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After Instruction Selection 

entry: 0x803ce0, LLVM BB @0x801a90, ID#0:!
! %reg1024 = MOV32ri 33!
! %reg1025 = ADD32rm %reg1024, <fi#-2>, 1, %NOREG, 0!
! %reg1026 = MOV32rm <fi#-1>, 1, %NOREG, 0!
! %reg1027 = IMUL32rr %reg1026, %reg1026!
! %reg1028 = IMUL32rri8 %reg1027, 37!
! %EAX = MOV32rr %reg1028!
! %EAX = CDQ %EDX<imp-def>, %EAX<imp-use>!
! IDIV32r %reg1025, %EAX<imp-def>, %EDX<imp-def>, %EAX<imp-use>, %EDX<imp-use>!
! %reg1029 = MOV32rr %EAX!
! %reg1030 = NOT32r %reg1026!
! %reg1031 = ADD32rr %reg1029, %reg1030!
! %EAX = MOV32rr %reg1031!
! RET!

define i32 @erk(i32 %a, i32 %b) {!
entry:!
! %tmp3 = mul i32 %a, 37! ! ; <i32> [#uses=1]!
! %tmp4 = mul i32 %tmp3, %a! ! ; <i32> [#uses=1]!
! %tmp6 = add i32 %b, 33! ! ; <i32> [#uses=1]!
! %tmp7 = sdiv i32 %tmp4, %tmp6!! ; <i32> [#uses=1]!
! %tmp9.neg = xor i32 %a, -1! ! ; <i32> [#uses=1]!
! %tmp10 = add i32 %tmp7, %tmp9.neg! ! ; <i32> [#uses=1]!
! ret i32 %tmp10!
}!
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Abstract View 

… 
movl $2, t7 
movl t7, t11 
imull t7, t11 
movl t11, t10 
imull $37, t10 
movl t10, t8 
movl t7, t17 
addl $1, t17 
movl $33, %eax 
cltd  
idivl t17 
… 

… 
t7    <- () 
t11   <- (t7) 
t11   <- (t7, t11) 
t10   <- (t11) 
t10   <- (t10) 
t8    <- (t10) 
t17  <- (t7) 
t17   <- (t17) 
%eax  <- () 
%edx,%eax <- (%eax) 
%eax,%edx <- (t17,%eax,%edx) 
… 

Abstract view, for register allocation purposes 

Read Written 

School of Computer Science 

Register allocator’s job 

The register allocator’s 
job is to assign each 
temp to a machine 
register. 

If that fails, the register 
allocator must rewrite 
the code so that it can 
succeed. 

… 
t7  : %ebx 
t8  : %ecx 
t10 : %eax 
t11 : %eax 
t17 : %esi 
… 

The 

TempMap 

…!

t7   <- 2!

t11  <- t7!

t11  <- (t7, t11)!

t10  <- t11!

t10  <- t10!

t8   <- t10!

t17  <- t7!

t17  <- t17!

%eax <- !

%edx <- (%eax,%edx)!

%eax,%edx <- t17!

…!
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Some terminology 

Two temps interfere if at some point in the 

program they cannot both occupy the same 

register.  

v <- 1 
w <-  v + 3 
x <-  w + v 
u <-  v 
t <-  u + x 
  <-  w 
  <-  t 
  <-  u 

Which temps interfere? 
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A graph-coloring problem 

v 

x w 

u 

t 

v <- 1 
w <-  v + 3 
x <-  w + v 
u <-  v 
t <-  u + x 
  <-  w 
  <-  t 
  <-  u 

Interference graph: an undirected graph where 

•!nodes = temps 

•!there is an edge between two nodes if their 
corresponding temps interfere 
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A graph-coloring problem 

v 

x w 

u 

t 

v <- 1 
w <-  v + 3 
x <-  w + v 
u <-  v 
t <-  u + x 
  <-  w 
  <-  t 
  <-  u 

A graph is k-colorable if every node in the graph can 
be colored with one of k colors such that two adjacent 
nodes do not have the same color 

Assigning k registers = Coloring with k colors 

eax 

edx 

ecx 
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History 

For early architectures, register allocation was not very 
important 

Early work by Cocke (in 1971) proposed the idea that 
register allocation can be viewed as a graph coloring 
problem 

