
15-745
Optimizing For Data Locality - 1

Seth Copen Goldstein
Seth@cs.cmu.EduSeth@cs.cmu.Edu

CMU

Based on “A Data Locality Optimizing Algorithm,
Wolf & Lam PLDI ‘91

15-745 © 2005-9 Seth Copen Goldstein 1

Wolf & Lam, PLDI 91

Outline
• The Problem
• Loop Transformations• Loop Transformations

– dependence vectors
Tr nsf rm ti ns– Transformations

– Unimodular transformations
L li A l i• Locality Analysis

• SRP

15-745 © 2005-9 Seth Copen Goldstein 2

The Issue
• Improve cache reuse in nested loops
• Canonical simple case: Matrix Multiply• Canonical simple case: Matrix Multiply

for I1 := 1 to n
for I2 := 1 to n

f 1 tfor I3 := 1 to n
C[I1,I3] += A[I1,I2] * B[I2,I3]

I3 I3I2+1I3 I2
I3I2+1

=I1

I2

15-745 © 2005-9 Seth Copen Goldstein 3

In next iteration of I2 previous data that
could be reused has been replaced in cache.

Tiling solves problemfor I1 := 1 to nf I 1 tfor I2 := 1 to nfor I3 := 1 to nC[I1,I3] += A[I1,I2] * B[I2,I3]
for II := 1 to n by sfor II2 := 1 to n by s

for II3 := 1 to n by s
for I1 := 1 to n

for I2 := II2 to min(II2 + s - 1,n)o 2 : 2 to (2 s ,)
for I3 := II3 to min(II3 + s - 1,n)

C[I1,I3] += A[I1,I2] * B[I2,I3];
I3 I2

I2+1 I3

=I
I2

15-745 © 2005-9 Seth Copen Goldstein 4

I1

The Problem
• How to increase locality by transforming loop

nest
• Matrix Mult is simple as it is both

– legal to tile
– advantageous to tile

• Can we determine the benefit?
(reuse vector space and locality vector space)

• Is it legal (and if so, how) to transform loop?
(i d l f i)(unimodular transformations)

15-745 © 2005-9 Seth Copen Goldstein 5

Handy Representation:
“Iteration Space”Iteration Space

0 1

i

for i = 0 to N-1
for j = 0 to N-1
A[i][j] = B[j][i];

• each position represents an iteration
j

• each position represents an iteration

15-745 6© 2005-9 Seth Copen Goldstein

Visitation Order in Iteration
SpaceSpace

0 1

i

for i = 0 to N-1
for j = 0 to N-1
A[i][j] = B[j][i];

• Note: iteration space is not data space

j

Note: iteration space is not data space

15-745 7© 2005-9 Seth Copen Goldstein

When Do Cache Misses Occur?
for i = 0 to N-1
for j = 0 to N-1j
A[i][j] = B[j][i];

A B
i i

j j

15-745 8© 2005-9 Seth Copen Goldstein

When Do Cache Misses Occur?
for i = 0 to N-1
for j = 0 to N-1j
A[i][j] = B[j][i];

A B

Hit
Miss

i i

j j

15-745 9© 2005-9 Seth Copen Goldstein

When Do Cache Misses Occur?

i

for i = 0 to N-1
for j = 0 to N-1

A[i+j][0] = i*j;

jj

15-745 10© 2005-9 Seth Copen Goldstein

When Do Cache Misses Occur?

i
Hit
Miss

for i = 0 to N-1
for j = 0 to N-1

A[i+j][0] = i*j;

jj

15-745 11© 2005-9 Seth Copen Goldstein

Optimizing the Cache Behavior
of Array Accessesof Array Accesses

• We need to answer the following
questions:
– when do cache misses occur?

