
15-745
Optimizing For Data Locality - 2

Seth Copen Goldstein
Seth@cs.cmu.EduSeth@cs.cmu.Edu

CMU

Based on “A Data Locality Optimizing Algorithm,
Wolf & Lam PLDI ‘91

15-745 © 2005-9 Seth Copen Goldstein 1

Wolf & Lam, PLDI 91

Outline
• Loop Transformations

– dependence vectorsdependence vectors
– Transformations
– Unimodular transformations– Unimodular transformations

• Tiling
SRP• SRP

15-745 © 2005-9 Seth Copen Goldstein 2

Loop Transformation Theory
• Iteration Space
• Dependence vectors• Dependence vectors
• Unimodular transformations

15-745 © 2005-9 Seth Copen Goldstein 3

Loop Nests and the Iter space
• General form of tightly nested loop

for I := low to high by stepfor I1 := low1 to high1 by step1for I2 := low2 to high2 by step2…
for Ii := lowi to highi by stepio i : o i to g i by stepi…

for In := lown to highn by stepnStmts

• The iteration space is a convex polyhedron
in Zn bounded by the loop boundsin Z bounded by the loop bounds.

• Each iteration is a node in the polyhedron
identified by its vector: p=(p1, p2, …, pn)

15-745 © 2005-9 Seth Copen Goldstein 4

identified by its vector p (p1, p2, …, pn)

Lexicographical Ordering
• Iterations are executed in

lexicographic order.
• for p=(p1, p2, …, pn) and q=(q1, q2, …, qn)

if p k q iff for 1 ≤ k ≤ n,f p k q ff f ,

∀ 1 ≤ i < k, (pi = qi) and pk > qk

• For MM:
– (1,1,1), (1,1,2), (1,1,3), …,

(1 2 1) (1 2 2) (1 2 3) (1,2,1), (1,2,2), (1,2,3), …,
…,
(2,1,1), (2,1,2), (2,1,3), …

15-745 © 2005-9 Seth Copen Goldstein 5

(, ,), (, ,), (, ,),
– (1,2,1) 2 (1,1,2), (2,1,1) 1 (1,4,2), etc.

Dependence Vectors
• Dependence vector in an n-nested loop is

denoted as a vector: d=(d1, d2, …, dn).n

• Each di is a possibly infinite range of ints in
, where[]maxmin, ii dd

• So, a single dep vector represents a set of
 and}{},{ maxminmaxmin

iiii dddd ≤∞∪Ζ∈−∞∪Ζ∈

g p p
distance vectors.

• A distance vector defines a distance in the
iteration space.

• A dependence vector is a distance vector if
h d l

15-745 © 2005-9 Seth Copen Goldstein 6

each di is a singleton.

Other defs
• Common ranges in dependence vectors

– [1 ∞] as + or >[1, ∞] as + or >
– [- ∞, -1] as – or <
– [∞ ∞] as ± or *– [- ∞, ∞] as ± or

A dist n t is th diff n • A distance vector is the difference
between the target and source
it ti ns (f d p nd nt f) iterations (for a dependent ref), e.g.,

d = It-Is

15-745 © 2005-9 Seth Copen Goldstein 7

Examples

for I1 := 1 to n
for I2 := 1 to n (0 1 0)for I3 := 1 to n

C[I1,I3] += A[I1,I2] * B[I2,I3]
(0,1,0)

for I1 := 0 to 5
for I2 := 0 to 6

1 1/3 1 2A[I2 + 1] := 1/3 * (A[I2] + A[I2 + 1] + A[I2 + 2])
I1

D={(0,1),(1,0),(1-1)}

15-745 © 2005-9 Seth Copen Goldstein 8

I2

Plausible Dependence vectors
• A dependence vector is plausible iff

it is lexicographically non-negative.it is lexicographically non negative.
• All sequential programs have plausible

dependence vectors Why?dependence vectors. Why?
• Plausible: (1,-1)

l l ()
i

(0,-1)
i

(0,-1)

• implausible (-1,0)
(-1,0)

2

3

[2,1] [2,2] [2,3]

[3,1] [3,2] [3,3]
(1,-1) (-1,0)

2

3

[2,1] [2,2] [2,3]

[3,1] [3,2] [3,3]
(1,-1)

1 [1,1] [1,2] [1,3]
(0,1)

1 [1,1] [1,2] [1,3]
(0,1)

15-745 © 2005-9 Seth Copen Goldstein 9

1 2 3
j

1 2 3
j

Loop Transforms
• A loop transformation changes the

order in which iterations in the order in which iterations in the
iteration space are visited.

