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Wolf & Lam, PLDI 91

Outline
• The Problem
• Loop Transformations• Loop Transformations

– dependence vectors
Tr nsf rm ti ns– Transformations

– Unimodular transformations
L li  A l i• Locality Analysis

• SRP
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The Issue
• Improve cache reuse in nested loops
• Canonical simple case: Matrix Multiply• Canonical simple case: Matrix Multiply

for I1 := 1 to n
for I2 := 1 to n

f 1 tfor I3 := 1 to n
C[I1,I3] += A[I1,I2] * B[I2,I3]

I3 I3I2+1I3 I2
I3I2+1

=I1

I2
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In next iteration of I2 previous data that 
could be reused has been replaced in cache.

Tiling solves problemfor I1 := 1 to nf I 1 tfor I2 := 1 to nfor I3 := 1 to nC[I1,I3] += A[I1,I2] * B[I2,I3]
for II := 1 to n by sfor II2 := 1 to n by s

for II3 := 1 to n by s
for I1 := 1 to n

for I2 := II2 to min(II2 + s - 1,n)o 2 : 2 to ( 2 s , )
for I3 := II3 to min(II3 + s - 1,n)

C[I1,I3] += A[I1,I2] * B[I2,I3];
I3 I2

I2+1 I3

=I
I2
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The Problem
• How to increase locality by transforming loop 

nest
• Matrix Mult is simple as it is both

– legal to tile
– advantageous to tile

• Can we determine the benefit?
(reuse vector space and locality vector space)

• Is it legal (and if so, how) to transform loop?
( i d l  f i )(unimodular transformations)
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Handy Representation: 
“Iteration Space”Iteration Space

0 1

i

for i = 0 to N-1
for j = 0 to N-1
A[i][j] = B[j][i];

• each position represents an iteration
j

• each position represents an iteration
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Visitation Order in Iteration 
SpaceSpace

0 1

i

for i = 0 to N-1
for j = 0 to N-1
A[i][j] = B[j][i];

• Note: iteration space is not data space

j

Note: iteration space is not data space
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When Do Cache Misses Occur?
for i = 0 to N-1
for j = 0 to N-1j
A[i][j] = B[j][i];

A B
i i

j j
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When Do Cache Misses Occur?
for i = 0 to N-1
for j = 0 to N-1j
A[i][j] = B[j][i];

A B

Hit
Miss

i i

j j
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When Do Cache Misses Occur?

i

for i = 0 to N-1
for j = 0 to N-1

A[i+j][0] = i*j;

jj
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When Do Cache Misses Occur?

i
Hit
Miss

for i = 0 to N-1
for j = 0 to N-1

A[i+j][0] = i*j;

jj
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Optimizing the Cache Behavior 
of Array Accessesof Array Accesses

• We need to answer the following 
questions:
– when do cache misses occur?

• use “locality analysis”
– can we change the order of the iterations 

(  l  d  l )  d   (or possibly data layout) to produce better 
behavior?

l t  th  t f i  lt ti• evaluate the cost of various alternatives
– does the new ordering/layout still produce 

correct results?correct results?
• use “dependence analysis”
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Examples of Loop 
TransformationsTransformations

• Loop Interchange
Can improve locality

• Cache Blocking
• Skewing

Can improve locality

Skewing
• Loop Reversal Can enable above

• …

(we will briefly discuss the first two)
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Loop Interchange

for i = 0 to N-1 for j = 0 to N-1for i = 0 to N-1
for j = 0 to N-1

A[j][i] = i*j;

for j = 0 to N-1
for i = 0 to N-1

A[j][i] = i*j;
i j Hit

Miss

• (assuming N is large relative to cache size)
j i

(assuming N is large relative to cache size)
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Impact on Visitation Order 
in Iteration Spacein Iteration Space

for i = 0 to N-1 for JJ = 0 to N-1 by B
for i = 0 to N-1for j = 0 to N-1

f(A[i],A[j]);
for i  0 to N 1

for j = JJ to max(N-1,JJ+B-1) 
f(A[i],A[j]);

i i

j j
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Cache Blocking (aka “Tiling”)

for i = 0 to N-1
f j 0 t N 1

for JJ = 0 to N-1 by B
for i = 0 to N-1for j = 0 to N-1

f(A[i],A[j]); for j = JJ to max(N-1,JJ+B-1)
f(A[i],A[j]);

