{b} 2 \leftarrow \mathrm{a} 2$ * a 2
B2: $\mathrm{b} 2 \leftarrow \mathrm{a} 2$ * a 2
C2: $\quad s t[\mathrm{~d} 2], \mathrm{b} 2$
C2: $\quad s t[\mathrm{~d} 2], \mathrm{b} 2$

Unroll Some More
$\begin{array}{lll}\text { A: } & a \leftarrow \quad \text { ld [d] } \\ \text { B: } & b \leftarrow & { }^{*}\end{array}$

A:	$a \leftarrow$	$l d[d]$
B:	$b \leftarrow$	$a^{\star} a$
$C:$		$s+[d], b$
D:	$d 1 \leftarrow$	$d+4$
A1:	$a 1 \leftarrow$	$I d[d 1]$
B1:	$b 1 \leftarrow$	$a 1^{\star} a 1$
$C 1:$		$s+[d 1], b 1$
D1:	$d 2 \leftarrow$	$d 1+4$
A2:	$a 2 \leftarrow$	$I d[d 2]$
B2:	$b 2 \leftarrow$	$a 2^{\star} a 2$
$C 2:$		$s+[d 2], b 2$
D2:	$d \leftarrow$	$d 2+4$

A		B		C		$D 3$		
D		$A 1$		$B 1$		$C 1$		
	$D 1$		$A 2$		$B 2$		$C 2$	
		$D 2$		$A 3$		$B 3$		$C 3$

Goal of SP

- Increase distance between dependent operations by moving destination operation to a later iteration
- But also, to uncover ILP across iteration boundaries!

Goal of SP

- Increase distance between dependent operations by moving destination operation to a later iteration

Example

Assume operating on a infinite wide machine

Loop Unrolling V. SP

For SuperScalar or VLIW

- Loop Unrolling reduces loop overhead
- Software Pipelining reduces fill/drain
- Best is if you combine them

Dealing with exit conditions

 for (i=: i iN: i++)

A_{i}	$i=0$	loop:
B_{i} C_{i}	if ($\mathrm{i}>=\mathrm{N}$) goto done	A_{i}
\}	A_{0}	$\mathrm{B}_{\mathrm{i}-1}$
	B_{0}	$C_{\text {i-2 }}$
	if ($\mathrm{i}+1=\mathrm{N}$) goto last	i++
	$i=1$	if ($\mathrm{i}<\mathrm{N}$) goto loop
	A_{1} $\text { if }(i+2==N) \text { aoto epiloa }$	epilog: B_{i}
	$i=2$	C_{i-1}
		last:
		c_{i}
		done:

Aiken/Nicolau Scheduling Step 1

Perform scalar replacement to eliminate memory references where possible.

```
for i:=1 to N do
    a := j \oplus V[i-1]
    b := a \oplus f
    c := e @ ¢ j
    d := f @ c
    e := b @ d
    f := U[i]
g: v[i] := b
h: w[i] := d
    j := x[i]
```

 for \(i:=1\) to \(N\) do
 \(a:=j \oplus b\)
 \(b:=a \oplus \oplus\)
 \(\mathrm{c}:=\mathrm{e} \oplus \mathrm{j}\)
 \(\mathrm{d}:=\mathrm{f} \oplus \mathrm{c}\)
 \(\mathrm{e}:=\mathrm{b} \oplus \mathrm{d}\)
 \(\mathrm{f}:=\mathrm{U}[\mathrm{i}]\)
 \(\mathrm{g}: \mathrm{V}[\mathrm{i}]:=\mathrm{b}\)
 $\mathrm{h}: \mathrm{W}[\mathrm{i}]:=\mathrm{d}$
$\mathrm{j}:=\mathrm{x}[\mathrm{i}]$
for $\begin{aligned} i & :=1 \text { to } N \text { do } \\ a & :=j \oplus b\end{aligned}$
$\mathrm{a}:=\mathrm{j} \oplus \mathrm{b}$
$\mathrm{b}:=\mathrm{a} \oplus \mathrm{f}$
c $:=\mathrm{e} \oplus \mathrm{j}$
$\mathrm{d}:=\mathrm{f} \oplus \mathrm{c}$
$\mathrm{e}:=\mathrm{b} \oplus \mathrm{d}$
$\mathrm{V}[\mathrm{i}]:=\mathrm{b}$
j [i] $:=\mathrm{x}[\mathrm{i}]$

Aiken/Nicolau Scheduling Step 2

Unroll the loop and compute the data-dependence graph (DDG).

