15-745

15-745
Optimizing For Data Locality - 1

Seth Copen Goldstein
Seth@cs.cmu.Edu

CMU

Based on "A Data Locality Optimizing Algorithm,
Wolf & Lam, PLDI '91

© 2005-9 Seth Copen Goldstein

Outline

The Problem

* Loop Transformations

- dependence vectors

- Transformations

- Unimodular transformations
* Locality Analysis
SRP

15-745 © 2005-9 Seth Copen Goldstein

15-745

The Issue

- Improve cache reuse in nested loops
- Canonical simple case: Matrix Multiply

for I, :=1 to n
for I,:=1 to n
for I;:=1 to n
CLI.. 151 += AL, 1,1 * B[, 151

1, 1,+1 1,

— P —

© 2005-9 Seth Copen Goldstein

wor 1.1 w2 Viling solves problem

for 1,:=1 to n
for I;:=1 to n
CLI.. 11 +=ALl, 11 * B[LI,, 151

for Il,:=1 to n by s
for 11;:=1 to n by s
for I, :=1 to n
for I, :=11, to min(1l,+s-1,n)
for 1;:=11; to min(Il;+s-1,n)
CLI,, 151 += ALy, 15] * B[1,, 151

1, 1,+1 1,
f \ 1, —
P N

I = [l |

15-745 © 2005-9 Seth Copen Goldstein

The Problem

+ How to increase locality by tfransforming loop
nest

Matrix Mult is simple as it is both

- legal to tile

- advantageous Yo tile

+ Can we defermine the benefit?

(reuse vector space and locality vector space)
Is it legal (and if so, how) o transform loop?
(unimodular transformations)

15-745 © 2005-9 Seth Copen Goldstein

Handy Representation:
“Tteration Space”

000000000000
000000000000

for i = 0 to N-1 000000000000
for j = 0 to N-1 000000000000
... 000000000000
ALIION = BOIL: 5 5565060000000
000000000000
000000000000
000000000000
000000000000

- each position represents an iteration

15-745 © 2005-9 Seth Copen Goldstein

i

Visitation Order in Iteration
Space

When Do Cache Misses Occur?

for 1 = 0 to N-1
for j = 0 to N-1

-0 -89

C-6=0-60-00 06T ©9©

for i = 0 to N-1 -C=L0- 60679
_ e=60-6 S 25 —6

for j = 0 to N-1 e S0 60-0-CTC=S9

oo I -0 80 TTSE9
ALI10O] = 8O —

L0886 TTS89

-2 000 TTSO

=0 00679

L0 TT89

-0 0cTTSO

Note: iteration space is not data space

15-745 © 2005-9 Seth Copen Goldstein

15-745

ALi101 = BOILIL:

>
|

00000000
00000000
00000000
00000000
00000000
00000000
00000000

_00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

_00000000

© 2005-9 Seth Copen Goldstein

When Do Cache Misses Occur?

for 1 = 0 to N-1
for j = 0 to N-1
ALi101 = BOIL]: O Hit
@ Miss
A B
'"eoeoeoeo 'eooo0o0o0o0o0o0
Q0000000 o0000000
Q0000000 oe000000
Q0000000 o0o000000
Q0000000 eo0000000
Q0000000 oe000000
Q0000000 o0o000000
Q00000080 oc0000000
i J

15-745 © 2005-9 Seth Copen Goldstein 9

When Do Cache Misses Occur?

for i = 0 to N-1
for j = 0 to N-1
ALi+J][0] = i*j;

00000000
00000000
00000000
00000000
00000000
00000000
00000000

_00000000

15-745 © 2005-9 Seth Copen Goldstein 10

When Do Cache Misses Occur?

O Hit

'eoeo0o0o0o0o0o © Miss
_ Q0000000
for 1 = 0 to N-1 00000000
for j = 0 to N-1 00000000
ALi+5100]1 = i*j; 00000000
00000000
Q0000000
00000000
]

15-745 © 2005-9 Seth Copen Goldstein 1

Optimizing the Cache Behavior
of Array Accesses

- We need to answer the following
questions:

- when do cache misses occur?

