
1

School of Computer Science

Register Allocation

15-745 Optimizing Compilers

Spring 2008

School of Computer Science

School of Computer Science

Back end structure

IR

TempMap

instruction

selector

register

allocator

Assem

Assem
instruction

scheduler

School of Computer Science

After Instruction Selection

entry: 0x803ce0, LLVM BB @0x801a90, ID#0:!
! %reg1024 = MOV32ri 33!
! %reg1025 = ADD32rm %reg1024, <fi#-2>, 1, %NOREG, 0!
! %reg1026 = MOV32rm <fi#-1>, 1, %NOREG, 0!
! %reg1027 = IMUL32rr %reg1026, %reg1026!
! %reg1028 = IMUL32rri8 %reg1027, 37!
! %EAX = MOV32rr %reg1028!
! %EAX = CDQ %EDX<imp-def>, %EAX<imp-use>!
! IDIV32r %reg1025, %EAX<imp-def>, %EDX<imp-def>, %EAX<imp-use>, %EDX<imp-use>!
! %reg1029 = MOV32rr %EAX!
! %reg1030 = NOT32r %reg1026!
! %reg1031 = ADD32rr %reg1029, %reg1030!
! %EAX = MOV32rr %reg1031!
! RET!

define i32 @erk(i32 %a, i32 %b) {!
entry:!
! %tmp3 = mul i32 %a, 37! ! ; <i32> [#uses=1]!
! %tmp4 = mul i32 %tmp3, %a! ! ; <i32> [#uses=1]!
! %tmp6 = add i32 %b, 33! ! ; <i32> [#uses=1]!
! %tmp7 = sdiv i32 %tmp4, %tmp6!! ; <i32> [#uses=1]!
! %tmp9.neg = xor i32 %a, -1! ! ; <i32> [#uses=1]!
! %tmp10 = add i32 %tmp7, %tmp9.neg! ! ; <i32> [#uses=1]!
! ret i32 %tmp10!
}!

2

School of Computer Science

Abstract View

…
movl $2, t7
movl t7, t11
imull t7, t11
movl t11, t10
imull $37, t10
movl t10, t8
movl t7, t17
addl $1, t17
movl $33, %eax
cltd
idivl t17
…

…
t7 <- ()
t11 <- (t7)
t11 <- (t7, t11)
t10 <- (t11)
t10 <- (t10)
t8 <- (t10)
t17 <- (t7)
t17 <- (t17)
%eax <- ()
%edx,%eax <- (%eax)
%eax,%edx <- (t17,%eax,%edx)
…

Abstract view, for register allocation purposes

Read Written

School of Computer Science

Register allocator’s job

The register allocator’s
job is to assign each
temp to a machine
register.

If that fails, the register
allocator must rewrite
the code so that it can
succeed.

…
t7 : %ebx
t8 : %ecx
t10 : %eax
t11 : %eax
t17 : %esi
…

The

TempMap

…!

t7 <- 2!

t11 <- t7!

t11 <- (t7, t11)!

t10 <- t11!

t10 <- t10!

t8 <- t10!

t17 <- t7!

t17 <- t17!

%eax <- !

%edx <- (%eax,%edx)!

%eax,%edx <- t17!

…!

School of Computer Science

Some terminology

Two temps interfere if at some point in the

program they cannot both occupy the same

register.

v <- 1
w <- v + 3
x <- w + v
u <- v
t <- u + x
 <- w
 <- t
 <- u

Which temps interfere?

School of Computer Science

A graph-coloring problem

v

x w

u

t

v <- 1
w <- v + 3
x <- w + v
u <- v
t <- u + x
 <- w
 <- t
 <- u

Interference graph: an undirected graph where

•!nodes = temps

•!there is an edge between two nodes if their
corresponding temps interfere

3

School of Computer Science

A graph-coloring problem

v

x w

u

t

v <- 1
w <- v + 3
x <- w + v
u <- v
t <- u + x
 <- w
 <- t
 <- u

A graph is k-colorable if every node in the graph can
be colored with one of k colors such that two adjacent
nodes do not have the same color

Assigning k registers = Coloring with k colors

eax

edx

ecx

School of Computer Science

History

For early architectures, register allocation was not very
important

Early work by Cocke (in 1971) proposed the idea that
register allocation can be viewed as a graph coloring
problem