DDG for rolled loop:
for $i:=1$ to N do
$a:=j \oplus b$
$\mathrm{b}:=\mathrm{a} \oplus \oplus \mathrm{f}$
$\mathrm{c}:=\mathrm{e} \oplus \mathrm{j}$
$\mathrm{d}:=\mathrm{f} \oplus \mathrm{c}$
$\mathrm{e}:=\mathrm{l}=\mathrm{b} \oplus \mathrm{c}$
$\mathrm{e}:=\mathrm{b} \oplus+$
$\mathrm{f}:=\mathrm{U}[\mathrm{i}]$
$\mathrm{g}: \mathrm{V}[\mathrm{i}]:=\mathrm{b}$
: W[i] := $=d$

Aiken/Nicolau Scheduling Step 3

Aiken/Nicolau Scheduling Step 4

Find repeating patterns of instructions.

Aiken/Nicolau Scheduling Step 4

Find repeating patterns of instructions.

Aiken/Nicolau Scheduling
Step 5

"Coalesce" the slopes.

Aiken/Nicolau Scheduling Step 6

Find the loop body and "reroll" the loop.

iteration						
	1	2	3	4	5	6
1	acfj					
2	bd	$f j$				
3	egh	a				
4		cb	fj^{1}			
5		dg				
$\bigcirc 6$		eh b	b	$\mathrm{fj}^{\text {j }}$		
\% 7			cg	a		
$\bigcirc 8$			d	b		
9			eh	g	fj	
10				c	a	
11				d	b	
12				eh	g	
13					c	
14					d	
15					eh	

Aiken/Nicolau Scheduling Step 7

Generate code.

(Assume VLIW-like machine for this example. The instructions on each line should be issued in parallel.)

```
a1:= j0 @ b0 clll:= c0 @ j0 llll:= fl1] 
e1:=b1 \oplusd1 
```



```
d2:= f1 \oplus c2 ll[2]:= b2 
L:
d
lulllll
d
\mp@subsup{e}{N-1}{}:=\mp@subsup{b}{n-1}{*}\oplus\mp@subsup{|}{N-1}{*}
```


Aiken/Nicolau Scheduling

 Step 6Find the loop body and "reroll" the loop.

Aiken/Nicolau Scheduling Step 8

- Since several versions of a variable (e.g., j_{i} and j_{i+1}) might be live simultaneously, we need to add new temps and moves

$\mathrm{d} 2:=\mathrm{f} 1 \oplus \mathrm{c} 2 \quad \mathrm{~V}[2]:=\mathrm{b} 2 \mathrm{a} \quad \mathrm{a} 3:=\mathrm{j} 2 \oplus \mathrm{~b} 2 \mathrm{j} \quad:=\mathrm{x}[3]$

L:

if \quad i<N-2 goto L

$e^{\mathrm{C}_{\mathrm{N}-1}}:=e_{\mathrm{N}-1} \oplus \mathrm{j}_{\mathrm{N}-1}$

$w^{[N]}:=d_{N}$

Aiken/Nicolau Scheduling Step 8

- Since several versions of a variable (e.g., j_{i} and j_{i+1}) might be live simultaneously, we need to add new temps and moves


```
    lol
```



```
c
d
    lol
    c
d,
\mp@subsup{c}{w}{m-1}
col
```


Resource Constraints

- Minimally indivisible sequences, i and j, can execute together if combined resources in a step do not exceed available resources.
- $R(i)$ is a resource configuration vector
$R(i)$ is the number of units of resource i
- $r(i)$ is a resource usage vector s.t.
$0 \leq r(i) \leq R(i)$
- Each node in G has an associated $r(i)$

Next Step in SP

- AN88 did not deal with resource constraints.
- Modulo Scheduling is a SP algorithm that does.
- It schedules the loop based on
- resource constraints
- precedence constraints
- Basically, it's list scheduling that takes into account resource conflicts from overlapping iterations

Software Pipelining Goal

- Find the same schedule for each iteration.
- Stagger by iteration initiation interval, s
- Goal: minimize s.

