Outline

15-745
 Optimizing For Data Locality - 2

Seth Copen Goldstein
 Seth@cs.cmu.Edu

CMU

Based on "A Data Locality Optimizing Algorithm,

 Wolf \& Lam, PLDI '91
Loop Transformation Theory

- Iteration Space
- Dependence vectors
- Unimodular transformations
- Loop Transformations
- dependence vectors
- Transformations
- Unimodular transformations
- Tiling
- SRP

Loop Nests and the Iter space

- General form of tightly nested loop

$$
\text { for } I_{1}:=\text { low }_{1} \text { to } \text { high }_{1} \text { by } \text { step }_{1}
$$ for $I_{2}:=$ low $_{2}$ to high ${ }_{2}$ by step for $I_{i}:=\operatorname{low}_{i}$ to high $_{i}$ by step $_{i}$

for $I_{n}:=$ low $_{n}$ to high $_{n}$ by step ${ }_{n}$ Stmts

- The iteration space is a convex polyhedron in z^{n} bounded by the loop bounds.
- Each iteration is a node in the polyhedron identified by its vector: $p=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$

Lexicographical Ordering

- Iterations are executed in lexicographic order.
- for $p=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ and $q=\left(q_{1}, q_{2}, \ldots, q_{n}\right)$ if $p>_{k} q$ iff for $1 \leq k \leq n$,

$$
\forall 1 \leq i<k,\left(p_{i}=q_{i}\right) \text { and } p_{k}>q_{k}
$$

- For MM:
- (1,1,1), (1,1,2), (1,1,3), ..., $(1,2,1),(1,2,2),(1,2,3), \ldots$,
(2,1,1), (2,1,2), (2,1,3), ...
- $\left.(1,2,1)>_{2}(1,1,2),(2,1,1)\right\rangle_{1}(1,4,2)$, etc.

Other defs

- Common ranges in dependence vectors
$-[1, \infty]$ as + or >
$-[-\infty,-1]$ as - or <
- $[-\infty, \infty]$ as \pm or *
- A distance vector is the difference between the target and source iterations (for a dependent ref), e.g.,
$d=I_{t}-I_{s}$

Dependence Vectors

- Dependence vector in an n-nested loop is denoted as a vector: $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$.
- Each d_{i} is a possibly infinite range of ints in $\left[d_{i}^{\min }, d_{i}^{\max }\right]$, where

$$
d_{i}^{\min } \in Z \cup\{-\infty\}, d_{i}^{\max } \in Z \cup\{\infty\} \text { andd } d_{i}^{\min } \leq d_{i}^{\max }
$$

- So, a single dep vector represents a set of distance vectors.
- A distance vector defines a distance in the iteration space.
- A dependence vector is a distance vector if each d_{i} is a singleton.

15-745 © 2005-9 Seth Copen Goldstein

Examples

for $I_{1}:=1$ to n
for $I_{2}:=1$ to n
for $I_{3}:=1$ to $n \quad(0,1,0)$
$C\left[I_{1}, I_{3}\right]+=A\left[I_{1}, I_{2}\right] * B\left[I_{2}, I_{3}\right]$
for $I_{1}:=0$ to 5
for $I_{2}:=0$ to 6
$A\left[I_{2}+1\right]:=1 / 3 *\left(A\left[I_{2}\right]+A\left[I_{2}+1\right]+A\left[I_{2}+2\right]\right)$

Plausible Dependence vectors

- A dependence vector is plausible iff it is lexicographically non-negative.
- All sequential programs have plausible dependence vectors. Why?
- Plausible: $(1,-1)$
- implausible ($-1,0$)

15-745

Unimodular Transforms

- Interchange permute nesting order
- Reversal reverse order of iterations
- Skewing scale iterations by an outer loop index

Loop Transforms

- A loop transformation changes the order in which iterations in the iteration space are visited.
- For example, Loop Interchange

```
```

for i:=0 to n

```
```

for i:=0 to n
for j :=0 to m
for j :=0 to m
body
body
i
i
OOOO
OOOO
OOOOO
OOOOO
Q0000
Q0000
M00-0-0
M00-0-0
@-0-0
@-0-0
000-00m

```
        000-00m
```