« use "locality analysis”

- can we change the order of the iterations
(or possibly data layout) to produce better
behavior?

+ evaluate the cost of various alternatives

- does the new ordering/layout still produce
correct results?

- use “dependence analysis"”

15-745 © 2005-9 Seth Copen Goldstein 12

Examples of Loop
Transformations

Loop Interchange

Loop Interchange

. - Can improve localit for i = 0 to N-1 for j = 0 to N-1
« Cache Blockmg P Y for j = 0 to N, for i = 0 to N-1
. = AOLI] = i*j; AOIILIT = %53
- Skewing
- "eoo0o0o0o0oo Jeoeoeoeo O Hit

* Loop Reversal Can enable above 00000000 00000000 [Oniss

| eeo0o00000 NN NoX NoX ¥o)

. eeoo0o00000 [JoX NoX NoX ¥o)
eoo0o00000 [JoX NoX NoX ¥ol
eeo0o00000 [JoX NoX NoX ¥ol
eeoo0o00000 [Yo NoX NoX ¥o)
eo0o0o00000 000000

J 1

* (assuming N is large relative to cache size)

15-745 © 2005-9 Seth Copen Goldstein 13 15-745 © 2005-9 Seth Copen Goldstein 14

Impact on Visitation Order Cache Blocking (aka "Tiling")
in Iteration Space

for i = 0 to N-1 for JJ = 0 to N-1 by B for i = 0 to N-1 for JJ = 0 to N-1 by B
for 1 = 0 to N.T— for|?0to N-1 for j = 0 to N-1 f0r|_=0to N-1
J) } for j = JJ to max(N-1,JJ+B-1) FALTALD: for j = JJ to max(N-1,JJ+B-1)
FALL.AOD:; FALIT.ALID; ’ ’ FALIL.AOD:
ottt acacacaataad c.-:‘:*:c:‘:d } ﬂl]. } ﬂl]. g_ ﬂl]. } ﬂl].
G-8-0-0-60-6-0- 60569 G<Q0°9 667 6Q OO 100000000 100000000 (100000000 100000000
G-60=0-0-6-0-0-6-6-© R—O-0¢C G=6-60| @60 00000000 00000000 : OO0OOOOOOO 00000000
oo S -l)y 00000000 00000000 00000000 00000000
G202 8<% P00 GO0 L0 00000000 00000000 00000000 00000000
-0 000 0TTeo C<00-0| GO0V |00 00000000 Q0000000 00000000 00000000
G-60-0-0-0-0-0-C-006-9 GO0 06009 |0 00000000 00000000 00000000 00000000
G-6-0-0-6-0-0-O-T-—6-6 . e | - 00000000 ©00O0O0O0O0OOO 00000000 00000OOOO
o 7 O<RQ 70|00 IBR O 00000000 00000000 00000000 00000000
G=-6=0=-0-0-0-0-0-0-"6-© E=-60-0 |G=6-60 66O j j J J
G- 000 0TT©9o <0 |0 OO :
0-6-6-6-6-6665T00 0-6-3°0 0-05° -0 _ now we can exploit locality

15-745 © 2005-9 Seth Copen Goldstein 15 15-745 © 2005-9 Seth Copen Goldstein 16

Cache Blocking (aka "Tiling")

for JJ = 0 to N-1 by B

for i = 0 to N-1)
for J = 0 to N1 fo;o: i : jg :;1max(N 1,33+B-1)
- - J - - > -
f(A[1],A : _ _
@r-AoD FALTAGD:

A|I| A|!| A|i| A|!|
i00000000 Te000000EO :1666CG0000 166600000
00000000 ©0000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 ©0000000 : 00000000 00000000
00000000 ©0000000 66600000 066060000
Q0000000 Q0000000 ©®@00 O:O [oXe N} 000 O:O 00O
00000000 Q0000000 : 00000000 00000000
00000000+ 00000000 : 00000000 ©0000000
J J] J

now we can exploit temporal locality

15-745 © 2005-9 Seth Copen Goldstein

Cache Blocking in Two
Dimensions

for JJ = 0 to N-1 by B
for KK = 0 to N-1 by B
for i = 0 to N-1
for j = JJ to max(N-1,3J+B-1)
for k = KK to max(N-1,KK+B-1)
cli.k] += a[i,j]1*bl.k];

for 1 = 0 to N-1
for j = 0 to N-1
for k = 0 to N-1
cli.k] += a[i,j1*b[i.K1;