ii
A[i] A[j]

ii
A[i] A[j]

now we can exploit locality

jjjj
now we can exploit locality
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Cache Blocking (aka “Tiling”)

for i = 0 to N-1
f j 0 t N 1

for JJ = 0 to N-1 by B
for i = 0 to N-1for j = 0 to N-1

f(A[i],A[j]); for j = JJ to max(N-1,JJ+B-1)
f(A[i],A[j]);

ii
A[i] A[j]

ii
A[i] A[j]

now we can exploit temporal locality

jjjj

now we can exploit temporal locality
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Cache Blocking in Two 
DimensionsDimensions

for i = 0 to N-1
for j = 0 to N-1

for JJ = 0 to N-1 by B
for KK = 0 to N-1 by B

for i = 0 to N-1
f j JJ t (N 1 JJ B 1)for k = 0 to N-1

c[i,k] += a[i,j]*b[j,k];
for j = JJ to max(N-1,JJ+B-1)

for k = KK to max(N-1,KK+B-1)
c[i,k] += a[i,j]*b[j,k];

• brings square sub-blocks of matrix “b” into g q
the cache

• completely uses them up before moving on
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Predicting Cache Behavior 
through “Locality Analysis”through Locality Analysis

• Definitions:
R– Reuse:
accessing a location that has been accessed in the 
pastp

– Locality:
accessing a location that is now found in the cache

• Key Insights
– Locality only occurs when there is reuse!

BUT   d  t il  lt i  l lit– BUT, reuse does not necessarily result in locality.
– Why not?
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Steps in Locality Analysis

1. Find data reuse
– if caches were infinitely large, we would be 

finished
2. Determine “localized iteration space”

– set of inner loops where the data accessed p
by an iteration is expected to fit within 
the cache

3. Find data locality:
– reuse ⊇ localized iteration space ⊇ localityp y
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Types of Data Reuse/Locality

for i = 0 to 2for i = 0 to 2
for j = 0 to 100

A[i][j] = B[j][0] + B[j+1][0];
Hit
Miss

i
A[i][j]

i
B[j][0]

i
B[j+1][0]

j j j

Spatial Temporal Group
(temporal)
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Kinds of reuse and the factor

for i = 0 to N-1
for j = 0 to N-1

What kinds of reuse 
are there?
A[i]?for j  0 to N 1

f(A[i],A[j]); A[i]?

A[j]?
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Kinds of reuse and the factor

for I1 := 0 to 5for I2 := 0 to 62A[I2 + 1] = 1/3 * (A[I2]+ A[I2 + 1] + A[I2 + 2])
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Kinds of reuse and the factor

for I1 := 0 to 5for I2 := 0 to 62A[I2 + 1] = 1/3 * (A[I2]+ A[I2 + 1] + A[I2 + 2])

self-temporal in 1, self-spatial in 2
Also, group spatial in 2
What is different about this and previous?

for i = 0 to N-1
for j = 0 to N-1

f(A[i],A[j]);
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Uniformly Generated references
• f and g are indexing functions: Zn Zd

– n is depth of loop nestn is depth of loop nest
– d is dimensions of array, A

• Two references A[f(i)] and A[g(i)] are • Two references A[f(i)] and A[g(i)] are 
uniformly generated if

f(i) = Hi + cf AND g(i)=Hi+cg

• H is a linear transform
d  t t t• cf and cg are constant vectors
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Eg of Uniformly generated sets
h  f  ll l   h   

for I1 := 0 to 5for I2 := 0 to 6
These references all belong to the same 

uniformly generated set: H = [ 0 1]
2A[I2 + 1] = 1/3 * (A[I2]+ A[I2 + 1] + A[I2 + 2])

A[I + 1] [ 0 1 ] + [ 1 ]I1A[I2 + 1] [ 0 1 ]      + [ 1 ]1I2

A[I2] [ 0 1 ]      + [ 0 ]I1I2

A[I + 2] [ 0 1 ] + [ 2 ]I1
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A[I2 + 2] [ 0 1 ]      + [ 2 ]I2

Quantifying Reuse
• Why should we quantify reuse?
• How do we quantify locality?• How do we quantify locality?
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Quantifying Reuse
• Why should we quantify reuse?
• How do we quantify locality?• How do we quantify locality?

    f  l  h • Use vector spaces to identify loops with 
reuse

• We convert that reuse into locality by 
making the “best” loop the inner loopg p p

• Metric: memory accesses/iter of 
innermost loop. No locality mem accessinnermost loop. No locality mem access
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Self-Temporal
• For a reference, A[Hi+c], there is 

self-temporal reuse between m and nself temporal reuse between m and n
when Hm+c=Hn+c, i.e., H(r)=0, where 
r=m-n.r m n.