Chaitin was the first to implement this idea for the IBM 
370 PL/1 compiler, in 1981 

In 1982, at IBM, Chaitin’s allocator was used for the PL.8 
compiler for the IBM 801 RISC system 

Today, register allocation is the most essential of code 
optimizations 
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History, cont’d 

Motivated by the first MIPS architecture, 

Chow and Hennessy developed priority-based 

graph coloring in 1984 

Another popular algorithm for register 

allocation based on graph coloring is due to 

Briggs in 1992 

“top down” coloring 

“bottom up” coloring 
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Steps in register allocation 

Build 

Color 

Spill 
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Building the interference graph 

Given liveness information, we can build the 

interference graph (IG) 

v <- 1 
w <-  v + 3 
x <-  w + v 
u <-  v 
t <-  u + x 
  <-  x 
  <-  w 
  <-  t 
  <-  u 

{} 
{v} 
{w,v} 
{w,x,v} 
{w,u,x} 
{x,w,u,t} 
{w,u,t} 
{u,t} 
{u} 

v 

x w 

u 

t 

How? 
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Edges of Interference Graph 

Intuitively: 

Two variables interfere if they overlap at some point in the program. 

Algorithm: 

At each point in program, 
 enter an edge for every pair of variables at that point 

An optimized definition & algorithm for edges: 

" " For each defining inst i 

   Let x be definition at inst i 

  For each variable y live at end of inst i 

    insert an edge between x and y 

Faster? 

Better quality? A = 2  (A2) 
{D}   

{A,D}  Edge between A and D 

School of Computer Science 

Building the interference graph 

for each defining inst i!

  let x be temp defined at inst i "

  for all y in LIVE-IN of succ(i)!

    insert an edge between x and y!

v 

x w 

u 

t 

v <- 1 
w <-  v + 3 
x <-  w + v 
u <-  v 
t <-  u + x 
  <-  x 
  <-  w 
  <-  t 
  <-  u 

{} 
{v} 
{w,v} 
{w,x,v} 
{w,u,x} 
{x,w,u,t} 
{w,u,t} 
{u,t} 
{u} 
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A Better Interference Graph 

x = 0;!

for(i = 0; i < 10; i++)!

{!

   x += i;!

}!

y = global;!

y *= x;!

for(i = 0; i < 10; i++)!

{!

   y += i;!

}!

What does the interference 

graph look like? 

What’s the minimum 

number of registers 

needed? 
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Live Ranges & Merged Live Ranges 

 A live range consists of a definition and all 
the points in a program (e.g. end of an 
instruction) in which that definition is live.  

–!How to compute a live range? 

  

  

 Two overlapping live ranges for the same 
variable must be merged 

a = … a = … 

… = a 

School of Computer Science 

Example 

A = ...  (A1) 

IF A goto L1 

L1: 

C = ...  (C1) 

    = A 

D = ...  (D1)  

B = ...  (B1) 

   = A 

D = B  (D2)  

A = 2  (A2) 

   = A 

ret D 

{} {} 

{A} {A1} 

{A} {A1} 

{A} {A1} 

{A,B} {A1,B1} 

{B} {A1,B1} 

{D} {A1,B1,D2} 

Live Variables 

Reaching Definitions 

{A} {A1} 

{A,C} {A1,C1} 

{C} {A1,C1} 

{D} {A1,C1,D1} 

{D} {A1,B1,C1,D1,D2} 

{A,D} {A2,B1,C1,D1,D2} 

{A,D} {A2,B1,C1,D1,D2} 

{D} {A2,B1,C1,D1,D2} 

Merge 

A live range consists of a definition and all the 
points in a program in which that definition is live.  