Chaitin was the first to implement this idea for the IBM
370 PL/1 compiler, in 1981

In 1982, at IBM, Chaitin’s allocator was used for the PL.8
compiler for the IBM 801 RISC system

Today, register allocation is the most essential of code
optimizations

School of Computer Science

History, cont’d

Motivated by the first MIPS architecture,

Chow and Hennessy developed priority-based

graph coloring in 1984

Another popular algorithm for register

allocation based on graph coloring is due to

Briggs in 1992

“top down” coloring

“bottom up” coloring

School of Computer Science

Steps in register allocation

Build

Color

Spill

4

School of Computer Science

Building the interference graph

Given liveness information, we can build the

interference graph (IG)

v <- 1
w <- v + 3
x <- w + v
u <- v
t <- u + x
 <- x
 <- w
 <- t
 <- u

{}
{v}
{w,v}
{w,x,v}
{w,u,x}
{x,w,u,t}
{w,u,t}
{u,t}
{u}

v

x w

u

t

How?

School of Computer Science

Edges of Interference Graph

Intuitively:

Two variables interfere if they overlap at some point in the program.

Algorithm:

At each point in program,
 enter an edge for every pair of variables at that point

An optimized definition & algorithm for edges:

" " For each defining inst i

 Let x be definition at inst i

 For each variable y live at end of inst i

 insert an edge between x and y

Faster?

Better quality? A = 2 (A2)
{D}

{A,D} Edge between A and D

School of Computer Science

Building the interference graph

for each defining inst i!

 let x be temp defined at inst i "

 for all y in LIVE-IN of succ(i)!

 insert an edge between x and y!

v

x w

u

t

v <- 1
w <- v + 3
x <- w + v
u <- v
t <- u + x
 <- x
 <- w
 <- t
 <- u

{}
{v}
{w,v}
{w,x,v}
{w,u,x}
{x,w,u,t}
{w,u,t}
{u,t}
{u}

School of Computer Science

A Better Interference Graph

x = 0;!

for(i = 0; i < 10; i++)!

{!

 x += i;!

}!

y = global;!

y *= x;!

for(i = 0; i < 10; i++)!

{!

 y += i;!

}!

What does the interference

graph look like?

What’s the minimum

number of registers

needed?

5

School of Computer Science

Live Ranges & Merged Live Ranges

 A live range consists of a definition and all
the points in a program (e.g. end of an
instruction) in which that definition is live.

–!How to compute a live range?

 Two overlapping live ranges for the same
variable must be merged

a = … a = …

… = a

School of Computer Science

Example

A = ... (A1)

IF A goto L1

L1:

C = ... (C1)

 = A

D = ... (D1)

B = ... (B1)

 = A

D = B (D2)

A = 2 (A2)

 = A

ret D

{} {}

{A} {A1}

{A} {A1}

{A} {A1}

{A,B} {A1,B1}

{B} {A1,B1}

{D} {A1,B1,D2}

Live Variables

Reaching Definitions

{A} {A1}

{A,C} {A1,C1}

{C} {A1,C1}

{D} {A1,C1,D1}

{D} {A1,B1,C1,D1,D2}

{A,D} {A2,B1,C1,D1,D2}

{A,D} {A2,B1,C1,D1,D2}

{D} {A2,B1,C1,D1,D2}

Merge

A live range consists of a definition and all the
points in a program in which that definition is live.

School of Computer Science

Merging Live Ranges

Merging definitions into equivalence classes:

–! Start by putting each definition in a different equivalence class

–! For each point in a program

•! if variable is live,
and there are multiple reaching definitions for the variable

•! merge the equivalence classes of all such definitions into a one
equivalence class

Merged live ranges are also known as “webs”

School of Computer Science

Example: Merged Live Ranges

A = ... (A1)

IF A goto L1

L1:

C = ... (C1)

 = A

D = ... (D1)

B = ... (B1)

 = A

D = B (D2)

A = 2 (A2)

 = A

ret D

{}

{A1}

{A1}

{A1}

{A1,B1}

{B1}

{D1,2}

{A1}

{A1,C1}

{C1}

{D1,2}

{D1,2}

{A2,D1,2}

{A2,D1,2}

{D1,2}

A has two “webs”
makes register allocation easier

6

School of Computer Science

Steps in register allocation

Build

Color

Spill

School of Computer Science

Steps in register allocation

Build

Color

Spill

Prioritize

Select

School of Computer Science

Priority Coloring

Heuristic priority function computes

priority for each variable

–!highest priority allocated first v

x w

u

t

k = 3

v <- 1
w <- v + 3
x <- w + v
u <- v
t <- u + x
 <- w
 <- t
 <- u

Priorities:

v: 4

w: 3

x: 2

u: 3

t: 2

Order:

v, w, u, x, t

Ideas for priority functions?

