

The Problem

- How to increase locality by transforming loop nest
- Matrix Mult is simple as it is both
 - legal to tile
 - advantageous to tile
- Can we determine the benefit?
 (reuse vector space and locality vector space)
- Is it legal (and if so, how) to transform loop? (unimodular transformations)

Handy Representation: "Iteration Space"

each position represents an iteration

© 2005-9 Seth Copen Goldstein

Visitation Order in Iteration Space

© 2005-9 Seth Copen Goldstein

Note: iteration space is not data space

When Do Cache Misses Occur?

15-745

5

15-745

When Do Cache Misses Occur?

Optimizing the Cache Behavior of Array Accesses

- We need to answer the following questions:
 - when do cache misses occur?
 - use "locality analysis"
 - can we change the order of the iterations (or possibly data layout) to produce better behavior?
 - evaluate the cost of various alternatives
 - does the new ordering/layout still produce correct results?

© 2005-9 Seth Copen Goldstein

• use "dependence analysis"

15-745

Impact on Visitation Order in Iteration Space

<pre>for i = 0 to N-1 for j = 0 to N-1 f(A[i],A[j]);</pre>	<pre>for JJ = 0 to N-1 by B for i = 0 to N-1 for j = JJ to max(N-1,JJ+B-1) f(A[i],A[j]);</pre>
i	i 000000000000000000000000000000000000

Cache Blocking (aka "Tiling")

<pre>for i = 0 to N-1 for j = 0 to N-1 f(A[i],A[j]);</pre>	<pre>for JJ = 0 to N-1 for i = 0 to N-1 for j = JJ to f(A[i],A[j])</pre>	by B max(N-1,JJ+B-1);
$\begin{array}{c c} \underline{A[i]} & \underline{A[j]} \\ i & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$	<u>A[i]</u> i	<u>A[j]</u>

now we can exploit locality

Predicting Cache Behavior through "Locality Analysis"

- Definitions:
 - Reuse:

accessing a location that has been accessed in the past

- Locality:
 - accessing a location that is now found in the cache
- Key Insights
 - Locality only occurs when there is reuse!
 - BUT, reuse does not necessarily result in locality.
 - Why not?

Steps in Locality Analysis

1. Find data reuse

- if caches were infinitely large, we would be finished
- 2. Determine "localized iteration space"
 - set of inner loops where the data accessed by an iteration is expected to fit within the cache
- 3. Find data locality:
 - reuse \supseteq localized iteration space \supseteq locality

19

Kinds of reuse and the factor

for I₁ := 0 to 5
for I₂ := 0 to 6
A[I₂ + 1] = 1/3 * (A[I₂] + A[I₂ + 1] + A[I₂ + 2])

Kinds of reuse and the factor

for I₁ := 0 to 5
for I₂ := 0 to 6
 A[I₂ + 1] = 1/3 * (A[I₂] + A[I₂ + 1] + A[I₂ + 2])

self-temporal in 1, self-spatial in 2
Also, group spatial in 2

What is different about this and previous?

for i = 0 to N-1
for j = 0 to N-1
f(A[i],A[j]);

Uniformly Generated references

- f and g are indexing functions: $Z^n \rightarrow Z^d$
 - n is depth of loop nest
 - d is dimensions of array, A
- Two references A[f(i)] and A[g(i)] are uniformly generated if

 $f(i) = Hi + c_f AND g(i) = Hi + c_q$

- H is a linear transform
- + $c_{\rm f}$ and $c_{\rm g}$ are constant vectors

Eg of Uniformly generated sets

for $I_1 := 0$ to	These references all belong to the so uniformly generated set: H = [01]	ime]		
for $I_2 := 0$ t	for $I_2 := 0$ to 6			
$A[I_2 + 1] = 1/3 * (A[I_2] + A[I_2 + 1] + A[I_2 + 2])$				
A[I ₂ + 1]	$\begin{bmatrix} 0 1 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} + \begin{bmatrix} 1 \end{bmatrix}$			
A [<i>I</i> ₂]	$\begin{bmatrix} 0 \ 1 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} + \begin{bmatrix} 0 \end{bmatrix}$			
A[I ₂ + 2]	$\begin{bmatrix} 0 \ 1 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} + \begin{bmatrix} 2 \end{bmatrix}$			
15-745	© 2005-9 Seth Copen Goldstein	26		

Quantifying Reuse

© 2005-9 Seth Copen Goldstein

- Why should we quantify reuse?
- How do we quantify locality?