School of Computer Science 

Merging Live Ranges 

Merging definitions into equivalence classes: 

–! Start by putting each definition in a different equivalence class 

–! For each point in a program 

•! if variable is live,  
and there are multiple reaching definitions for the variable 

•! merge the equivalence classes of all such definitions into a one 
equivalence class 

Merged live ranges are also known as “webs” 
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Example: Merged Live Ranges 

A = ...  (A1) 

IF A goto L1 

L1: 

C = ...  (C1) 

    = A 

D = ...  (D1)  

B = ...  (B1) 

   = A 

D = B  (D2)  

A = 2  (A2) 

   = A 

ret D 

{} 

{A1} 

{A1} 

{A1} 

{A1,B1} 

{B1} 

{D1,2} 

{A1} 

{A1,C1} 

{C1} 

{D1,2} 

{D1,2} 

{A2,D1,2} 

{A2,D1,2} 

{D1,2} 

A has two “webs” 
makes register allocation easier 
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Steps in register allocation 

Build 

Color 

Spill 
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Steps in register allocation 

Build 

Color 

Spill 

Prioritize 

Select 
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Priority Coloring 

Heuristic priority function computes 

priority for each variable 

–!highest priority allocated first v 

x w 

u 

t 

k = 3 

v <- 1 
w <-  v + 3 
x <-  w + v 
u <-  v 
t <-  u + x 
  <-  w 
  <-  t 
  <-  u 

Priorities: 

v: 4 

w:  3 

x:  2 

u:  3 

t:  2 

Order: 

v, w, u, x, t 

Ideas for priority functions? 

School of Computer Science 

Priority Coloring 

Allocate in priority order 

Another heuristic selects which 

register to assign to variable 

–! rotating registers 

–! lowest numbered register 

v 

x w 

u 

t 

k = 3 

Order: 

v, w, u, x, t 

eax 

edx 

ecx 
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Steps in register allocation 

Build 

Color 

Spill 

Simplify 

Potential Spill 

Select 

Coalesce 
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Graph coloring 

Once we have the interference graph, we can attempt 

register allocation by searching for a K-coloring 

This is an NP-complete problem (K!3)* 

But a linear-time simplification algorithm by Kempe (in 1879) 

tends to work well in practice 

[1] H. Bodlaender, J. Gustedt, and J. A. Telle, “Linear-time register allocation for a fixed number of registers,” in Proceedings of 

the ninth annual ACM-SIAM symposium on Discrete algorithms, pp. 574–583, Society for Industrial and Applied Mathematics, 

1998. 

[2] S. Kannan and T. Proebsting, “Register allocation in structured programs,” in Proceedings of the sixth annual ACM-SIAM 

symposium on Discrete algorithms, pp. 360–368, Society for Industrial and Applied Mathematics, 1995. 

[3] M. Thorup, “All structured programs have small tree width and good register allocation,” Inf. Comput., vol. 142, no. 2, pp. 

159–181, 1998. 

* 
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Kempe’s algorithm 

Basic observation: 

–!given a graph that contains a node with 

degree less than K, the graph is K-colorable 

iff the graph without that node is K-colorable 

–!this is called the “degree<K” rule 

So, step #1 of Kempe’s algorithm: 

–!iteratively remove nodes with degree<K 
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Kempe’s algorithm, cont’d 

If all nodes are removed by step #1, then 

the graph is K-colorable 

However, the degree<K rule does not 

always work, for example: 

t1 

t2 t3 

t4 

t5 

This graph is 3-colorable, 
but the degree<3 rule 
doesn’t work 

t1 

t2 t3 

t4 

t5 
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Kempe’s algorithm, cont’d 

In step #1, each removed node should be pushed onto a 

stack 

–!when all are removed, we pop each node and put it back into 
the graph, assigning a suitable color as we go 

In case we get stuck (i.e., there are no nodes with 

degree<K), we apply step #2: 

–!choose a node with degree!K and optimistically remove it, and 

then continue 
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Example 

v 

x w 

u 

t 

k = 3 

t 

x 

w 

Stack 

u 

v 
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v 

u 

w x 

t 

Example 

v 

x w 

u 

t 

k = 3 

t 

x 

w 

Stack 

u 

v 

eax 

edx 

ecx 
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Another Example 

x 

u 

t 

w 

v 

k = 3 

v 

Now what? 