School of Computer Science

Priority Coloring

Allocate in priority order

Another heuristic selects which

register to assign to variable

–! rotating registers

–! lowest numbered register

v

x w

u

t

k = 3

Order:

v, w, u, x, t

eax

edx

ecx

7

School of Computer Science

Steps in register allocation

Build

Color

Spill

Simplify

Potential Spill

Select

Coalesce

School of Computer Science

Graph coloring

Once we have the interference graph, we can attempt

register allocation by searching for a K-coloring

This is an NP-complete problem (K!3)*

But a linear-time simplification algorithm by Kempe (in 1879)

tends to work well in practice

[1] H. Bodlaender, J. Gustedt, and J. A. Telle, “Linear-time register allocation for a fixed number of registers,” in Proceedings of

the ninth annual ACM-SIAM symposium on Discrete algorithms, pp. 574–583, Society for Industrial and Applied Mathematics,

1998.

[2] S. Kannan and T. Proebsting, “Register allocation in structured programs,” in Proceedings of the sixth annual ACM-SIAM

symposium on Discrete algorithms, pp. 360–368, Society for Industrial and Applied Mathematics, 1995.

[3] M. Thorup, “All structured programs have small tree width and good register allocation,” Inf. Comput., vol. 142, no. 2, pp.

159–181, 1998.

*

School of Computer Science

Kempe’s algorithm

Basic observation:

–!given a graph that contains a node with

degree less than K, the graph is K-colorable

iff the graph without that node is K-colorable

–!this is called the “degree<K” rule

So, step #1 of Kempe’s algorithm:

–!iteratively remove nodes with degree<K

School of Computer Science

Kempe’s algorithm, cont’d

If all nodes are removed by step #1, then

the graph is K-colorable

However, the degree<K rule does not

always work, for example:

t1

t2 t3

t4

t5

This graph is 3-colorable,
but the degree<3 rule
doesn’t work

t1

t2 t3

t4

t5

8

School of Computer Science

Kempe’s algorithm, cont’d

In step #1, each removed node should be pushed onto a

stack

–!when all are removed, we pop each node and put it back into
the graph, assigning a suitable color as we go

In case we get stuck (i.e., there are no nodes with

degree<K), we apply step #2:

–!choose a node with degree!K and optimistically remove it, and

then continue

School of Computer Science

Example

v

x w

u

t

k = 3

t

x

w

Stack

u

v

School of Computer Science

v

u

w x

t

Example

v

x w

u

t

k = 3

t

x

w

Stack

u

v

eax

edx

ecx

School of Computer Science

Another Example

x

u

t

w

v

k = 3

v

Now what?

Be optimistic:

- Put a node with degree ! k on stack

- Lose guarantee that anything we

put on stack is colorable

-! If we’re lucky this node will still be

colorable when popped from stack

Be realistic:

-! If unlucky, this node will have to be

spilled (allocated to memory)

-! Mark as potential spill to avoid

recomputation later

w

t

9

School of Computer Science

Select

w

t

v

u

w x

t

k = 3

v

u

x

Pop a node from the stack

Assign it a color that does not

conflict with neighbors in

interference graph

This will always be possible,

unless the node is a potential spill

If it is not possible, mark as

actual spill

School of Computer Science

Steps in register allocation

Build

Color

Spill

School of Computer Science

Spilling to Memory

RISC Architectures

–! Only load and store can access memory

•! every use requires load

•! every def requires store

•! create new temporary for each location

CISC Architectures

–! can operate on data in memory directly

•! makes writing compiler easier(?), but isn’t necessarily faster

–! pseudo-registers inside memory operands still have to be handled

School of Computer Science

Spilling a use

For an instruction like
–!t <- (u,v)

If u is marked as an actual spill, transform to
–!u’ := u (i.e., a load instruction)
–!t <- (u’,v)

where u’ is a new temp

u and u’ are special:
–!u is spilled and thus unallocatable

–!u’ is marked as unspillable

10

School of Computer Science

Spilling a def

For an instruction like
–!t <- (u,v)

If t is marked as an actual spill, transform to
–!t’ <- (u,v)
–!t := t’ (i.e., a store instruction)

where t’ is a new temp

t and t’ are special:
–!t is spilled and thus unallocatable

–!t’ is marked as unspillable

School of Computer Science

Spilled (unallocable) temps

Question: Where do the spilled temps get stored?

