555555

15-745

Optimizing For Data Locality - 2

Seth Copen Goldstein
Seth@cs.cmu.Edu

CMU

Based on "A Data Locality Optimizing Algorithm,
Wolf & Lam, PLDI '91

555555

Outline

* Loop Transformations

- dependence vectors
- Transformations
- Unimodular transformations

« Tiling
- SRP

Loop Transformation Theory

- Iteration Space
- Dependence vectors
* Unimodular transformations

Loop Nests and the Iter space

* General form of tightly nested loop

for I, :=low,; to high, by step,

for 1, := low, to high, by step,
for 1, := low; to high; by step;
for 1, := low, to high, by step,
Stmts

- The iteration space is a convex polyhedron

in Z" bounded by the loop bounds.

* Each iteration is a node in the polyhedron

identified by its vector: p=(py, P2, - Pn)

Lexicographical Ordering

- Tterations are executed in
lexicographic order.

» for p=(ps., p2, --. P») and q=(qy, Gz, ... G,
if p>qiff for1<k<n,

vV 1<i<k, (p;=g;)andpy>qy
- For MM:

-(11D),(112),0113), ..,
(121),(12.2),01,.23), ..,

2.11),(2.1,2), (2.13), ..
- (1.2.0) >, (1,1,2), 2,1,1) >, (1,4,2), etc.

© 2005-9 Seth Copen Goldstein

Dependence Vectors

- Dependence vector in an n-nested loop is
denoted as a vector: d=(d;, d,, ..., d,).

* Each d; is a possibly infinite range of ints in
dimln,dimaxJ where
d™" e Z{~o3,d" e Z{od} andd™" <™

* S0, a single dep vector represents a set of
distance vectors.

- A distance vector defines a distance in the
iteration space.

A dependence vector is a distance vector if
each d; is a singleton.

15-745 © 2005-9 Seth Copen Goldstein

Other defs

+ Common ranges in dependence vectors
-[1,x]as +or>
- [-o,-1]as - or«
- [-©,»]as tor*

» A distance vector is the difference
between the target and source
iterations (for a dependent ref), e.g.,

d=TI,I,

© 2005-9 Seth Copen Goldstein

Examples

for I, :=1 to n
for 1,:=1 to n
for I;:=1 to n
CLI.. 03] += AL, 1,1 * B[, 15]

(0,1,0)

for 1,:=0 to 5
for 1,:=0 to 6
A[l,+1] :=1/3* (A[1,] + A[1, + 1] + A[I1,+ 2])

Iy

D={(0.1).(1,0).(1-1)}

o,

15-745 © 2005-9 Seth Copen Goldstein

Plausible Dependence vectors

» A dependence vector is plausible iff
it is lexicographically non-negative.

- All sequential programs have plausible
dependence vectors. Why?

* Plausible: (1,-1) it

Loop Transforms

* A loop transformation changes the
order in which iterations in the
iteration space are visited.

* For example, Loop Interchange

0.-1) for 1 :=0 to n
o | | - 3 —|— [3.1] [3,2%[3.3] P
|mp|au5|b|e (1,0) 10 body fogo:jy.—o to n
2 | [21] [22] [23] iloooo
00000
1 - [ib012] [13] 000000
000
IQW . g&igg 600000
i Q0 -5
1 2 3 23336 C-0-0-6-9
555555 © 2005-9 Seth Copen Goldstein i
Unimodular Transforms Interchange

* Interchange
permute nesting order

* Reversal

reverse order of iterations

- Skewing

scale iterations by an outer loop index

* Change order of loops
* For some permutationpof1..n

for 1, :=.. for 1,y 1=..

for 1, :=.. : for 1, :=..
for 1,:=.. for 1 -—
M -~

* When is this legal?