• use “locality analysis”
– can we change the order of the iterations

(l d l) d (or possibly data layout) to produce better
behavior?

l t th t f i lt ti• evaluate the cost of various alternatives
– does the new ordering/layout still produce

correct results?correct results?
• use “dependence analysis”

15-745 12© 2005-9 Seth Copen Goldstein

Examples of Loop
TransformationsTransformations

• Loop Interchange
Can improve locality

• Cache Blocking
• Skewing

Can improve locality

Skewing
• Loop Reversal Can enable above

• …

(we will briefly discuss the first two)

15-745 13© 2005-9 Seth Copen Goldstein

Loop Interchange

for i = 0 to N-1 for j = 0 to N-1for i = 0 to N-1
for j = 0 to N-1

A[j][i] = i*j;

for j = 0 to N-1
for i = 0 to N-1

A[j][i] = i*j;
i j Hit

Miss

• (assuming N is large relative to cache size)
j i

(assuming N is large relative to cache size)

15-745 14© 2005-9 Seth Copen Goldstein

Impact on Visitation Order
in Iteration Spacein Iteration Space

for i = 0 to N-1 for JJ = 0 to N-1 by B
for i = 0 to N-1for j = 0 to N-1

f(A[i],A[j]);
for i 0 to N 1

for j = JJ to max(N-1,JJ+B-1)
f(A[i],A[j]);

i i

j j

15-745 15© 2005-9 Seth Copen Goldstein

Cache Blocking (aka “Tiling”)

for i = 0 to N-1
f j 0 t N 1

for JJ = 0 to N-1 by B
for i = 0 to N-1for j = 0 to N-1

f(A[i],A[j]); for j = JJ to max(N-1,JJ+B-1)
f(A[i],A[j]);

ii
A[i] A[j]

ii
A[i] A[j]

now we can exploit locality

jjjj
now we can exploit locality

15-745 16© 2005-9 Seth Copen Goldstein

Cache Blocking (aka “Tiling”)

for i = 0 to N-1
f j 0 t N 1

for JJ = 0 to N-1 by B
for i = 0 to N-1for j = 0 to N-1

f(A[i],A[j]); for j = JJ to max(N-1,JJ+B-1)
f(A[i],A[j]);

ii
A[i] A[j]

ii
A[i] A[j]

now we can exploit temporal locality

jjjj

now we can exploit temporal locality

15-745 17© 2005-9 Seth Copen Goldstein

Cache Blocking in Two
DimensionsDimensions

for i = 0 to N-1
for j = 0 to N-1

for JJ = 0 to N-1 by B
for KK = 0 to N-1 by B

for i = 0 to N-1
f j JJ t (N 1 JJ B 1)for k = 0 to N-1

c[i,k] += a[i,j]*b[j,k];
for j = JJ to max(N-1,JJ+B-1)

for k = KK to max(N-1,KK+B-1)
c[i,k] += a[i,j]*b[j,k];

• brings square sub-blocks of matrix “b” into g q
the cache

• completely uses them up before moving on

15-745 18© 2005-9 Seth Copen Goldstein

Predicting Cache Behavior
through “Locality Analysis”through Locality Analysis

• Definitions:
R– Reuse:
accessing a location that has been accessed in the
pastp

– Locality:
accessing a location that is now found in the cache

• Key Insights
– Locality only occurs when there is reuse!

BUT d t il lt i l lit– BUT, reuse does not necessarily result in locality.
– Why not?

15-745 19© 2005-9 Seth Copen Goldstein

Steps in Locality Analysis

1. Find data reuse
– if caches were infinitely large, we would be

finished
2. Determine “localized iteration space”

– set of inner loops where the data accessed p
by an iteration is expected to fit within
the cache

3. Find data locality:
– reuse ⊇ localized iteration space ⊇ localityp y

15-745 20© 2005-9 Seth Copen Goldstein

Types of Data Reuse/Locality

for i = 0 to 2for i = 0 to 2
for j = 0 to 100

A[i][j] = B[j][0] + B[j+1][0];
Hit
Miss

i
A[i][j]

i
B[j][0]

i
B[j+1][0]

j j j

Spatial Temporal Group
(temporal)

15-745 21© 2005-9 Seth Copen Goldstein

Kinds of reuse and the factor

for i = 0 to N-1
for j = 0 to N-1

What kinds of reuse
are there?
A[i]?for j 0 to N 1

f(A[i],A[j]); A[i]?

A[j]?