Be optimistic: 

- Put a node with degree ! k on stack 

- Lose guarantee that anything we 

put on stack is colorable 

-! If we’re lucky this node will still be 

colorable when popped from stack  

Be realistic: 

-! If unlucky, this node will have to be 

spilled (allocated to memory) 

-! Mark as potential spill to avoid 

recomputation later  

w 

t 
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Select 

w 

t 

v 

u 

w x 

t 

k = 3 

v 

u 

x 

Pop a node from the stack 

Assign it a color that does not 

conflict with neighbors in 

interference graph 

This will always be possible, 

unless the node is a potential spill 

If it is not possible, mark as 

actual spill 

School of Computer Science 

Steps in register allocation 

Build 

Color 

Spill 
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Spilling to Memory 

RISC Architectures 

–! Only load and store can access memory 

•! every use requires load 

•! every def requires store 

•! create new temporary for each location 

CISC Architectures 

–! can operate on data in memory directly 

•! makes writing compiler easier(?), but isn’t necessarily faster 

–! pseudo-registers inside memory operands still have to be handled 
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Spilling a use 

For an instruction like 
–!t <- (u,v) 

If u is marked as an actual spill, transform to 
–!u’ := u        (i.e., a load instruction) 
–!t <- (u’,v) 

where u’ is a new temp 

u and u’ are special: 
–!u is spilled and thus unallocatable 

–!u’ is marked as unspillable 
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Spilling a def 

For an instruction like 
–!t <- (u,v) 

If t is marked as an actual spill, transform to 
–!t’ <- (u,v) 
–!t := t’             (i.e., a store instruction) 

where t’ is a new temp 

t and t’ are special: 
–!t is spilled and thus unallocatable 

–!t’ is marked as unspillable 
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Spilled (unallocable) temps 

Question: Where do the spilled temps get stored? 

Answer: On the stack, in stack slots 

To “mark” an actual spill, give it a slot number 

old ebp ebp 

… 

slot n 

slot 1 

slot 0 esp 

… 

return addr 

Each spilled temp 
should be allocated into 
a stack slot 

The compiler can 

maintain a counter for 
the “next” slot number 
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Stack slots 

In order to create the stack slots at run time, 

the prelude code needs to modify %esp 

_main: 
 pushl %ebp 
 movl %esp, %ebp 
 movl %edi, t2 
 movl %ebx, t3 
 movl %esi, t4 

_main: 
 pushl %ebp 
 movl %esp, %ebp 
 movl %edi, t2 
 movl %ebx, t3 
 movl %esi, t4 
 subl $(n"4), %esp 

Note that the subl can be generated only after 
register allocation is finished 

School of Computer Science 

Spill code generation 

The effect of spill code generation is to turn 

long live ranges into a bunch of tiny live 

ranges 

This introduces new temps 

Hence, register allocation must start over from 

scratch whenever spill code is generated 
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Spilling 
v <- 1 

w1 <-  v + 3 

Mw[]<-  w1 

w2 <-  Mw[] 

x <-  w2 + v 

u <-  v 

t <-  u + x 

  <-   x 

w3 <-  Mw[] 

  <-  w3 

  <-  t 

  <-  u 

Allocate w to memory 

location Mw 

v                

w1            

x         

u      

t  

w2            

w3            

Now Start Over... 

...compute live ranges... 

Spilled variables are allocated to 

the stack in an area completely 

controlled by the compiler.  

These memory locations are 

special in that they can be 

optimized without concern for 

memory aliasing issues. 
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What to Spill? 

When choosing potential spill node want: 

–!A node that makes graph easier to color 

•! Fewer spills later 

–!A node that isn’t “expensive” to spill 

•! An expensive node would slow down the program if spilled 

–!We can apply heuristics both when choosing potential 
spill nodes and when choosing actual spill nodes 

•! not required to spill node that we popped off stack and can’t 
color 
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A Spill Heuristic 

Pick node (live range) n that minimizes: 

This heuristic prefers nodes that: 
–! Are used infrequently 

–! Aren’t used inside of loops 

–! Have a large degree 

Could use any one of several other heuristics as well… 
! 