• The direction of reuse is r.
Th  s lf t mp l s  t  sp  • The self-temporal reuse vector space 
is: RST = Ker H

h   l l  f   h  • There is locality if RST is in the 
localized vector space.

R ll h  f  i  
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Recall that for nxm matrix A,
the ker A = nullspace(A) = {xm|Ax = 0} 

• Reuse is sdim(Rst)

• R insersect L = locality• RST insersect L = locality
• # of mem refs = 1/above
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Example of self-temporal reuse
for I1 := 1 to n

for I2 := 1 to n
for I3 := 1 to n

Access H ker H reuse? Local?

for I3 : 1 to n
C[I1,I3] += A[I1,I2] * B[I2,I3]

cc H r H r u ? L ca ?
C[I1,I3] 1 0 0 span{(0,1,0)} n in I2

0 0 10 0 1
A[I1,I2] 1 0 0 span{(0,0,1)}

0 1 00 1 0
B[I2,I3] 0 1 0 span{(1,0,0)}

0 0 1
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Self-Spatial
• Occurs when we access in order

– A[i j]: best gain  lA[i,j]: best gain, l
– A[i,j*k]: best gain, l/k if |k| <= l

• How do we get spatial reuse for UG: H?• How do we get spatial reuse for UG: H?
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Self-Spatial
• Occurs when we access in order

– A[i j]: best gain  lA[i,j]: best gain, l
– A[i,j*k]: best gain, l/k if |k| <= l

• How do we get spatial reuse for UG: H?• How do we get spatial reuse for UG: H?
• Since all but row must be identical, set 

l t  i  H t  0  Hlast row in H to 0, Hs
self-spatial reuse vector space = RSS

R  k  HRSS = ker HS

• Notice, ker H ⊆ ker Hs

• If, Rss ∩L = RST ∩L, then no additional 
benefit to SS15-745 © 2005-9 Seth Copen Goldstein 33

Example of self-spatial reuse
for I1 := 1 to n

for I2 := 1 to n
for I3 := 1 to n

Access Hs ker Hs reuse? Local?

for I3 : 1 to n
C[I1,I3] += A[I1,I2] * B[I2,I3]

cc Hs r Hs r u ? L ca ?
C[I1,I3] 1 0 0 span{(0,1,0), 1/l

0 0 0 (0 0 1)}0 0 0 (0,0,1)}
A[I1,I2] 1 0 0 span{(0,0,1),

0 0 0 (0 1 0)}0 0 0 (0,1,0)}
B[I2,I3] 0 1 0 span{(1,0,0),

0 0 0 (0,0,1)}
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Self-spatial reuse/locality
• Dim(RSS) is dimensionality of reuse 

vector space.vector space.
• If RSS=0 no reuse

If R R  xt  s  f m s ti l• If RSS=RST no extra reuse from spatial
• Reuse of each element is k/lsdim(R_SS)

h     f   dwhere, s is number of iters per dim.
• RSS∩L is amount of reuse exploited, SS p

therefore number of memory 
references generated is:g

k/lsdim(R_ST∩L)
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Group Temporal
• Two refs A[Hi+c] and A[Hi+d] can have 

group temporal reuse in L iffgroup temporal reuse in L iff
– they are from same uniformly generated 

setset
– There is an r ∈ L s.t. Hr = c – d

• if c-d = r  then there is group temporal if c-d = rp, then there is group temporal 
reuse, RGT = ker H+span{rp}
However  there is no extra benefit if • However, there is no extra benefit if 
RGT ∩ L = RST ∩ L
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Example:
For i = 1 to n
for j=i to n
A[i,j] = 0.2*(A[i,j]+A[i+1,j]+

A[i-1,j]+A[i,j+1]+A[i,j-1])

If L = span{j}, since ker H = ∅:
A[i j] and A[i j-1] (0 0)-(0 -1) ∈span{(0 1)} yesA[i,j] and A[i,j 1] (0,0) (0, 1) ∈span{(0,1)} yes
A[i,j-1] and A[i+1,j] (0,-1)-(1,0) ∉span{(0,1)} no

Notice equivalence classes
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Evaluating group temporal reuse
• Divide all references from a 

uniformly generated set into equiv uniformly generated set into equiv 
classes that satisfy the RGT

• For a particular L and g references• For a particular L and g references
– Don’t count any group reuse when

R ∩ L = R ∩ LRGT ∩ L = RST ∩ L
– number of equiv classes is gT.