5-745

```


\section*{Interchange}
- Change order of loops
- For some permutation \(p\) of 1 ... \(n\)
for \(I_{1}:=\ldots\)

- When is this legal?

\section*{Transform and matrix notation}
- If dependences are vectors in iter space, then transforms can be represented as matrix transforms
- E.g., for a 2-deep loop, interchange is:
\[
T=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
p_{1} \\
p_{2}
\end{array}\right]=\left[\begin{array}{l}
p_{2} \\
p_{1}
\end{array}\right]
\]
- Since, \(T\) is a linear transform, \(T d\) is transformed dependence:
\[
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
d_{1} \\
d_{2}
\end{array}\right]=\left[\begin{array}{l}
d_{2} \\
d_{1}
\end{array}\right]
\]

\section*{Reversal}
- Reversal of \(i^{\text {th }}\) loop reverses its traversal, so it can be represented as: Diagonal matrix with \(i^{\text {th }}\) element \(=-1\).
- For 2 deep loop, reversal of outermost is:
\[
T=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right] \quad\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
p_{1} \\
p_{2}
\end{array}\right]=\left[\begin{array}{c}
-p_{1} \\
p 2
\end{array}\right]
\]

\section*{Reversal}
- Reversal of \(i^{\text {th }}\) loop reverses its traversal, so it can be represented as:

\section*{Skewing}
- Skew loop \(I_{j}\) by a factor \(f\) w.r.t. loop \(I_{i}\) maps
\[
\left(p_{1}, \ldots, p_{i}, \ldots, p_{j}, \ldots\right) \quad\left(p_{1}, \ldots, p_{i}, \ldots, p_{j}+f p_{i}, \ldots\right)
\]
- Example for 2D
\[
T=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right] \quad\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{c}
p_{1} \\
p_{2}
\end{array}\right]=\left[\begin{array}{c}
p_{1} \\
p_{2}+p_{1}
\end{array}\right]
\]

Loop Skewing Example

for \(I_{1}:=0\) to 5 for \(I_{2}:=I_{1}\) to \(6+I_{1}\) \(A\left[I_{2}-I_{1}+1\right]:=1 / 3^{*}\left(A\left[I_{2}-I_{1}\right]+A\left[I_{2}-I_{1}+1\right]+A\left[I_{2}-I_{1}+2\right]\right)\)
\(D=\{(0,1),(1,1),(1,0)\}\)
15-745

But...is the transform legal?
- Loop reversal ok?
- Loop interchange ok?
for \(\mathrm{i}=0\) to \(\mathrm{N}-1\)
for \(j=0\) to \(\mathbf{N - 1}\)
A[i+1][j] += A[i][j];

But...is the transform legal?
- Distance/direction vectors give a partial order among points in the iteration space
- A loop transform changes the order in which 'points' are visited
- The new visit order must respect the dependence partial order!

15-745

But...is the transform legal?
- Loop reversal ok?
- Loop interchange ok?

\section*{for \(i=0\) to \(\mathrm{N}-1\)}
for \(\mathrm{j}=0\) to \(\mathrm{N}-1\)
\(A[i+1][j+1]+=A[i][j] ;\)

But...is the transform legal?
- What other visit order is legal here?
for \(i=0\) to TS
for \(j=0\) to \(N-2\)
\(A[j+1]=\)
\((A[j]+A[j+1]+A[j+2]) / 3 ;\)

But...is the transform legal?
- What other visit order is legal here?
for \(i=0\) to TS
for \(j=0\) to \(N-2\)
\(A[j+1]=\)
\((A[j]+A[j+1]+A[j+2]) / 3 ;\)

But...is the transform legal?
- Skewing...


But...is the transform legal?
- Skewing...now we can block



\section*{But...is the transform legal?}
- Skewing...now we can loop interchange


\section*{Unimodular transformations}
- Express loop transformation as a matrix multiplication
- Check if any dependence is violated by multiplying the distance vector by the matrix if the resulting vector is still lexicographically positive, then the involved iterations are visited in an order that respects the dependence.

Reversal
Interchange
skew
\(\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right) \quad\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \quad\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)\)
\({ }^{15-745}\)

\section*{Goal of SRP}
- Use Skewing, Reversal, and permutation to find a fully permutable inner loop nest that minimizes the accesses/iteration.
- Tile the inner loop to turn the reuse into locality.
- indices

\section*{Fully Permutable}
- Loops \(I_{i}\) through \(I_{j}\) are fully permutable iff
- All dependence vectors are lex positive
- For each dependence vector d
- \(\left(d_{1}, \ldots, d_{i-1}\right)\) is lex positive or
- \(\mathrm{i} \leq \mathrm{k} \leq \mathrm{j}, \mathrm{d}_{\mathrm{k}} \geq 0\)
- Identify loops that carry reuse
- Identify loops that can be in the localized vector space
- From this set, I:
- look at all subsets which can be made fully permutable inner loop nests
- and remaining loops are legal outermost loops
- Pick subset which minimizes accesses/iter
- Tile inner subset

\section*{Tiling}
- Tiling a perfect fully permutable \(L_{1} \ldots L_{m}\)
- Aka blocking
- Aka strip-mine and interchange
- Foreach \(L_{k}: 1 \leq k \leq m\)
- Assume has form: for ( \(i=L, i<U\); \(i+=S\) )
- Create controlling loop
for (ii=L; ii<U; ii+=(S*B))
- Rewrite original loop as
for ( \(\mathrm{i}=\mathrm{ii} ; \mathrm{i}\) <MIN( \(i+\mathrm{B}^{*} \mathrm{~S}-\mathrm{S}, \mathrm{U}\) ); \(\mathrm{i}+=\mathrm{S}\) )```