* brings square sub-blocks of matrix "b" into
the cache

- completely uses them up before moving on

15-745 © 2005-9 Seth Copen Goldstein 18

Predicting Cache Behavior
through "Locality Analysis”

* Definitions:
- Reuse:

accessing a location that has been accessed in the
past

- Locality:
accessing a location that is now found in the cache
* Key Insights
- Locality only occurs when there is reuse!

- BUT, reuse does not necessarily result in locality.
- Why not?

15-745 © 2005-9 Seth Copen Goldstein

Steps in Locality Analysis

1. Find data reuse

- if caches were infinitely large, we would be
finished

2. Determine "localized iteration space”

- set of inner loops where the data accessed
by an iteration is expected to fit within
the cache

3. Find data locality:

- reuse D localized iteration space o locality

15-745 © 2005-9 Seth Copen Goldstein 20

Types of Data Reuse/Locality

for 1 =0 to 2
for j = 0 to 100 O Hit
ALi1Li1 = BLi1[O1 + BLi+11[01; @ Miss
AL BLi1L0] B +11[0]
'eoeoeoeo 'oooooooo '"oooooooo
©@0@e0@0@O0 00000000 00000000
000000 0000000 @0 000000
j j i
Spatial Temporal Group
(temporal)

15-745 © 2005-9 Seth Copen Goldstein 21

Kinds of reuse and the factor

What kinds of reuse

for i =0 to N-1 are there?
for j = 0 to N-1 A[']’

F(ALT].ALID:;

AT

15-745 © 2005-9 Seth Copen Goldstein 22

Kinds of reuse and the factor

for 1, :=0 to 5
for 1,:=0 to 6
ALl + 1] =173 > (A[1,]1+ ALl + 1] + A[1, + 2])

15-745 © 2005-9 Seth Copen Goldstein 23

Kinds of reuse and the factor

for 1, :=0 to 5
for 1,:=0 to 6
AL, +1] =173 * (ALLL1+ AL, + 1] + A[L, + 2])

self-temporal in 1, self-spatial In 2
Also, group spatial In 2

What 1s different about this and previous?
for i = 0 to N-1

for j = 0 to N-1
TALIL.AOD:

15-745 © 2005-9 Seth Copen Goldstein 24

Uniformly Generated references

* f and g are indexing functions: Z" > Z4
- nis depth of loop nest
- d is dimensions of array, A

+ Two references A[f(i)] and A[g(i)] are
uniformly generated if

f(i) = Hi + c; AND g(i)=Hi+c,

- His a linear transform
* ¢¢ and ¢, are constant vectors

Eg of Uniformly generated sets

These references all belong to the same
for I, =0 to uniformly generated set: H=1[0 1]
for 1,:=0 to 6
ALl +11=1/3* (ALl 1+ ALl + 1] + A[1; + 2])

ALl + 1] [o11|r|+LC1]
2

ALL] [O11|tf+00]

AL, +2] [01] :; +[2]

555555

Quantifying Reuse

* Why should we quantify reuse?
+ How do we quantify locality?

Quantifying Reuse

* Why should we quantify reuse?
- How do we quantify locality?

» Use vector spaces to identify loops with
reuse

* We convert that reuse into locality by
making the "best" loop the inner loop

* Metric: memory accesses/iter of
innermost loop. No locality > mem access

Self-Temporal

- For a reference, A[Hi+c], there is
self-temporal reuse between m and n
when Hm+c=Hn+c, i.e., H(r)=0, where
r=m-n.

« The direction of reuse is r.