Number of mem references is g instead – Number of mem references is gT instead 
of g
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Total memory accesses
• For each uniformly generated set

localized space, Llocalized space, L
line size, z

gS+(gT – gS)/z
zesdim(R_SS ∩ L)z s

where e =    0 if RST ∩ L = RSS ∩ LST SS
1 otherwise
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Now what?
• We have a way to characterize

– Reuse (potential for locality)Reuse (potential for locality)
– Local iteration space

• Can we transform loop to take • Can we transform loop to take 
advantage of reuse?
If   ?• If so, can we?

15-745 © 2005-9 Seth Copen Goldstein 40



Loop Transformation Theory
• Iteration Space
• Dependence vectors• Dependence vectors
• Unimodular transformations
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Loop Nests and the Iter space
• General form of tightly nested loop

for I := low to high by stepfor I1 := low1 to high1 by step1for I2 := low2 to high2 by step2…
for Ii := lowi to highi by stepio i : o i to g i by stepi…

for In := lown to highn by stepnStmts

• The iteration space is a convex polyhedron 
in Zn bounded by the loop boundsin Z bounded by the loop bounds.

• Each iteration is a node in the polyhedron 
identified by its vector: p=(p1, p2, …, pn)
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identified by its vector  p (p1, p2, …, pn)

Lexicographical Ordering
• Iterations are executed in 

lexicographic order.
• for p=(p1, p2, …, pn) and q=(q1, q2, …, qn)

if  p k q iff for 1 ≤ k ≤ n,f p k q ff f ,

∀ 1 ≤ i < k, (pi = qi) and pk > qk

• For MM:
– (1,1,1), (1,1,2), (1,1,3), …,

(1 2 1)  (1 2 2)  (1 2 3)  (1,2,1), (1,2,2), (1,2,3), …,
…,
(2,1,1), (2,1,2), (2,1,3), …

15-745 © 2005-9 Seth Copen Goldstein 43

( , , ), ( , , ), ( , , ),
– (1,2,1) 2 (1,1,2), (2,1,1) 1 (1,4,2), etc.

Iteration Space
Every iteration generates a point in an 
n-dimensional space, where n is the 
depth of the loop nest.

f (i 0 i< i++) { 4for (i=0; i<n; i++) {

}}
for (i=0; i<n; i++) 

3
2

for (j=0; j<4; j++) {

}
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}



Dependence Vectors
• Dependence vector in an n-nested loop is 

denoted as a vector: d=(d1, d2, …, dn).n

• Each di is a possibly infinite range of ints in        
, where[ ]maxmin, ii dd

• So, a single dep vector represents a set of 
  and}{},{ maxminmaxmin

iiii dddd ≤∞∪Ζ∈−∞∪Ζ∈

g p p
distance vectors.

• A distance vector defines a distance in the 
iteration space.

• A dependence vector is a distance vector if 
h d   l
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each di is a singleton.

Other defs
• Common ranges in dependence vectors

– [1  ∞] as + or >[1, ∞] as + or >
– [- ∞, -1] as – or <
– [ ∞  ∞] as  ± or *– [- ∞, ∞] as  ± or 

A dist n  t  is th  diff n  • A distance vector is the difference 
between the target and source 
it ti ns (f   d p nd nt f)   iterations (for a dependent ref), e.g., 

d = It-Is
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Examples

for I1 := 1 to n
for I2 := 1 to n (0 1 0)for I3 := 1 to n

C[I1,I3] += A[I1,I2] * B[I2,I3]
(0,1,0)

for I1 := 0 to 5
for I2 := 0 to 6

1 1/3 1 2A[I2 + 1] := 1/3 * (A[I2] + A[I2 + 1] + A[I2 + 2])
I1

D={(0,1),(1,0),(1-1)}
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I2

Plausible Dependence vectors
• A dependence vector is plausible iff 

it is lexicographically non-negative.it is lexicographically non negative.
• All sequential programs have plausible 

dependence vectors   Why?dependence vectors.  Why?
• Plausible: (1,-1)

l l  ( )
i

(0,-1)
i

(0,-1)