Software Pipelining Goal

- Find the same schedule for each iteration.
- Stagger by iteration initiation interval, s
- Goal: minimize s.

Software Pipelining Goal

- Find the same schedule for each iteration.
- Stagger by iteration initiation interval, s
- Goal: minimize s.

resources must
be within
constraints

Software Pipelining Goal

- Find the same schedule for each iteration.
- Stagger by iteration initiation interval, s
- Goal: minimize s.

resources must
be within
constraints

Software Pipelining Goal

- Find the same schedule for each iteration.
- Stagger by iteration initiation interval, s
- Goal: minimize s.

resources must
be within constraints

Software Pipelining Goal

- Find the same schedule for each iteration.
- Stagger by iteration initiation interval, s
- Goal: minimize s.

resources must
be within
constraints

Software Pipelining Goal

- Find the same schedule for each iteration.
- Stagger by iteration initiation interval, s
- Goal: minimize s.

resources must be within constraints

Precedence Constraints

- Cyclic: constraint becomes a tuple: $\langle p, d\rangle$
- p is the minimum iteration delay
(or the loop carried dependence distance)
- d is the delay
- For an edge, $u \rightarrow v$, we must have $\sigma(v)-\sigma(u) \geq d(u, v)-s^{*} p(u, v)$
- $p \geq 0$
- If data dependence is
- within an iteration, $p=0$
- loop-carried across p iter boundaries, p>0

Iterative Approach

- Finding minimum S that satisfies the constraints is NP-Complete.
- Heuristic:
- Find lower and upper bounds for S
- foreach sfrom lower to upper bound?
- Schedule graph.
- If succeed, done
- Otherwise try again (with next higher s)
- Thus: "Iterative Modulo Scheduling" Rau, et.al.

Lower Bounds

- Resource Constraints: S_{R} (also called II $_{\text {res }}$) maximum over all resources of $\#$ of uses divided by \# available... rounded up or down?
- Precedence Constraints: S_{E} (also called ${\left.I I_{\text {rec }} \text {) }\right) ~(c) ~}_{\text {(}}$ (max over all cycles: $d(c) / p(c)$

In practice, one is easy, other is hard.
Tim's secret approach: just use S_{R} as lower bound, then do binary search for best S

Iterative Approach

- Heuristic:
- Find lower and upper bounds for S
- foreach s from lower to upper bound
- Schedule graph.
- If succeed, done
- Otherwise try again (with next higher s)
- So the key difference:
- AN88 does not assume S when scheduling
- IMS must assume an S for each scheduling attempt to understand resource conflicts

Lower Bound on s

- Assume 1 ALU and 1 MU
- Assume latency Op or load is 1 cycle
for $i:=1$ to N do
$a:=j \oplus b$
$\mathrm{b}:=\mathrm{a} \oplus \oplus \mathrm{f}$
$\mathrm{c}:=\mathrm{e} \oplus \mathrm{j}$
$\mathrm{d}:=\mathrm{f} \oplus \mathrm{c}$
$\mathrm{e}:=\mathrm{b} \oplus \mathrm{d}$
f := U[i]
g: V[i] := b
$h: W[i]:=d$
$j:=x[i]$
Resources
Dependencies => 3 cycles

Scheduling algorithm

- Pick an instruction, n
- Calculate earliest time due to dependence constraints For all $x=p r e d(n)$,
earliest $=\max ($ earliest,$\sigma(x)+d(x, n)-s \cdot p(x, n))$
- try and schedule n from earliest to (earliest+s-1)
s.t. resource constraints are obeyed.
- possible twist: deschedule a conflicting node to make way for n, maybe randomly, like sim anneal
- If we fail, then this schedule is faulty (i.e. give up on this s)

Scheduling data structures

To schedule for initiation interval s:

- Create a resource table with s rows and R columns
- Create a vector, σ, of length N for n instructions in the loop
$-\sigma[n]=$ the time at which n is scheduled, or NONE
- Prioritize instructions by some heuristic
- critical path (or cycle)
- resource critical

Scheduling algorithm - cont.