Transform and matrix notation

- If dependences are vectors in iter
space, then transforms can be
represented as matrix transforms

- E.g., for a 2-deep loop, interchange is:

T 01 0 1P| [Pz
Lo Lo

- Since, T is a linear transform, Td is
transformed dependence:

0 1d] [d,
1 0]ldy| |dy

555555

Reversal

* Reversal of ith loop reverses its

traversal, so it can be represented
as:

Reversal

* Reversal of ith loop reverses its
traversal, so it can be represented as:
Diagonal matrix with ith element = -1,

* For 2 deep loop, reversal of outermost

o [l

Skewing

» Skew loop I; by a factor f w.r.t. loop

I maps

+ Example for 2D

SR AN

Loop Skewing Example

for 1,:=0 t0 5 D={(0,1).(1,0).(1-1)}
for 1,:=0 to 6

A[l, + 1] 2= 1/3 * (A[1,] + A[1, + 1] + A[1, + 2])

Iy

ANANA

10
T=
I =

P

for 1,:=0 to 5
for 1,:=1, to 6+l
ALL,-1,+1] :=1/3 * (A[L,-1,1 + A[1,-1,+ 1] + A[1-1,+ 2])

D={(0,1).(1,1).(1,0)}

But...is the transform legal?

- Distance/direction vectors give a
partial order among points in the
iteration space

* A loop transform changes the order
in which 'points’ are visited

» The new visit order must respect
the dependence partial order!

555555

But...is the transform legal?

* Loop reversal ok?
* Loop interchange ok?

for i = 0 to N-1
for j = 0 to N-1
ALi+110] += ALIL]

But...is the transform legal?

* Loop reversal ok?
* Loop interchange ok?

00,000,000

i, 3
ALI+1T[H+1] += ALITLET o’o;o//o’d'o;o’o
S

o0
TR

But...is the transform legal?

« What other

visit order is Q\Q\Q\ Q\Q\O
legal here?
for 1 = 0 to TS
for j = 0 to N-2
ALJ+1] =
(A1 + A[OD+1] + AJ+2D)7/3;

But...is the transform legal?

« What other
visit order is
legal here?

for i =0 to TS
for j = 0 to N-2
A[i+1] =
(A1 + ALD+11 + ALI+21)/3;

555555

But...is the transform legal?

« Skewing...

998290000
/?MM/P/P???O/

P

But...is the transform legal?

- Skewing...now we
can block

But...is the transform legal?

- Skewing...now we can loop

interchange
PO 9P Q Q QG
03 A G O O\ O\D B
000\ 0 o\ o\d\d O
Q DO\0\0\O\O D &
cRONONOROR0 }»‘»L
DO OO O OO

Unimodular transformations

- Express loop transformation as a matrix

multiplication

+ Check if any dependence is violated by

555555

multiplying the distance vector by the matrix -
if the resulting vector is still lexicographically
positive, then the involved iterations are visited

in an order that respects the dependence.
Reversal Interchange Skew

o

Adjusting loop bounds

* Transformation on iteration space
must be reflected in code.

- Since unimodular transforms are all
linear, we can easily rewrite code

- Bounds
- indices

Goal of SRP

+ Use Skewing, Reversal, and

permutation to find a fully
permutable inner loop nest that
minimizes the accesses/iteration.

* Tile the inner loop to turn the reuse

into locality.

Fully Permutable

* Loops I; through I; are fully
permutable iff
- All dependence vectors are lex positive

- For each dependence vector d
* (dy, ..., diy) is lex positive or

SRP

» Identify loops that carry reuse
+ Identify loops that can be in the localized

vector space

* From this set, I:

- look at all subsets which can be made fully

risksj de=0 permutable inner loop nests
- and remaining loops are legal outermost loops
» Pick subset which minimizes accesses/iter
- Tile inner subset
Tiling

» Tiling a perfect fully permutable L, ... L,

- Aka blocking
- Aka strip-mine and interchange

* ForeachL,:1<k<m
- Assume has form: for (i=L, i<U; i+=S)
- Create controlling loop

for (ii=L; ii<V; ii+=(S*B))
- Rewrite original loop as

for (i=ii; ikMIN(i+B*S-S, U); i+=S)