Answer: On the stack, in stack slots

To “mark” an actual spill, give it a slot number

old ebp ebp

…

slot n

slot 1

slot 0 esp

…

return addr

Each spilled temp
should be allocated into
a stack slot

The compiler can

maintain a counter for
the “next” slot number

School of Computer Science

Stack slots

In order to create the stack slots at run time,

the prelude code needs to modify %esp

_main:
 pushl %ebp
 movl %esp, %ebp
 movl %edi, t2
 movl %ebx, t3
 movl %esi, t4

_main:
 pushl %ebp
 movl %esp, %ebp
 movl %edi, t2
 movl %ebx, t3
 movl %esi, t4
 subl $(n"4), %esp

Note that the subl can be generated only after
register allocation is finished

School of Computer Science

Spill code generation

The effect of spill code generation is to turn

long live ranges into a bunch of tiny live

ranges

This introduces new temps

Hence, register allocation must start over from

scratch whenever spill code is generated

11

School of Computer Science

Spilling
v <- 1

w1 <- v + 3

Mw[]<- w1

w2 <- Mw[]

x <- w2 + v

u <- v

t <- u + x

 <- x

w3 <- Mw[]

 <- w3

 <- t

 <- u

Allocate w to memory

location Mw

v

w1

x

u

t

w2

w3

Now Start Over...

...compute live ranges...

Spilled variables are allocated to

the stack in an area completely

controlled by the compiler.

These memory locations are

special in that they can be

optimized without concern for

memory aliasing issues.

School of Computer Science

What to Spill?

When choosing potential spill node want:

–!A node that makes graph easier to color

•! Fewer spills later

–!A node that isn’t “expensive” to spill

•! An expensive node would slow down the program if spilled

–!We can apply heuristics both when choosing potential
spill nodes and when choosing actual spill nodes

•! not required to spill node that we popped off stack and can’t
color

School of Computer Science

A Spill Heuristic

Pick node (live range) n that minimizes:

This heuristic prefers nodes that:
–! Are used infrequently

–! Aren’t used inside of loops

–! Have a large degree

Could use any one of several other heuristics as well…
!

10depth(def)

def "n

+ 10depth(use)

use"n

#

degree(n)

School of Computer Science

Rematerialization

An alternative to spilling

–!Recompute value of variable instead of store/
load to memory

–!Example:
v <- 1

w <- v + 3

x <- w + v

u <- v

t <- u + x

 <- w

 <- t

 <- u

v <- 1

w <- v + 3

x <- w + v

u <- v

t <- u + x

w <- 4

 <- w

 <- t

 <- u

12

School of Computer Science

Build Take Two

v

x

u

t

w1 w2 w3

Recalculate interference graph

k = 3
v <- 1

w1 <- v + 3

Mw[]<- w1

w2 <- Mw[]

x <- w2 + v

u <- v

t <- u + x

 <- x

w3 <- Mw[]

 <- w3

 <- t

 <- u
School of Computer Science

Simplify->Select

v

x

u

t

w1 w2 w3

k = 3

School of Computer Science

Another Example

t1 <- ()
t2 <- ()
t3 <- (t1,t2)
t4 <- (t1,t3)
t5 <- (t1,t2)
t6 <- (t4,t5)

Assume 2 machine registers, {r1,r2}.

Assume t4 may not be in r1.