10depth(def )

def "n

# + 10depth(use )

use"n

#

degree(n)
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Rematerialization 

An alternative to spilling 

–!Recompute value of variable instead of store/
load to memory 

–!Example:  
v <- 1 

w <-  v + 3 

x <-  w + v 

u <-  v 

t <-  u + x 

  <-  w 

  <-  t 

  <-  u 

v <- 1 

w <-  v + 3 

x <-  w + v 

u <-  v 

t <-  u + x 

w <-  4 

  <-  w 

  <-  t 

  <-  u 
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Build Take Two 

v 

x 

u 

t 

w1 w2 w3 

Recalculate interference graph 

k = 3 
v <- 1 

w1 <-  v + 3 

Mw[]<-  w1 

w2 <-  Mw[] 

x <-  w2 + v 

u <-  v 

t <-  u + x 

  <-   x 

w3 <-  Mw[] 

  <-  w3 

  <-  t 

  <-  u 
School of Computer Science 

Simplify->Select 

v 

x 

u 

t 

w1 w2 w3 

k = 3 
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Another Example 

t1 <- () 
t2 <- () 
t3 <- (t1,t2) 
t4 <- (t1,t3) 
t5 <- (t1,t2) 
t6 <- (t4,t5) 

Assume 2 machine registers, {r1,r2}. 

Assume t4 may not be in r1. 

Then we have the interference graph 

t3 t1 

t2 t4 

t5 

r1 r2 t6 

School of Computer Science 

Simplification steps… 

t3 t1 

t2 t4 

t5 

r1 r2 t6 

k = 2 
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t6 
t5 
r2 
r1 

t3 t1 

t2 t4 

t5 

r1 r2 t6 

k = 2 

After some simplification steps… 

School of Computer Science 

Choosing potential spills… 

t6 
t5 
r2 
r1 
t3 ps 

t4 ps 

t3 t1 

t2 t4 

t5 

r1 r2 t6 

k = 2 
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Completing simplification 

t6 
t5 
r2 
r1 
t3 ps 

t4 ps 

t1 
t2 

t3 t1 

t2 t4 

t5 

r1 r2 t6 

k = 2 
School of Computer Science 

Selecting colors… 

t6 
t5 
r2 
r1 
t3 ps 

t4 ps 

t3 t1 

t2 t4 

t5 

r1 r2 t6 

k = 2 
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Actual spills… 

t6 
t5 
r2 
r1 

t3 t1 

t2 t4 

t5 

r1 r2 t6 

School of Computer Science 

Select complete! 

t3 t1 

t2 t4 

t5 

r1 r2 t6 
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Spill code generation… 

t3 t1 

t2 t4 

t5 

r1 r2 t6 

t1 <- #() 
t2 <- #() 
t3 <- #(t1,t2)  
t4 <- #(t1,t3) 
t5 <- #(t1,t2) 
t6 <- #(t4,t5) 

t1 <- () 
t2 <- () 
t7 <- (t1,t2)  
t3 := t7 
t8 := t3 

t9 <- (t1,t8) 
t4 := t9 
t5 <- (t1,t2) 
t10 := t4 

t6 <- (t10,t5) Notice: Live ranges for t3 and 
t4 have been chopped up into 
lots of small live ranges 

School of Computer Science 

t1 <- () 
t2 <- () 
t7 <- (t1,t2)  
t3 := t7 
t8 := t3 

t9 <- (t1,t8) 
t4 := t9 
t5 <- (t1,t2) 
t10 := t4 

t6 <- (t10,t5) 

r2 <- () 
r1 <- () 
r1 <- (r2,r1)  
slot0 := r1 
r1 := slot0 

r1 <- (r2,r1) 
slot1 := r1 
r1 <- (r2,r1) 
r2 := slot1 

r1 <- (r2,r1) 

…and start over! 

t1 

t2 

t5 

r1 r2 t6 t7 

t8 

t9 

t10 
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Steps in register allocation 

Build 

Color 

Spill 

Simplify 

Potential Spill 

Select 

Coalesce 
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Move Coalescing 

Eliminate moves by assigning the src and 
dest to the same register 

How can we modify our interference graph 
to do this? 

movl t1,t2 

addl t3,t2 

When can we coalesce t1 and t2? 

movl %eax,%eax 

addl %edx,%eax 
addl %edx,%eax 
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Example 

v <- 1 

w <-  v + 3 

x <-  w + v 

u <-  v 

t <-  u + x 

  <-  w 

  <-  t 

  <-  u 

v                

w            
x         

u      

t  

First compute live ranges... 

v 

x w 

u 

t 

...then construct interference graph 

School of Computer Science 

Example 

v 

x w 

u 

t 

v <- 1 

w <-  v + 3 

x <-  w + v 

u <-  v 

t <-  u + x 

  <-  w 

  <-  t 

  <-  u 

u and v are special: 

A move whose source is not live-out of the 

move is a candidate for coalescing 

Want u and v to be 

assigned same color... 

uv 

...merge u and v 

to form a single 

node 

That is, if the src and dest 

don’t interfere 



16 

School of Computer Science 

Is Coalescing Always Good? 

y 

u x 

b 

a v 

uv 

y 

u x 

b 

a v 

move edge vs. 