• implausible (-1,0)
(-1,0)

2

3

[2,1] [2,2] [2,3]

[3,1] [3,2] [3,3]
(1,-1) (-1,0)

2

3

[2,1] [2,2] [2,3]

[3,1] [3,2] [3,3]
(1,-1)

1 [1,1] [1,2] [1,3]
(0,1)

1 [1,1] [1,2] [1,3]
(0,1)
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1 2 3
j

1 2 3
j



Loop Transforms
• A loop transformation changes the 

order in which iterations in the order in which iterations in the 
iteration space are visited.

• For example  Loop Interchange• For example, Loop Interchange
for i := 0 to n

0 for j := 0 to mfor j := 0 to m
body

for j : 0 to m
for i := 0 to n

bodyi jj
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j i

Unimodular Transforms
• Interchange

permute nesting orderpermute nesting order
• Reversal

reverse order of iterationsreverse order of iterations
• Skewing

s l  it ti ns b  n t  l p ind xscale iterations by an outer loop index
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Interchange
• Change order of loops
• For some permutation p of 1  n• For some permutation p of 1 … n
for I1 := …

for I := for Ip(1) := …
ffor I2 := …

…
for In := …

body

for Ip(2) := …
…

for Ip(n) := …
body

• When is this legal?

body body

• When is this legal?
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Transform and matrix notation
• If dependences are vectors in iter 

space, then transforms can be space, then transforms can be 
represented as matrix transforms

• E g  for a 2-deep loop  interchange is:• E.g., for a 2-deep loop, interchange is:

⎥
⎤

⎢
⎡

=⎥
⎤

⎢
⎡

⎥
⎤

⎢
⎡ 2110 pp

⎥
⎤

⎢
⎡

=
10

T

• Since, T is a linear transform, Td is 

⎥
⎦

⎢
⎣

⎥
⎦

⎢
⎣⎥⎦⎢⎣ 1201 pp⎥⎦⎢⎣ 01

T

transformed dependence:
⎤⎡⎤⎡⎤⎡ 2110 dd
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⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥⎦

⎤
⎢⎣

⎡

1

2

2

1

01
10

d
d

d
d



Reversal
• Reversal of ith loop reverses its 

traversal, so it can be represented traversal, so it can be represented 
as:
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Reversal
• Reversal of ith loop reverses its 

traversal, so it can be represented as: traversal, so it can be represented as: 
Diagonal matrix with ith element = -1.

• For 2 deep loop, reversal of outermost 
is:is:

⎤⎡⎤⎡⎤⎡ 01 pp⎤⎡ 01
⎥⎦

⎤
⎢⎣

⎡−
=⎥

⎦

⎤
⎢
⎣

⎡
⎥⎦

⎤
⎢⎣

⎡−
210

01 1

2

1

p
p

p
p

⎥⎦

⎤
⎢⎣

⎡−
=

10
01

T
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Skewing
• Skew loop Ij by a factor f w.r.t. loop 

Ii mapsIi maps

,...),...,,...,( 1 ji ppp ,...),...,,...,( 1 iji fpppp +

• Example for 2D

⎥
⎦

⎤
⎢
⎣

⎡
+

=⎥
⎦

⎤
⎢
⎣

⎡
⎥⎦

⎤
⎢⎣

⎡ 11

11
01

pp
p

p
p

⎥⎦

⎤
⎢⎣

⎡
=

11
01

T ⎥
⎦

⎢
⎣ +⎥

⎦
⎢
⎣⎥⎦⎢⎣ 12211 ppp⎥⎦⎢⎣ 11
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Loop Skewing Example
for I1 := 0 to 5
for I2 := 0 to 6

A[I2 + 1] := 1/3 * (A[I2] + A[I2 + 1] + A[I2 + 2])

D={(0,1),(1,0),(1-1)}

I1
I1

⎥⎦

⎤
⎢⎣

⎡
=

11
01

T

I2

for I1 := 0 to 5
I2

for I1 : 0 to 5
for I2 := I1 to 6+I1A[I2-I1+1] := 1/3 * (A[I2-I1] + A[I2-I1+ 1] + A[I2-I1+ 2])

15-745 © 2005-9 Seth Copen Goldstein 56

D={(0,1),(1,1),(1,0)}



But...is the transform legal?