Then we have the interference graph

t3 t1

t2 t4

t5

r1 r2 t6

School of Computer Science

Simplification steps…

t3 t1

t2 t4

t5

r1 r2 t6

k = 2

13

School of Computer Science

t6
t5
r2
r1

t3 t1

t2 t4

t5

r1 r2 t6

k = 2

After some simplification steps…

School of Computer Science

Choosing potential spills…

t6
t5
r2
r1
t3 ps

t4 ps

t3 t1

t2 t4

t5

r1 r2 t6

k = 2

School of Computer Science

Completing simplification

t6
t5
r2
r1
t3 ps

t4 ps

t1
t2

t3 t1

t2 t4

t5

r1 r2 t6

k = 2
School of Computer Science

Selecting colors…

t6
t5
r2
r1
t3 ps

t4 ps

t3 t1

t2 t4

t5

r1 r2 t6

k = 2

14

School of Computer Science

Actual spills…

t6
t5
r2
r1

t3 t1

t2 t4

t5

r1 r2 t6

School of Computer Science

Select complete!

t3 t1

t2 t4

t5

r1 r2 t6

School of Computer Science

Spill code generation…

t3 t1

t2 t4

t5

r1 r2 t6

t1 <- #()
t2 <- #()
t3 <- #(t1,t2)
t4 <- #(t1,t3)
t5 <- #(t1,t2)
t6 <- #(t4,t5)

t1 <- ()
t2 <- ()
t7 <- (t1,t2)
t3 := t7
t8 := t3

t9 <- (t1,t8)
t4 := t9
t5 <- (t1,t2)
t10 := t4

t6 <- (t10,t5) Notice: Live ranges for t3 and
t4 have been chopped up into
lots of small live ranges

School of Computer Science

t1 <- ()
t2 <- ()
t7 <- (t1,t2)
t3 := t7
t8 := t3

t9 <- (t1,t8)
t4 := t9
t5 <- (t1,t2)
t10 := t4

t6 <- (t10,t5)

r2 <- ()
r1 <- ()
r1 <- (r2,r1)
slot0 := r1
r1 := slot0

r1 <- (r2,r1)
slot1 := r1
r1 <- (r2,r1)
r2 := slot1

r1 <- (r2,r1)

…and start over!

t1

t2

t5

r1 r2 t6 t7

t8

t9

t10

15

School of Computer Science

Steps in register allocation

Build

Color

Spill

Simplify

Potential Spill

Select

Coalesce

School of Computer Science

Move Coalescing

Eliminate moves by assigning the src and
dest to the same register

How can we modify our interference graph
to do this?

movl t1,t2

addl t3,t2

When can we coalesce t1 and t2?

movl %eax,%eax

addl %edx,%eax
addl %edx,%eax

School of Computer Science

Example

v <- 1

w <- v + 3

x <- w + v

u <- v

t <- u + x

 <- w

 <- t

 <- u

v

w
x

u

t

First compute live ranges...

v

x w

u

t

...then construct interference graph

School of Computer Science

Example

v

x w

u

t

v <- 1

w <- v + 3

x <- w + v

u <- v

t <- u + x

 <- w

 <- t

 <- u

u and v are special:

A move whose source is not live-out of the

move is a candidate for coalescing

Want u and v to be

assigned same color...

uv

...merge u and v

to form a single

node

That is, if the src and dest

don’t interfere

16

School of Computer Science

Is Coalescing Always Good?

y

u x

b

a v

uv

y

u x

b

a v

move edge vs.

And the winner is?

3 colorable 2 colorable

School of Computer Science

When should we coalesce?

Always
–! If we run into trouble start un-coalescing

•! no nodes with degree < k, see if breaking up coalesced nodes fixes

–!Can we always coalesce all coalescable moves?

Only if we can prove it won’t cause problems
–!Briggs: Conservative Coalescing

–!George: Iterated Coalescing

y u x

b

a v

When we simplify the graph,

we remove nodes of degree <

k...

want to make sure we will

still be able to simplify

coalesced node, uv

School of Computer Science

Briggs: Conservative Coalescing

y u x

b

a v

•!Can coalesce u and v if:

–!(# of neighbors of uv with degree ! k) < k

•!Why?

–!Simplify pass removes all nodes with degree < k

–!# of remaining nodes < k

–!Thus, uv can be simplified

What does Briggs

say about

k = 3?

k = 2?

School of Computer Science

George: Iterated Coalescing

Can coalesce u and v if

 foreach neighbor t of u

•! t interferes with v, or,

•! degree of t < k

Why?