* The self-temporal reuse vector space
is: Rst = Ker H
* There is locality if Rgyis in the

localized vector space.
Recall that for nxm matrix A,

the ker A = nullspace(A) = {x™| Ax = 0}

555555

« Reuse is sdim(Rst)
* Rgrinsersect L = locality
- # of mem refs = 1/above

Example of self-temporal reuse

for 1,:=1 to n
for 1,:=1 to n
for I;:=1 to n
CLIy. 151 += ALl 11 * B[1;, 5]

Access H ker H reuse? Local?
C[I,I;] (100 span{(0,1,0)} ninI,
001
A[I,I,] (100) span{(0,0,1)}
010
B[I,,I;] (010) span{(1,0,0)}
001

Self-Spatial

- Occurs when we access in order

- Ali,j]: best gain, |
- A[i,j*k]: best gain, I/k if |k| <= |

* How do we get spatial reuse for UG: H?

Self-Spatial Example of self-spatial reuse

» Occurs when we access in order for lize1xon
or I,:=1 to n

- A[i,j]: best gain, | forclsl ==|1 tg: % B
- A[i,j*Kk]: best gain, I/k if |k]| <= | Hatal w=ALL- 11 7ELL 1]

- How do we geft spatial reuse for UG: H? 2‘:1‘:6155 ’IHE) o ker HSO o reuse? LOCIG/IT
- Since all but row must be identical, set (11,15 000 Span{((o'(') 1))}
last row in H to O, H, - : o
self-spatial reuse vector space = Rgg AlLI,] (100 span{(0,0.1),
RSS = ker HS \O O O/ (01110)}
- Notice, ker H ker H, B[I,.I3] (010) span{(1,0,0),
« If, R nL = Ry L, then no additional 000/ (0.0.1)}
benefit 10 SS ..o crcrmsion N
Self-spatial reuse/locality Group Temporal
» Dim(Rss) is dimensionality of reuse - Two refs A[Hi+c] and A[Hi+d] can have
vector space. group temporal reuse in L iff
* If Rgs=0 - no reuse - they are from same uniformly generated
set

* If Rgg=Rgt no extra reuse from spatial

- Reuse of each element is k/|sdim(R_SS)
where, s is number of iters per dim.

* RgsL is amount of reuse exploited,
therefore number of memory

references generated is:
k/|sdim(R_STAL)

- Thereisanr e Ls.t.Hr=c-d

« if c-d = r,, then there is group temporal
reuse, Rgr = ker H+span{r,}

- However, there is no extra benefit if
RetnL=RsrnL

Example:

For 1 =1 ton
for jJ=i1 to n
ALi,3]1 = 0.2*(ALL. J1+A[i+1. 5]+
ALI-1, J1+ALL, J+1]1+AL1,3-11)

If L = span{j}, since ker H = &:
Ali,j]land A[i,j-11 > (0,0)-(0,-1) espan{(0,1)} yes
Ali,j-11and A[i+1,j]1 = (0,-1)-(1,0) #span{(0,1)} no

Notice equivalence classes

555555

Evaluating group temporal reuse

» Divide all references from a
uniformly generated set into equiv
classes that satisfy the R;+

* For a particular L and g references
- Don't count any group reuse when
Rt L=RgsrnL
- number of equiv classes is gr.
- Number of mem references is gy instead
of g

Total memory accesses

* For each uniformly generated set
localized space, L
line size, z

9s+(g1 - 95)/z
zegdim(R_SS N L)

wheree= [Oif RgtnL=RgsnL
1 otherwise

Now what?

* We have a way to characterize
- Reuse (potential for locality)
- Local iteration space

* Can we transform loop to take
advantage of reuse?

- If so, can we?

Loop Transformation Theory

* Iteration Space
- Dependence vectors
- Unimodular transformations

555555

Loop Nests and the Iter space

* General form of tightly nested loop

for 1, :=low; to high; by step,
for 1, := low, to high, by step,

for I; := low; to high; by step;

for 1, := low, to high, by step,
Stmts

* The iteration space is a convex polyhedron
in Z" bounded by the loop bounds.