15-745 © 2005-9 Seth Copen Goldstein 22

Kinds of reuse and the factor

for I1 := 0 to 5for I2 := 0 to 62A[I2 + 1] = 1/3 * (A[I2]+ A[I2 + 1] + A[I2 + 2])

15-745 © 2005-9 Seth Copen Goldstein 23

Kinds of reuse and the factor

for I1 := 0 to 5for I2 := 0 to 62A[I2 + 1] = 1/3 * (A[I2]+ A[I2 + 1] + A[I2 + 2])

self-temporal in 1, self-spatial in 2
Also, group spatial in 2
What is different about this and previous?

for i = 0 to N-1
for j = 0 to N-1

f(A[i],A[j]);

15-745 © 2005-9 Seth Copen Goldstein 24

Uniformly Generated references
• f and g are indexing functions: Zn Zd

– n is depth of loop nestn is depth of loop nest
– d is dimensions of array, A

• Two references A[f(i)] and A[g(i)] are • Two references A[f(i)] and A[g(i)] are
uniformly generated if

f(i) = Hi + cf AND g(i)=Hi+cg

• H is a linear transform
d t t t• cf and cg are constant vectors

15-745 © 2005-9 Seth Copen Goldstein 25

Eg of Uniformly generated sets
h f ll l h

for I1 := 0 to 5for I2 := 0 to 6
These references all belong to the same

uniformly generated set: H = [0 1]
2A[I2 + 1] = 1/3 * (A[I2]+ A[I2 + 1] + A[I2 + 2])

A[I + 1] [0 1] + [1]I1A[I2 + 1] [0 1] + [1]1I2

A[I2] [0 1] + [0]I1I2

A[I + 2] [0 1] + [2]I1

15-745 © 2005-9 Seth Copen Goldstein 26

A[I2 + 2] [0 1] + [2]I2

Quantifying Reuse
• Why should we quantify reuse?
• How do we quantify locality?• How do we quantify locality?

15-745 © 2005-9 Seth Copen Goldstein 27

Quantifying Reuse
• Why should we quantify reuse?
• How do we quantify locality?• How do we quantify locality?

 f l h • Use vector spaces to identify loops with
reuse

• We convert that reuse into locality by
making the “best” loop the inner loopg p p

• Metric: memory accesses/iter of
innermost loop. No locality mem accessinnermost loop. No locality mem access

15-745 © 2005-9 Seth Copen Goldstein 28

Self-Temporal
• For a reference, A[Hi+c], there is

self-temporal reuse between m and nself temporal reuse between m and n
when Hm+c=Hn+c, i.e., H(r)=0, where
r=m-n.r m n.

• The direction of reuse is r.
Th s lf t mp l s t sp • The self-temporal reuse vector space
is: RST = Ker H

h l l f h • There is locality if RST is in the
localized vector space.

R ll h f i

15-745 © 2005-9 Seth Copen Goldstein 29

Recall that for nxm matrix A,
the ker A = nullspace(A) = {xm|Ax = 0}

• Reuse is sdim(Rst)

• R insersect L = locality• RST insersect L = locality
• # of mem refs = 1/above

15-745 © 2005-9 Seth Copen Goldstein 30

Example of self-temporal reuse
for I1 := 1 to n

for I2 := 1 to n
for I3 := 1 to n

Access H ker H reuse? Local?

for I3 : 1 to n
C[I1,I3] += A[I1,I2] * B[I2,I3]

cc H r H r u ? L ca ?
C[I1,I3] 1 0 0 span{(0,1,0)} n in I2

0 0 10 0 1
A[I1,I2] 1 0 0 span{(0,0,1)}

0 1 00 1 0
B[I2,I3] 0 1 0 span{(1,0,0)}

0 0 1

15-745 © 2005-9 Seth Copen Goldstein 31

Self-Spatial
• Occurs when we access in order

– A[i j]: best gain lA[i,j]: best gain, l
– A[i,j*k]: best gain, l/k if |k| <= l

• How do we get spatial reuse for UG: H?• How do we get spatial reuse for UG: H?