• For example Loop Interchange• For example, Loop Interchange
for i := 0 to n

0 for j := 0 to mfor j := 0 to m
body

for j : 0 to m
for i := 0 to n

bodyi jj

15-745 © 2005-9 Seth Copen Goldstein 10

j i

Unimodular Transforms
• Interchange

permute nesting orderpermute nesting order
• Reversal

reverse order of iterationsreverse order of iterations
• Skewing

s l it ti ns b n t l p ind xscale iterations by an outer loop index

15-745 © 2005-9 Seth Copen Goldstein 11

Interchange
• Change order of loops
• For some permutation p of 1 n• For some permutation p of 1 … n
for I1 := …

for I := for Ip(1) := …
ffor I2 := …

…
for In := …

body

for Ip(2) := …
…

for Ip(n) := …
body

• When is this legal?

body body

• When is this legal?

15-745 © 2005-9 Seth Copen Goldstein 12

Transform and matrix notation
• If dependences are vectors in iter

space, then transforms can be space, then transforms can be
represented as matrix transforms

• E g for a 2-deep loop interchange is:• E.g., for a 2-deep loop, interchange is:

⎥
⎤

⎢
⎡

=⎥
⎤

⎢
⎡

⎥
⎤

⎢
⎡ 2110 pp

⎥
⎤

⎢
⎡

=
10

T

• Since, T is a linear transform, Td is

⎥
⎦

⎢
⎣

⎥
⎦

⎢
⎣

⎥⎦⎢⎣ 1201 pp⎥⎦⎢⎣ 01
T

transformed dependence:
⎤⎡⎤⎡⎤⎡ 2110 dd

15-745 © 2005-9 Seth Copen Goldstein 13

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥⎦

⎤
⎢⎣

⎡

1

2

2

1

01
10

d
d

d
d

Reversal
• Reversal of ith loop reverses its

traversal, so it can be represented traversal, so it can be represented
as:

15-745 © 2005-9 Seth Copen Goldstein 14

Reversal
• Reversal of ith loop reverses its

traversal, so it can be represented as: traversal, so it can be represented as:
Diagonal matrix with ith element = -1.

• For 2 deep loop, reversal of outermost
is:is:

⎤⎡⎤⎡⎤⎡ 01 pp⎤⎡ 01
⎥⎦

⎤
⎢⎣

⎡−
=⎥

⎦

⎤
⎢
⎣

⎡
⎥⎦

⎤
⎢⎣

⎡−
210

01 1

2

1

p
p

p
p

⎥⎦

⎤
⎢⎣

⎡−
=

10
01

T

15-745 © 2005-9 Seth Copen Goldstein 15

Skewing
• Skew loop Ij by a factor f w.r.t. loop

Ii mapsIi maps

,...),...,,...,(1 ji ppp ,...),...,,...,(1 iji fpppp +

• Example for 2D

⎥
⎦

⎤
⎢
⎣

⎡
+

=⎥
⎦

⎤
⎢
⎣

⎡
⎥⎦

⎤
⎢⎣

⎡ 11

11
01

pp
p

p
p

⎥⎦

⎤
⎢⎣

⎡
=

11
01

T ⎥
⎦

⎢
⎣ +⎥

⎦
⎢
⎣⎥⎦⎢⎣ 12211 ppp⎥⎦⎢⎣ 11

15-745 © 2005-9 Seth Copen Goldstein 16

Loop Skewing Example
for I1 := 0 to 5
for I2 := 0 to 6

A[I2 + 1] := 1/3 * (A[I2] + A[I2 + 1] + A[I2 + 2])

D={(0,1),(1,0),(1-1)}

I1
I1

⎥⎦

⎤
⎢⎣

⎡
=

11
01

T

I2

for I1 := 0 to 5
I2

for I1 : 0 to 5
for I2 := I1 to 6+I1A[I2-I1+1] := 1/3 * (A[I2-I1] + A[I2-I1+ 1] + A[I2-I1+ 2])

15-745 © 2005-9 Seth Copen Goldstein 17

D={(0,1),(1,1),(1,0)}

But...is the transform legal?