- We now schedule n at earliest, I.e., $\sigma(n)=$ earlies \dagger
- Fix up schedule
- Successors, x, of n must be scheduled s.t.
$\sigma(x)>=\sigma(n)+d(n, x)-s p(n, x)$, otherwise they are removed (descheduled) and put back on worklist.
- repeat this some number of times until either
- succeed, then register allocate
- fail, then increase s

Modulo Resource Table:

Simplest Example

```
for () {
    a = b+c
    b = a*a
    c = a*194
}
Try II = 2
```


Modulo Resource Table:
 ${ }^{54}$

Simplest Example

```
for () {
    a=b+c
    b = a*a
        c = a*194
}
Try II =2
```


Modulo Resource Table:
011
1
$\square \square$

Simplest Example

```
for () {
    a=b+c
    b = a*a
    c = a*194
}
Try II = 2
```

Modulo Resource Table:

earliest b ? scheduled b ? what next?

Example

for $i:=1$ to N do
$a:=j \oplus b$
$\mathrm{b}:=\mathrm{a} \oplus \mathrm{f}$
$\mathrm{c}:=\mathrm{e} \oplus \mathrm{j}$
$\mathrm{d}:=\mathrm{f} \oplus \mathrm{c}$
$\mathrm{e}:=\mathrm{b} \oplus \mathrm{d}$
$\mathrm{e}:=\mathrm{b}$ (f d d
f
$\mathrm{g}: \mathrm{v}[\mathrm{i}]:=\mathrm{b}$
h: w[i] := d
$j:=x[i]$
Priorities: ?

$\mathrm{a}:=\mathrm{j} \oplus \mathrm{b}$
$s=5$
$b:=\mathrm{a} \oplus \mathrm{f}$
$\mathrm{c}:=\mathrm{e} \oplus \oplus \mathrm{j}$
$\mathrm{d}:=\mathrm{f} \oplus \mathrm{c}$
e := b $\oplus d$
$\mathrm{f}:=\mathrm{U}[\mathrm{i}]$
$\mathrm{g}: \mathrm{V}[\mathrm{i}]:=\mathrm{b}$
: W[i] := d
j := x[i]

Priorities:g,h

ALU	MU
c	f
d	j
e	g
a	h
b	

instr	σ
a	3
b	4
c	5
d	6
e	7
f	0
g	7
h	8
j	1

Creating the Loop

- Create the body from the schedule.
- Determine which iteration an instruction falls into
- Mark its sources and dest as belonging to that iteration.
- Add Moves to update registers
- Prolog fills in gaps at beginning
- For each move we will have an instruction in prolog, and we fill in dependent instructions
- Epilog fills in gaps at end

instr	σ
a	3
b	4
c	5
d	6
e	7
f	0
g	7
h	8
j	1

$$
f 0=U[0] ;
$$

j0 = X[0];

FOR $\mathrm{i}=0$ to N
$f 1:=U[i+1]$
$j 1:=X[i+1]$
nop
$a:=j 0$? b
$b:=a$? f0
$c:=e$? j0
$d:=f 0 ? c$
$e:=b ? d \quad g: V[i]:=b$
h: W[i]:=d
f0 = f1
$j 0=j 1$

Conditionals

- What about internal control structure, I.e., conditionals
- Three approaches
- Schedule both sides and use conditional moves
- Schedule each side, then make the body of the conditional a macro op with appropriate resource vector
- Trace schedule the loop

What to take away

- Dependence analysis is very important
- Software pipelining is cool
- Registers are a key resource