15-745 © 2005-9 Seth Copen Goldstein 32

Self-Spatial
• Occurs when we access in order

– A[i j]: best gain lA[i,j]: best gain, l
– A[i,j*k]: best gain, l/k if |k| <= l

• How do we get spatial reuse for UG: H?• How do we get spatial reuse for UG: H?
• Since all but row must be identical, set

l t i H t 0 Hlast row in H to 0, Hs
self-spatial reuse vector space = RSS

R k HRSS = ker HS

• Notice, ker H ⊆ ker Hs

• If, Rss ∩L = RST ∩L, then no additional
benefit to SS15-745 © 2005-9 Seth Copen Goldstein 33

Example of self-spatial reuse
for I1 := 1 to n

for I2 := 1 to n
for I3 := 1 to n

Access Hs ker Hs reuse? Local?

for I3 : 1 to n
C[I1,I3] += A[I1,I2] * B[I2,I3]

cc Hs r Hs r u ? L ca ?
C[I1,I3] 1 0 0 span{(0,1,0), 1/l

0 0 0 (0 0 1)}0 0 0 (0,0,1)}
A[I1,I2] 1 0 0 span{(0,0,1),

0 0 0 (0 1 0)}0 0 0 (0,1,0)}
B[I2,I3] 0 1 0 span{(1,0,0),

0 0 0 (0,0,1)}

15-745 © 2005-9 Seth Copen Goldstein 34

Self-spatial reuse/locality
• Dim(RSS) is dimensionality of reuse

vector space.vector space.
• If RSS=0 no reuse

If R R xt s f m s ti l• If RSS=RST no extra reuse from spatial
• Reuse of each element is k/lsdim(R_SS)

h f dwhere, s is number of iters per dim.
• RSS∩L is amount of reuse exploited, SS p

therefore number of memory
references generated is:g

k/lsdim(R_ST∩L)

15-745 © 2005-9 Seth Copen Goldstein 35

Group Temporal
• Two refs A[Hi+c] and A[Hi+d] can have

group temporal reuse in L iffgroup temporal reuse in L iff
– they are from same uniformly generated

setset
– There is an r ∈ L s.t. Hr = c – d

• if c-d = r then there is group temporal if c-d = rp, then there is group temporal
reuse, RGT = ker H+span{rp}
However there is no extra benefit if • However, there is no extra benefit if
RGT ∩ L = RST ∩ L

15-745 © 2005-9 Seth Copen Goldstein 36

Example:
For i = 1 to n
for j=i to n
A[i,j] = 0.2*(A[i,j]+A[i+1,j]+

A[i-1,j]+A[i,j+1]+A[i,j-1])

If L = span{j}, since ker H = ∅:
A[i j] and A[i j-1] (0 0)-(0 -1) ∈span{(0 1)} yesA[i,j] and A[i,j 1] (0,0) (0, 1) ∈span{(0,1)} yes
A[i,j-1] and A[i+1,j] (0,-1)-(1,0) ∉span{(0,1)} no

Notice equivalence classes

15-745 © 2005-9 Seth Copen Goldstein 37

Evaluating group temporal reuse
• Divide all references from a

uniformly generated set into equiv uniformly generated set into equiv
classes that satisfy the RGT

• For a particular L and g references• For a particular L and g references
– Don’t count any group reuse when

R ∩ L = R ∩ LRGT ∩ L = RST ∩ L
– number of equiv classes is gT.

Number of mem references is g instead – Number of mem references is gT instead
of g

15-745 © 2005-9 Seth Copen Goldstein 38

Total memory accesses
• For each uniformly generated set

localized space, Llocalized space, L
line size, z

gS+(gT – gS)/z
zesdim(R_SS ∩ L)z s

where e = 0 if RST ∩ L = RSS ∩ LST SS
1 otherwise

15-745 © 2005-9 Seth Copen Goldstein 39

Now what?
• We have a way to characterize

– Reuse (potential for locality)Reuse (potential for locality)
– Local iteration space

• Can we transform loop to take • Can we transform loop to take
advantage of reuse?
If ?• If so, can we?

15-745 © 2005-9 Seth Copen Goldstein 40

Loop Transformation Theory
• Iteration Space
• Dependence vectors• Dependence vectors
• Unimodular transformations

15-745 © 2005-9 Seth Copen Goldstein 41

Loop Nests and the Iter space
• General form of tightly nested loop

for I := low to high by stepfor I1 := low1 to high1 by step1for I2 := low2 to high2 by step2…
for Ii := lowi to highi by stepio i : o i to g i by stepi…

for In := lown to highn by stepnStmts

• The iteration space is a convex polyhedron
in Zn bounded by the loop boundsin Z bounded by the loop bounds.