* Each iteration is a node in the polyhedron
identified by its vector: p=(py, P2, -, Pn)

Lexicographical Ordering

- Tterations are executed in
lexicographic order.

- for p=(py, p2. . Pn) and 4=(q1, G2, . Gy)
if p>qiff for1<k<n,

vV 1<i<k, (p;=gq;)andpy>qy

* For MM:

-(111),(112),113), ..,
(121),(12.2),01,.23), ..,

2.11),(2.1,2), (2.13), ..
- (121)>,(1,1,2), (2,1,1) >, (1,4,2), etc.

Iteration Space

Every iteration generates a point in an
n-dimensional space, where n is the
depth of the loop nest.

for (i=0; i<n; i++) { o [4.] .
}
] [] [] [] 3
for (i=0; i<n; i++) [2}
for (J=0; j<4; j++) { : : e o o

Dependence Vectors

- Dependence vector in an n-nested loop is
denoted as a vector: d=(d;, d,, ..., d,).
* Each d; is a possibly infinite range of ints in

dimin, dimaxJ ’ where

A" e Z {0, 0™ e Z A{oc} andd™" < dme
* S0, a single dep vector represents a set of
distance vectors.

- A distance vector defines a distance in the
iteration space.

- A dependence vector is a distance vector if
each d; is a singleton.

© 2005-9 Seth Copen Goldstein

Other defs

- Common ranges in dependence vectors

-[1,o]as +or>
- [-o0,-1]as - or«
- [- o0, ©0]as tor™*

- A distance vector is the difference

between the target and source
iterations (for a dependent ref), e.g.,
d = IT-IS

© 2005-9 Seth Copen Goldstein

Examples

for I, :=1 to n
for 1,:=1 to n
for I;:=1 to n
CLI.. 03] += AL, 1,1 * B[, 15]

(0,1,0)

for 1,:=0 to 5
for 1,:=0 to 6
A[l,+1] :=1/3* (A[1,] + A[1, + 1] + A[1,+ 2])

Iy

D={(0.1).(1.0),(1-1)}

P

© 2005-9 Seth Copen Goldstein

* Plausible: (1,-1) it
- implausible (-1,0) 3 B4 BAB3

Plausible Dependence vectors

* A dependence vector is plausible iff

it is lexicographically non-negative.

- All sequential programs have plausible

dependence vectors. Why?

©.-1)

-1) (-1,0)
2 | [21] [22] [23]

1 +— [LiPQ12] [13]
.1)

© 2005-9 Seth Copen Goldstein

Loop Transforms

* A loop transformation changes the
order in which iterations in the
iteration space are visited.

* For example, Loop Interchange

Unimodular Transforms

* Interchange

permute nesting order

+ Reversal

reverse order of iterations

for i :=0 to n ’ Skewmg . .
for 1:20 to n scale iterations by an outer loop index
body body
I 00000
00000
000000
% 00000
) 200609
8")0%\3 C—@—@—@—S‘ei
Interchange Transform and matrix notation

* Change order of loops
* For some permutationpof1..n

for 1, :=.. for 1,y 1=..

for 1, :=.. : for 1, :=..

for 1,:=..

* When is this legal?

for 1, 1=

« If dependences are vectors in iter

space, then transforms can be
represented as matrix transforms

- E.g., for a 2-deep loop, interchange is:

S A N 4T 1Y

- Since, T is a linear transform, Td is

transformed dependence:

0 1dy] [d,
1 0]ldy]| |dy

Reversal

* Reversal of it loop reverses its
traversal, so it can be represented
as:

15-745 © 2005-9 Seth Copen Goldstein

Reversal

* Reversal of ith loop reverses its
traversal, so it can be represented as:
Diagonal matrix with ith element = -1,

* For 2 deep loop, reversal of outermost

NP IeE P

15-745 © 2005-9 Seth Copen Goldstein 54

Skewing

- Skew loop I; by a factor f w.r.t. loop
I maps

+ Example for 2D

S AN

15-745 © 2005-9 Seth Copen Goldstein

Loop Skewing Example

for 1,:=0 to 5 D={(0.1),(1,0),(1-1)}
for 1,:=0 to 6

A[l, + 1] := 1/3 * (A[1,] + A[1, + 1] + A[1, + 21)
| I,

NAANNAA

Ll Y
IV N

o,

for 1,:=0 to 5
for 1,:=1;, to 6+1;
A[L,-1,+1] :=1/3 * (A[L,-1] + A[L-1,+ 1] + A[L,-1,+ 2])

D={(0.1).(1,1),(1,0)%}

15-745 © 2005-9 Seth Copen Goldstein 56

But...is the transform legal?