And the winner is? 

3 colorable 2 colorable 

School of Computer Science 

When should we coalesce? 

Always 
–! If we run into trouble start un-coalescing 

•! no nodes with degree < k, see if breaking up coalesced nodes fixes 

–!Can we always coalesce all coalescable moves? 

Only if we can prove it won’t cause problems 
–!Briggs: Conservative Coalescing 

–!George: Iterated Coalescing 

y u x 

b 

a v 

When we simplify the graph, 

we remove nodes of degree < 

k... 

want to make sure we will 

still be able to simplify 

coalesced node, uv 

School of Computer Science 

Briggs: Conservative Coalescing 

y u x 

b 

a v 

•!Can coalesce u and v if: 

–!(# of neighbors of uv with degree ! k) < k 

•!Why? 

–!Simplify pass removes all nodes with degree < k 

–!# of remaining nodes < k 

–!Thus, uv can be simplified 

What does Briggs 

say about 

k = 3? 

k = 2? 

School of Computer Science 

George: Iterated Coalescing 

Can coalesce u and v if 

 foreach neighbor t of u 

•! t interferes with v, or, 

•! degree of t < k 

Why? 

–! let S be set of neighbors of u with degree < k 
–! If no coalescing, simplify removes all nodes in S, call 

that graph G1 

–! If we coalesce we can still remove all nodes in S, call 

that graph G2 

–!G2 is a subgraph of G1 

doesn’t change degree 

removed by simplification 

Resulting node uv will 

(after simplification) 

have degree equal to 

degree of v 
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George: Iterated Coalescing 

u 

v 

S1 

S2 
S3 

S4 

x1 

x2 

u 

v 
x1 

x2 

No coalescing, 
after 

simplification 

uv 
x1 

x2 

After coalescing and 
simplification 

k = 4 

G1 

G2 

School of Computer Science 

Why Two Methods? 

•!Why not? 

•!With Briggs, one needs to look at all neighbors of a & b 

•!With George, only need to look at neighbors of a. 

So: 
–!Use George if one of a & b has very large degree 

–!Use Briggs otherwise 
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Optimistic Coalescing 

Aggressively coalesce 

If coalesced node spills, uncoalesce 

y 

u x 

b 

a v 

uv 

y 

u x 

b 

a v 

u 

v 

Will this always work? 
School of Computer Science 

Steps in register allocation 

Simplify 

Potential Spill 

Select 

Coalesce 

Prioritize 

Select 

top-down bottom-up vs. 

Which one is better? 
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Alternative Allocators 
Graph allocator, as described, has issues 

–! What are they? 

Alternative: Single pass graph coloring 

–! Build, Simplify, Coalesce as before 

–! In select, if can’t color with register, color with stack location 

•! Keep going 

–! Requires second, reload phase 

•! “fixes” spilled variables 

•! Might require that we reserve a register 

•! Can get messy 

Claim: Does a pretty good job 

–! Why? 

•! Key is order nodes are colored (top-down) 

Advantages?  Disadvantages? 

School of Computer Science 

Alternative Allocators 
Local/Global Allocation 

–!Allocate “local” pseudo-registers 

•! Lifetime contained within basic block 

•! Register sufficiency no longer NP-Complete!  

–!Allocate global pseudo-registers 

•! Single pass global coloring 

•! Coloring heuristic may reverse local allocation 

–!Reload pass to fix spills (allocator does not generate 

spill code) 

–!Can also do global then local 

–!Advantages? Disadvantages? 

gcc’s approach, 

unless -fnew-ra 

School of Computer Science 

Alternative Allocators 

Linear Scan 

–!Performs single sweep over live ranges 

–!Each range represented by a single interval 

–!Greedily allocates/spills 

Second Chance Binpacking 

–!maintains more state  

•! lifetime holes, register-memory consistency 

–!will split a live range 

–! less greedy; may reevaluate previous allocations 

Advantages? Disadvantages? 