• Each iteration is a node in the polyhedron
identified by its vector: p=(p1, p2, …, pn)

15-745 © 2005-9 Seth Copen Goldstein 42

identified by its vector p (p1, p2, …, pn)

Lexicographical Ordering
• Iterations are executed in

lexicographic order.
• for p=(p1, p2, …, pn) and q=(q1, q2, …, qn)

if p k q iff for 1 ≤ k ≤ n,f p k q ff f ,

∀ 1 ≤ i < k, (pi = qi) and pk > qk

• For MM:
– (1,1,1), (1,1,2), (1,1,3), …,

(1 2 1) (1 2 2) (1 2 3) (1,2,1), (1,2,2), (1,2,3), …,
…,
(2,1,1), (2,1,2), (2,1,3), …

15-745 © 2005-9 Seth Copen Goldstein 43

(, ,), (, ,), (, ,),
– (1,2,1) 2 (1,1,2), (2,1,1) 1 (1,4,2), etc.

Iteration Space
Every iteration generates a point in an
n-dimensional space, where n is the
depth of the loop nest.

f (i 0 i< i++) { 4for (i=0; i<n; i++) {

}}
for (i=0; i<n; i++)

3
2

for (j=0; j<4; j++) {

}

15-745 © 2005-9 Seth Copen Goldstein 44

}

Dependence Vectors
• Dependence vector in an n-nested loop is

denoted as a vector: d=(d1, d2, …, dn).n

• Each di is a possibly infinite range of ints in
, where[]maxmin, ii dd

• So, a single dep vector represents a set of
 and}{},{ maxminmaxmin

iiii dddd ≤∞∪Ζ∈−∞∪Ζ∈

g p p
distance vectors.

• A distance vector defines a distance in the
iteration space.

• A dependence vector is a distance vector if
h d l

15-745 © 2005-9 Seth Copen Goldstein 45

each di is a singleton.

Other defs
• Common ranges in dependence vectors

– [1 ∞] as + or >[1, ∞] as + or >
– [- ∞, -1] as – or <
– [∞ ∞] as ± or *– [- ∞, ∞] as ± or

A dist n t is th diff n • A distance vector is the difference
between the target and source
it ti ns (f d p nd nt f) iterations (for a dependent ref), e.g.,

d = It-Is

15-745 © 2005-9 Seth Copen Goldstein 46

Examples

for I1 := 1 to n
for I2 := 1 to n (0 1 0)for I3 := 1 to n

C[I1,I3] += A[I1,I2] * B[I2,I3]
(0,1,0)

for I1 := 0 to 5
for I2 := 0 to 6

1 1/3 1 2A[I2 + 1] := 1/3 * (A[I2] + A[I2 + 1] + A[I2 + 2])
I1

D={(0,1),(1,0),(1-1)}

15-745 © 2005-9 Seth Copen Goldstein 47

I2

Plausible Dependence vectors
• A dependence vector is plausible iff

it is lexicographically non-negative.it is lexicographically non negative.
• All sequential programs have plausible

dependence vectors Why?dependence vectors. Why?
• Plausible: (1,-1)

l l ()
i

(0,-1)
i

(0,-1)

• implausible (-1,0)
(-1,0)

2

3

[2,1] [2,2] [2,3]

[3,1] [3,2] [3,3]
(1,-1) (-1,0)

2

3

[2,1] [2,2] [2,3]

[3,1] [3,2] [3,3]
(1,-1)

1 [1,1] [1,2] [1,3]
(0,1)

1 [1,1] [1,2] [1,3]
(0,1)

15-745 © 2005-9 Seth Copen Goldstein 48

1 2 3
j

1 2 3
j

Loop Transforms
• A loop transformation changes the

order in which iterations in the order in which iterations in the
iteration space are visited.