- Distance/direction vectors
give a partial order among
points in the iteration space

* A loop transform changes
the order in which "points’
are visited

* The new visit order must
respect the dependence

o — -t 1 _ 22009 SethGppen

555555

But...is the transform legal?

* Loop reversal ok?
* Loop interchange ok?

for i = 0 to N-1
for j = 0 to N-1
ALi+1101 += ALilLi;

But...is the transform legal?

* Loop reversal ok?
* Loop interchange ok?

O/O/O/O/O/O/O/O
B I A1
ALI+LI[+1] += ALV /d'cfcfo’cfo

s

o v

But...is the transform legal?

« What other

visit order is Q\Q\Q\ Q\Q\O
legal here?
for 1 = 0 to TS
for j = 0 to N-2
ALj+1] =
(AT + AO+1] + AL+2DD)7/3;

But...is the transform legal?

« What other
visit order is
legal here?

for i =0 to TS
for j = 0 to N-2
A[i+1] =
(A1 + ALD+1] + ALJ+21)7/3;

But...is the transform legal?

- Skewing...

555555

900800900
98008080

A L ﬁ 5

But...is the transform legal?

- Skewing...now we
can block

But...is the transform legal?

- Skewing...now we can loop

555555

interchange

P9 QPP Q Q @ 0
Q@ O O O O\O\O O
O O\0\O\0\O \O ®

=)

® O\O O ‘D D O O
OO0 OO0 0 00

€

Unimodular transformations

- Express loop transformation as a matrix
multiplication

+ Check if any dependence is violated by
multiplying the distance vector by the matrix -
if the resulting vector is still lexicographically
positive, then the involved iterations are visited

in an order that respects the dependence.
Reversal Interchange Skew

1 0 0 1 1 1
o - 1 0 0o 1
“A Data Locality Optimizing Algorithm”, M_E_Wolf and M.Lam

15-745 © 2005-9 Seth Copen Goldstein 65

Next Time

Putting it all together: SRP

Other loop transformations for
locality

© 2005-9 Seth Copen Goldstein

66

Linear Algebra

Vector Spaces
Linear Combinations
* dimensions

* Spans

* Kernels

15-745 © 2005-9 Seth Copen Goldstein 67

Vector Spaces

nis a point in n-space
V={_vqV,, .. v} isafinite set of n-
vectors over m R".
Linear combination of vectors of Vis
a vector x as defined by

X = 0qVy+ 0oVp + .+ OV
where o, are real numbers.
V is linearly dependent if a
combination results in the O vector,
otherwise it is linearly independent.

© 2005-9 Seth Copen Goldstein

Dim and Basis

» dimensionality of V is dim(V)

the number of independent vectors in V
* A basis for an m-dimensional vector
space is a set of linearly independent
vectors such that every point in V can be
expressed as a linear comb of the
vectors in the basis.

- The vectors in the basis are called basis
vectors

555555

Subspaces and span

- Let V be a set of vectors
» The subspace spanned by V, span(V),

is a subset of R" such that

-V < span(V)

- x,y € span(V) = x+y e span(V)

- x e span(V) and o € R = a x € span(V)

Range, Span, Kernel

- A matrix A can be viewed as a set of
column vectors.

- Range A™m is {Ax|x € RM}

* span(A) = Range A™m

* nullspace(A) = ker(A) = ker(A™™m) =
{xm| Ax e 0}

* rank(A) = dim(span(A))

* nullity(A) = dim(ker(A))

* rank(A)+nullity(A) = n, for Anxm