School of Computer Science 

In Chaitin’s words 

“…since I was a mathematician, the register allocation kept 

getting simpler and faster as I understood better what was 

required.  I preferred to base algorithms on a simple, clean idea 

that was intellectually understandable rather than write 

complicated ad hoc computer code… 

So I regard the success of this approach, which has been the basis 

for much future work, as a triumph of the power of a simple 

mathematical idea over ad hoc hacking.  Yes, the real world is 

messy and complicated, but one should try to base algorithms 

on clean, comprehensible mathematical ideas and only 

complicate them when absolutely necessary.  In fact, certain 

instructions were omitted from the 801 architecture because they 

would have unduly complicated register allocation…” 
— G. Chaitin, 2004 
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Avoiding Spills 

1.8 Ghz Pentium 4; -O3 -funroll-loops -fnew-ra; gcc version 3.2.2 
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Bottom-up vs Top-down: Speed 

1.8 Ghz Pentium 4; -O3 -funroll-loops; gcc version 3.2.2 
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Bottom-up vs Top-down: Size 
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 x86; -Os; gcc version 3.2.2 

Complexity of Register Allocation 
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Complexity of Register Allocation 

Graph color is NP-complete 

–!what does this tell us about register allocation? 

Given arbitrary graph can construct program 

with matching interference graph1 

–!simply determining if spilling is necessary is 

therefore NP-complete… or is it? 

Can exploit structure of reducible program2,3,4 
[1] G.J. Chaitin, M. Auslander, A.K. Chandra, J. Cocke, M.E. Hopkins, and P. Markstein. Register allocation via coloring. Computer 

Languages, 6:47-57, 1981.!

[2] H. Bodlaender, J. Gustedt, and J. A. Telle, “Linear-time register allocation for a fixed number of registers,” in Proceedings of the 

ninth annual ACM-SIAM symposium on Discrete algorithms, pp. 574–583, Society for Industrial and Applied Mathematics, 1998.!

[3] S. Kannan and T. Proebsting, “Register allocation in structured programs,” in Proceedings of the sixth annual ACM-SIAM 

symposium on Discrete algorithms, pp. 360–368, Society for Industrial and Applied Mathematics, 1995.!

[4] M. Thorup, “All structured programs have small tree width and good register allocation,” Inf. Comput., vol. 142, no. 2, pp. 159–

181, 1998.!
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Complexity of Register Allocation 

Complexity of local register allocation? 

–!linear algorithm for register sufficiency 

SSA Form? 

–!interference graph is turns out to be both perfect1 

and chordal2 

•!can color in linear time 

–!BUT all bets are off after SSA elimination3 

[1] Philip Brisk, Foad Dabiri, Jamie Macbeth, and Majid Sarrafzadeh. Polynomial time graph coloring register allocation. In 14th 

International Workshop on Logic and Synthesis. ACM Press, 2005.!

[2] Sebastian Hack. Interference graphs of programs in SSA-form. Technical Report ISSN 1432-7864, Universitat Karlsruhe, 2005.!

[3] Jens Palsberg and Fernando Magno Quintao Pereira Register allocation after classical SSA elimination is NP-complete, In 

Proceedings of FOSSACS'06, Foundations of Software Science and Computation Structures. Springer-Verlag (LNCS), Vienna, 

Austria, March 2006.!
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Complexity of Register Allocation 

Complexity of optimizing spill code? 

–!NP-complete even without control flow1 

Complexity of optimal coalescing? 

–!NP-complete2 

[1] Martin Farach and Vincenzo Liberatore. On local register allocation. In 9th ACMSIAM symposium on Discrete Algorithms, pages 

564 { 573. ACM Press, 1998.!

[2] Andrew W. Appel and Lal George. Optimal spilling for cisc machines with few registers. In Proceedings of the ACM SIGPLAN 

2001 conference on Programming language design and implementation, pages 243–253. ACM Press, 2001.!