• Distance/direction vectors give a Distance/direction vectors give a
partial order among points in the
iteration spaceiteration space

• A loop transform changes the order A loop transform changes the order
in which 'points' are visited

• The new visit order must respect
the dependence partial order!the dependence partial order!

15-745 18© 2005-9 Seth Copen Goldstein

But...is the transform legal?

• Loop reversal ok?Loop reversal ok?
• Loop interchange ok?

i

for i = 0 to N-1
for j = 0 to N-1

A[i+1][j] += A[i][j];

j

15-745 19© 2005-9 Seth Copen Goldstein

But...is the transform legal?

• Loop reversal ok?Loop reversal ok?
• Loop interchange ok?

i

for i = 0 to N-1
for j = 0 to N-1

A[i+1][j+1] += A[i][j];

j

15-745 20© 2005-9 Seth Copen Goldstein

But...is the transform legal?

i• What other
visit order is
legal here?

for i = 0 to TS
for j = 0 to N-2
A[j+1] =
([j] [j 1] [j 2])/3(A[j] + A[j+1] + A[j+2])/3;

j

15-745 21© 2005-9 Seth Copen Goldstein

But...is the transform legal?

i• What other
visit order is
legal here?

for i = 0 to TS
for j = 0 to N-2
A[j+1] =
(A[j] + A[j+1] + A[j+2])/3;j j j

jj

15-745 22© 2005-9 Seth Copen Goldstein

But...is the transform legal?

• Skewing...

15-745 23© 2005-9 Seth Copen Goldstein

But...is the transform legal?

• Skewing...now we
can block

15-745 24© 2005-9 Seth Copen Goldstein

But...is the transform legal?

• Skewing...now we can loop
interchange

15-745 25© 2005-9 Seth Copen Goldstein

Unimodular transformations

• Express loop transformation as a matrix
lti li timultiplication

• Check if any dependence is violated by
multipl in th dist nc v ct r b th m trix multiplying the distance vector by the matrix –
if the resulting vector is still lexicographically
positive then the involved iterations are visited positive, then the involved iterations are visited
in an order that respects the dependence.

Reversal Interchange Skew
1 0
0 -1

0 1
1 0

1 1
0 1

15-745 26© 2005-9 Seth Copen Goldstein

Adjusting loop bounds
• Transformation on iteration space

must be reflected in code.must be reflected in code.
• Since unimodular transforms are all

linear we can easily rewrite codelinear, we can easily rewrite code
• Bounds

d• indices

15-745 © 2005-9 Seth Copen Goldstein 27

Goal of SRP
• Use Skewing, Reversal, and

permutation to find a fully permutation to find a fully
permutable inner loop nest that
minimizes the accesses/iteration.minimizes the accesses/iteration.

• Tile the inner loop to turn the reuse
into localityinto locality.

15-745 © 2005-9 Seth Copen Goldstein 28

Fully Permutable
• Loops Ii through Ij are fully

permutable iffpermutable iff
– All dependence vectors are lex positive
– For each dependence vector dFor each dependence vector d

• (d1, …, di-1) is lex positive or
• i ≤ k ≤ j, dk ≥ 0 k j, dk 0

15-745 © 2005-9 Seth Copen Goldstein 29

SRP
• Identify loops that carry reuse
• Identify loops that can be in the localized • Identify loops that can be in the localized

vector space
F m this s t I:• From this set, I:
– look at all subsets which can be made fully

m t bl i l stspermutable inner loop nests
– and remaining loops are legal outermost loops
Pi k b hi h i i i /i• Pick subset which minimizes accesses/iter

• Tile inner subset

15-745 © 2005-9 Seth Copen Goldstein 30

Tiling
• Tiling a perfect fully permutable L1 … Lm

– Aka blockingAka blocking
– Aka strip-mine and interchange

• Foreach L : 1 ≤ k ≤ m• Foreach Lk : 1 ≤ k ≤ m
– Assume has form: for (i=L, i<U; i+=S)

C t t lli l– Create controlling loop
for (ii=L; ii<U; ii+=(S*B))

R it i in l l p s– Rewrite original loop as
for (i=ii; i<MIN(i+B*S-S, U); i+=S)

15-745 © 2005-9 Seth Copen Goldstein 31