–! let S be set of neighbors of u with degree < k
–! If no coalescing, simplify removes all nodes in S, call

that graph G1

–! If we coalesce we can still remove all nodes in S, call

that graph G2

–!G2 is a subgraph of G1

doesn’t change degree

removed by simplification

Resulting node uv will

(after simplification)

have degree equal to

degree of v

17

School of Computer Science

George: Iterated Coalescing

u

v

S1

S2
S3

S4

x1

x2

u

v
x1

x2

No coalescing,
after

simplification

uv
x1

x2

After coalescing and
simplification

k = 4

G1

G2

School of Computer Science

Why Two Methods?

•!Why not?

•!With Briggs, one needs to look at all neighbors of a & b

•!With George, only need to look at neighbors of a.

So:
–!Use George if one of a & b has very large degree

–!Use Briggs otherwise

School of Computer Science

Optimistic Coalescing

Aggressively coalesce

If coalesced node spills, uncoalesce

y

u x

b

a v

uv

y

u x

b

a v

u

v

Will this always work?
School of Computer Science

Steps in register allocation

Simplify

Potential Spill

Select

Coalesce

Prioritize

Select

top-down bottom-up vs.

Which one is better?

18

School of Computer Science

Alternative Allocators
Graph allocator, as described, has issues

–! What are they?

Alternative: Single pass graph coloring

–! Build, Simplify, Coalesce as before

–! In select, if can’t color with register, color with stack location

•! Keep going

–! Requires second, reload phase

•! “fixes” spilled variables

•! Might require that we reserve a register

•! Can get messy

Claim: Does a pretty good job

–! Why?

•! Key is order nodes are colored (top-down)

Advantages? Disadvantages?

School of Computer Science

Alternative Allocators
Local/Global Allocation

–!Allocate “local” pseudo-registers

•! Lifetime contained within basic block

•! Register sufficiency no longer NP-Complete!

–!Allocate global pseudo-registers

•! Single pass global coloring

•! Coloring heuristic may reverse local allocation

–!Reload pass to fix spills (allocator does not generate

spill code)

–!Can also do global then local

–!Advantages? Disadvantages?

gcc’s approach,

unless -fnew-ra

School of Computer Science

Alternative Allocators

Linear Scan

–!Performs single sweep over live ranges

–!Each range represented by a single interval

–!Greedily allocates/spills

Second Chance Binpacking

–!maintains more state

•! lifetime holes, register-memory consistency

–!will split a live range

–! less greedy; may reevaluate previous allocations

Advantages? Disadvantages?

School of Computer Science

In Chaitin’s words

“…since I was a mathematician, the register allocation kept

getting simpler and faster as I understood better what was

required. I preferred to base algorithms on a simple, clean idea

that was intellectually understandable rather than write

complicated ad hoc computer code…

So I regard the success of this approach, which has been the basis

for much future work, as a triumph of the power of a simple

mathematical idea over ad hoc hacking. Yes, the real world is

messy and complicated, but one should try to base algorithms

on clean, comprehensible mathematical ideas and only

complicate them when absolutely necessary. In fact, certain

instructions were omitted from the 801 architecture because they

would have unduly complicated register allocation…”
— G. Chaitin, 2004

19

School of Computer Science

Avoiding Spills

1.8 Ghz Pentium 4; -O3 -funroll-loops -fnew-ra; gcc version 3.2.2

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

x86 (8) 68k (16) PPC (32)