• Distance/direction vectors Distance/direction vectors 
give a partial order among 
points in the iteration spacepoints in the iteration space

• A loop transform changes A loop transform changes 
the order in which 'points' 
are visitedare visited

The new visit order must • The new visit order must 
respect the dependence 
partial order!15-745 57© 2005-9 Seth Copen Goldstein

But...is the transform legal?

• Loop reversal ok?Loop reversal ok?
• Loop interchange ok?

i

for i = 0 to N-1
for j = 0 to N-1

A[i+1][j] += A[i][j];

j
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But...is the transform legal?

• Loop reversal ok?Loop reversal ok?
• Loop interchange ok?

i

for i = 0 to N-1
for j = 0 to N-1

A[i+1][j+1] += A[i][j];

j
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But...is the transform legal?

i• What other 
visit order is 
legal here?

for i = 0 to TS
for j = 0 to N-2

A[j+1] =
( [j] [j 1] [j 2])/3(A[j] + A[j+1] + A[j+2])/3;

j
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But...is the transform legal?

i• What other 
visit order is 
legal here?

for i = 0 to TS
for j = 0 to N-2

A[j+1] =
(A[j] + A[j+1] + A[j+2])/3;j j j

jj
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But...is the transform legal?

• Skewing...

15-745 62© 2005-9 Seth Copen Goldstein

But...is the transform legal?

• Skewing...now we 
can block
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But...is the transform legal?

• Skewing...now we can loop 
interchange

15-745 64© 2005-9 Seth Copen Goldstein



Unimodular transformations

• Express loop transformation as a matrix 
lti li timultiplication

• Check if any dependence is violated by 
multipl in  th  dist nc  v ct r b  th  m trix multiplying the distance vector by the matrix –
if the resulting vector is still lexicographically 
positive  then the involved iterations are visited positive, then the involved iterations are visited 
in an order that respects the dependence. 

Reversal Interchange Skew
1   0
0   -1

0    1
1    0

1    1
0    1

“A Data Locality Optimizing Algorithm”, M.E.Wolf and M.Lam
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Next Time
• Putting it all together: SRP
• Other loop transformations for • Other loop transformations for 

locality
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Linear Algebra
• Vector Spaces
• Linear Combinations• Linear Combinations
• dimensions
• Spans
• Kernels
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Vector Spaces
• n is a point in n-space
• V = { v  v   v } is a finite set of n-• V = { v1, v2, …, vm} is a finite set of n-

vectors over m ℜn.
Li  mbi ti  f t s f V is• Linear combination of vectors of V is
a vector x as defined by

x       x =  α1v1 + α2v2 + … + αmvm
where αi are real numbers.

  l l  d d  f  • V is linearly dependent if a 
combination results in the 0 vector, 

h    l l  d d
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otherwise it is linearly independent.



Dim and Basis
• dimensionality of V is dim(V)

the number of independent vectors in Vthe number of independent vectors in V
• A basis for an m-dimensional vector 

space is a set of linearly independent space is a set of linearly independent 
vectors such that every point in V can be 
expressed as a linear comb of the expressed as a linear comb of the 
vectors in the basis.

The vectors in the basis are called basis – The vectors in the basis are called basis 
vectors
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Subspaces and span
• Let V be a set of vectors
• The subspace spanned by V  span(V)  • The subspace spanned by V, span(V), 

is a subset of ℜn such that
V  span(V)– V  ⊆ span(V)

– x,y ∈ span(V) ⇒ x+y ∈ span(V)
 (V) d ℜ (V)– x ∈ span(V) and α ∈ ℜ ⇒ α x ∈ span(V)
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Range, Span, Kernel
• A matrix A can be viewed as a set of 

column vectors.column vectors.
• Range Anxm is {Ax|x ∈ ℜm}

s (A)  R  Anxm• span(A) = Range Anxm

• nullspace(A) = ker(A) = ker(Anxm) =
{ | }{xm|Ax ∈ 0}

• rank(A) = dim(span(A))( ) ( p ( ))
• nullity(A) = dim(ker(A))
• rank(A)+nullity(A) = n  for Anxm
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rank(A)+nullity(A) = n, for A m