• For example Loop Interchange• For example, Loop Interchange
for i := 0 to n

0 for j := 0 to mfor j := 0 to m
body

for j : 0 to m
for i := 0 to n

bodyi jj

15-745 © 2005-9 Seth Copen Goldstein 49

j i

Unimodular Transforms
• Interchange

permute nesting orderpermute nesting order
• Reversal

reverse order of iterationsreverse order of iterations
• Skewing

s l it ti ns b n t l p ind xscale iterations by an outer loop index

15-745 © 2005-9 Seth Copen Goldstein 50

Interchange
• Change order of loops
• For some permutation p of 1 n• For some permutation p of 1 … n
for I1 := …

for I := for Ip(1) := …
ffor I2 := …

…
for In := …

body

for Ip(2) := …
…

for Ip(n) := …
body

• When is this legal?

body body

• When is this legal?

15-745 © 2005-9 Seth Copen Goldstein 51

Transform and matrix notation
• If dependences are vectors in iter

space, then transforms can be space, then transforms can be
represented as matrix transforms

• E g for a 2-deep loop interchange is:• E.g., for a 2-deep loop, interchange is:

⎥
⎤

⎢
⎡

=⎥
⎤

⎢
⎡

⎥
⎤

⎢
⎡ 2110 pp

⎥
⎤

⎢
⎡

=
10

T

• Since, T is a linear transform, Td is

⎥
⎦

⎢
⎣

⎥
⎦

⎢
⎣⎥⎦⎢⎣ 1201 pp⎥⎦⎢⎣ 01

T

transformed dependence:
⎤⎡⎤⎡⎤⎡ 2110 dd

15-745 © 2005-9 Seth Copen Goldstein 52

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥⎦

⎤
⎢⎣

⎡

1

2

2

1

01
10

d
d

d
d

Reversal
• Reversal of ith loop reverses its

traversal, so it can be represented traversal, so it can be represented
as:

15-745 © 2005-9 Seth Copen Goldstein 53

Reversal
• Reversal of ith loop reverses its

traversal, so it can be represented as: traversal, so it can be represented as:
Diagonal matrix with ith element = -1.

• For 2 deep loop, reversal of outermost
is:is:

⎤⎡⎤⎡⎤⎡ 01 pp⎤⎡ 01
⎥⎦

⎤
⎢⎣

⎡−
=⎥

⎦

⎤
⎢
⎣

⎡
⎥⎦

⎤
⎢⎣

⎡−
210

01 1

2

1

p
p

p
p

⎥⎦

⎤
⎢⎣

⎡−
=

10
01

T

15-745 © 2005-9 Seth Copen Goldstein 54

Skewing
• Skew loop Ij by a factor f w.r.t. loop

Ii mapsIi maps

,...),...,,...,(1 ji ppp ,...),...,,...,(1 iji fpppp +

• Example for 2D

⎥
⎦

⎤
⎢
⎣

⎡
+

=⎥
⎦

⎤
⎢
⎣

⎡
⎥⎦

⎤
⎢⎣

⎡ 11

11
01

pp
p

p
p

⎥⎦

⎤
⎢⎣

⎡
=

11
01

T ⎥
⎦

⎢
⎣ +⎥

⎦
⎢
⎣⎥⎦⎢⎣ 12211 ppp⎥⎦⎢⎣ 11

15-745 © 2005-9 Seth Copen Goldstein 55

Loop Skewing Example
for I1 := 0 to 5
for I2 := 0 to 6

A[I2 + 1] := 1/3 * (A[I2] + A[I2 + 1] + A[I2 + 2])

D={(0,1),(1,0),(1-1)}

I1
I1

⎥⎦

⎤
⎢⎣

⎡
=

11
01

T

I2

for I1 := 0 to 5
I2

for I1 : 0 to 5
for I2 := I1 to 6+I1A[I2-I1+1] := 1/3 * (A[I2-I1] + A[I2-I1+ 1] + A[I2-I1+ 2])

15-745 © 2005-9 Seth Copen Goldstein 56

D={(0,1),(1,1),(1,0)}

But...is the transform legal?

• Distance/direction vectors Distance/direction vectors
give a partial order among
points in the iteration spacepoints in the iteration space

• A loop transform changes A loop transform changes
the order in which 'points'
are visitedare visited

The new visit order must • The new visit order must
respect the dependence
partial order!15-745 57© 2005-9 Seth Copen Goldstein

But...is the transform legal?

• Loop reversal ok?Loop reversal ok?
• Loop interchange ok?

i

for i = 0 to N-1
for j = 0 to N-1

A[i+1][j] += A[i][j];

j

15-745 58© 2005-9 Seth Copen Goldstein

But...is the transform legal?