P
e
r
c
e
n

t
F
u

n
c
ti

o
n

s
 W

it
h

 N
o

 S
p

il
ls

top down bottom up

School of Computer Science

Bottom-up vs Top-down: Speed

1.8 Ghz Pentium 4; -O3 -funroll-loops; gcc version 3.2.2

-15.00%

-10.00%

-5.00%

0.00%

5.00%

10.00%

15.00%

1
6
4
.g
z
ip

1
7
5
.v
p
r

1
8
1
.m
c
f

1
9
7
.p
a
rs
e
r

2
5
4
.g
a
p

2
5
5
.v
o
rt
e
x

2
5
6
.b
z
ip
2

3
0
0
.t
w
o
lf

1
6
8
.w
u
p
w
is
e

1
7
1
.s
w
im

1
7
2
.m
g
ri
d

1
7
3
.a
p
p
lu

1
7
7
.m
e
s
a

1
7
9
.a
rt

1
8
3
.e
q
u
a
k
e

1
8
8
.a
m
m
p

2
0
0
.s
ix
tr
a
c
k

3
0
1
.a
p
s
i

SPECint SPECfp

P
e
r
fo

r
m

a
n

c
e
 i
m

p
r
o

v
e
m

e
n

t
o

f
g

r
a
p

h
 a

ll
o

c
a
to

r

School of Computer Science

Bottom-up vs Top-down: Size

-18.00%

-16.00%

-14.00%

-12.00%

-10.00%

-8.00%

-6.00%

-4.00%

-2.00%

0.00%

2.00%

1
6
4
.g
z
ip

1
7
5
.v
p
r

1
8
1
.m
c
f

1
8
6
.c
ra
ft
y

1
9
7
.p
a
rs
e
r

2
5
2
.e
o
n

2
5
3
.p
e
rl

2
5
4
.g
a
p

2
5
5
.v
o
rt
e
x

2
5
6
.b
z
ip
2

3
0
0
.t
w
o
lf

1
6
8
.w
u
p
w
is
e

1
7
1
.s
w
im

1
7
2
.m
g
ri
d

1
7
3
.a
p
p
lu

1
7
7
.m
e
s
a

1
7
9
.a
rt

1
8
3
.e
q
u
a
k
e

1
8
8
.a
m
m
p

2
0
0
.s
ix
tr
a
c
k

3
0
1
.a
p
s
i

SPECint SPECfp

P
e
r
c
e
n

t
s
iz

e
 i
m

p
r
o

v
e
m

e
n

t
o

f
g

r
a
p

h
 a

ll
o

c
a
to

r

 x86; -Os; gcc version 3.2.2

Complexity of Register Allocation

20

School of Computer Science

Complexity of Register Allocation

Graph color is NP-complete

–!what does this tell us about register allocation?

Given arbitrary graph can construct program

with matching interference graph1

–!simply determining if spilling is necessary is

therefore NP-complete… or is it?

Can exploit structure of reducible program2,3,4
[1] G.J. Chaitin, M. Auslander, A.K. Chandra, J. Cocke, M.E. Hopkins, and P. Markstein. Register allocation via coloring. Computer

Languages, 6:47-57, 1981.!

[2] H. Bodlaender, J. Gustedt, and J. A. Telle, “Linear-time register allocation for a fixed number of registers,” in Proceedings of the

ninth annual ACM-SIAM symposium on Discrete algorithms, pp. 574–583, Society for Industrial and Applied Mathematics, 1998.!

[3] S. Kannan and T. Proebsting, “Register allocation in structured programs,” in Proceedings of the sixth annual ACM-SIAM

symposium on Discrete algorithms, pp. 360–368, Society for Industrial and Applied Mathematics, 1995.!

[4] M. Thorup, “All structured programs have small tree width and good register allocation,” Inf. Comput., vol. 142, no. 2, pp. 159–

181, 1998.!

School of Computer Science

Complexity of Register Allocation

Complexity of local register allocation?

–!linear algorithm for register sufficiency

SSA Form?

–!interference graph is turns out to be both perfect1

and chordal2

•!can color in linear time

–!BUT all bets are off after SSA elimination3

[1] Philip Brisk, Foad Dabiri, Jamie Macbeth, and Majid Sarrafzadeh. Polynomial time graph coloring register allocation. In 14th

International Workshop on Logic and Synthesis. ACM Press, 2005.!

[2] Sebastian Hack. Interference graphs of programs in SSA-form. Technical Report ISSN 1432-7864, Universitat Karlsruhe, 2005.!

[3] Jens Palsberg and Fernando Magno Quintao Pereira Register allocation after classical SSA elimination is NP-complete, In

Proceedings of FOSSACS'06, Foundations of Software Science and Computation Structures. Springer-Verlag (LNCS), Vienna,

Austria, March 2006.!

School of Computer Science

Complexity of Register Allocation

Complexity of optimizing spill code?

–!NP-complete even without control flow1

Complexity of optimal coalescing?

–!NP-complete2

[1] Martin Farach and Vincenzo Liberatore. On local register allocation. In 9th ACMSIAM symposium on Discrete Algorithms, pages

564 { 573. ACM Press, 1998.!

[2] Andrew W. Appel and Lal George. Optimal spilling for cisc machines with few registers. In Proceedings of the ACM SIGPLAN

2001 conference on Programming language design and implementation, pages 243–253. ACM Press, 2001.!