• Loop reversal ok?Loop reversal ok?
• Loop interchange ok?

i

for i = 0 to N-1
for j = 0 to N-1

A[i+1][j+1] += A[i][j];

j

15-745 59© 2005-9 Seth Copen Goldstein

But...is the transform legal?

i• What other
visit order is
legal here?

for i = 0 to TS
for j = 0 to N-2

A[j+1] =
([j] [j 1] [j 2])/3(A[j] + A[j+1] + A[j+2])/3;

j

15-745 60© 2005-9 Seth Copen Goldstein

But...is the transform legal?

i• What other
visit order is
legal here?

for i = 0 to TS
for j = 0 to N-2

A[j+1] =
(A[j] + A[j+1] + A[j+2])/3;j j j

jj

15-745 61© 2005-9 Seth Copen Goldstein

But...is the transform legal?

• Skewing...

15-745 62© 2005-9 Seth Copen Goldstein

But...is the transform legal?

• Skewing...now we
can block

15-745 63© 2005-9 Seth Copen Goldstein

But...is the transform legal?

• Skewing...now we can loop
interchange

15-745 64© 2005-9 Seth Copen Goldstein

Unimodular transformations

• Express loop transformation as a matrix
lti li timultiplication

• Check if any dependence is violated by
multipl in th dist nc v ct r b th m trix multiplying the distance vector by the matrix –
if the resulting vector is still lexicographically
positive then the involved iterations are visited positive, then the involved iterations are visited
in an order that respects the dependence.

Reversal Interchange Skew
1 0
0 -1

0 1
1 0

1 1
0 1

“A Data Locality Optimizing Algorithm”, M.E.Wolf and M.Lam
15-745 65© 2005-9 Seth Copen Goldstein

Next Time
• Putting it all together: SRP
• Other loop transformations for • Other loop transformations for

locality

15-745 © 2005-9 Seth Copen Goldstein 66

Linear Algebra
• Vector Spaces
• Linear Combinations• Linear Combinations
• dimensions
• Spans
• Kernels

15-745 © 2005-9 Seth Copen Goldstein 67

Vector Spaces
• n is a point in n-space
• V = { v v v } is a finite set of n-• V = { v1, v2, …, vm} is a finite set of n-

vectors over m ℜn.
Li mbi ti f t s f V is• Linear combination of vectors of V is
a vector x as defined by

x x = α1v1 + α2v2 + … + αmvm
where αi are real numbers.

 l l d d f • V is linearly dependent if a
combination results in the 0 vector,

h l l d d
15-745 © 2005-9 Seth Copen Goldstein 68

otherwise it is linearly independent.

Dim and Basis
• dimensionality of V is dim(V)

the number of independent vectors in Vthe number of independent vectors in V
• A basis for an m-dimensional vector

space is a set of linearly independent space is a set of linearly independent
vectors such that every point in V can be
expressed as a linear comb of the expressed as a linear comb of the
vectors in the basis.

The vectors in the basis are called basis – The vectors in the basis are called basis
vectors

15-745 © 2005-9 Seth Copen Goldstein 69

Subspaces and span
• Let V be a set of vectors
• The subspace spanned by V span(V) • The subspace spanned by V, span(V),

is a subset of ℜn such that
V span(V)– V ⊆ span(V)

– x,y ∈ span(V) ⇒ x+y ∈ span(V)
 (V) d ℜ (V)– x ∈ span(V) and α ∈ ℜ ⇒ α x ∈ span(V)

15-745 © 2005-9 Seth Copen Goldstein 70

Range, Span, Kernel
• A matrix A can be viewed as a set of

column vectors.column vectors.
• Range Anxm is {Ax|x ∈ ℜm}

s (A) R Anxm• span(A) = Range Anxm

• nullspace(A) = ker(A) = ker(Anxm) =
{ | }{xm|Ax ∈ 0}

• rank(A) = dim(span(A))() (p ())
• nullity(A) = dim(ker(A))
• rank(A)+nullity(A) = n for Anxm

15-745 © 2005-9 Seth Copen Goldstein 71

rank(A)+nullity(A) = n, for A m