Quantifying Reuse

- Why should we quantify reuse?
- How do we quantify locality?
- Use vector spaces to identify loops with reuse
- We convert that reuse into locality by making the "best" loop the inner loop
- Metric: memory accesses/iter of innermost loop. No locality → mem access

15-745

27

25

Self-Temporal Reuse is s^{dim(Rst)} • For a reference, A[Hi+c], there is self-temporal reuse between **m** and **n** • R_{ST} insersect L = locality when Hm+c=Hn+c, i.e., H(r)=0, where • # of mem refs = 1/above r=m-n. • The direction of reuse is r • The self-temporal reuse vector space is: R_{ST} = Ker H • There is locality if R_{ST} is in the localized vector space. Recall that for nxm matrix A, the ker A = nullspace(A) = $\{x^m | Ax = 0\}$ © 2005-9 Seth Copen Goldstein 30 15-745 15-745 © 2005-9 Seth Copen Goldstein

Example of self-temporal reuse

```
for I_1 := 1 to n
   for I_2 := 1 to n
      for I_3 := 1 to n
         C[I_1, I_3] += A[I_1, I_2] * B[I_2, I_3]
                                        reuse? Local?
                        ker H
   Access
               Н
              (100) span\{(0,1,0)\} n in I<sub>2</sub>
  C[I_1, I_3]
              001
  A[I_1, I_2]
              (100)
                        span{(0,0,1)}
              010
              (010) span{(1,0,0)}
  B[I_2,I_3]
               001
```

Self-Spatial

- Occurs when we access in order
 - A[i,j]: best gain, l
 - A[i,j*k]: best gain, l/k if |k| <= l
- How do we get spatial reuse for UG: H?

15-745

Self-Spatial

- Occurs when we access in order
 - A[i,j]: best gain, l
 - A[i,j*k]: best gain, l/k if |k| <= |
- How do we get spatial reuse for UG: H?
- Since all but row must be identical, set last row in H to O, H_s self-spatial reuse vector space = R_{SS}
 - R_{ss} = ker H_s
- Notice, ker $\mathsf{H} \subseteq \mathsf{ker} \; \mathsf{H}_{\mathsf{s}}$
- If, $R_{ss} \cap L = R_{sT} \cap L$, then no additional benefit to SS = 2005-9 Seth Copen Goldstein

Self-spatial reuse/locality

- Dim(R_{SS}) is dimensionality of reuse vector space.
- If R_{SS} =0 → no reuse
- + If $\mathsf{R}_{\mathsf{SS}}\text{=}\mathsf{R}_{\mathsf{ST}}$ no extra reuse from spatial
- Reuse of each element is k/ls^{dim(R_SS)} where, s is number of iters per dim.
- R_{SS} L is amount of reuse exploited, therefore number of memory references generated is: k/ls^{dim(R_ST L)}

Example of self-spatial reuse

for
$$I_{1} := 1$$
 to n
for $I_{2} := 1$ to n
for $I_{3} := 1$ to n
 $C[I_{1}, I_{3}] := A[I_{1}, I_{2}] * B[I_{2}, I_{3}]$
Access H_{s} ker H_{s} reuse? Local?
 $C[I_{1}, I_{3}]$ $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0, 1, 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$
 $A[I_{1}, I_{2}]$ $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0, 0, 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$
 $B[I_{2}, I_{3}]$ $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0, 0, 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0, 0, 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0, 0, 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0, 0, 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0, 0, 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0, 0, 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0, 0, 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0, 0, 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0, 0, 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0, 0, 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0, 0, 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0, 0, 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0, 0, 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0, 0, 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0, 0, 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0, 0, 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0, 0, 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0, 0, 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0, 0, 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0, 0, 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0, 0, 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0, 0, 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0, 0, 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0, 0, 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0, 0, 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0, 0, 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0, 0, 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0, 0, 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0, 0, 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0, 0, 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0, 0, 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0, 0, 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$

Group Temporal

- Two refs A[Hi+c] and A[Hi+d] can have group temporal reuse in L iff
 - they are from same uniformly generated set
 - There is an $\mathbf{r} \in \mathbf{L}$ s.t. $\mathbf{H}\mathbf{r} = \mathbf{c} \mathbf{d}$
- if c-d = r_p, then there is group temporal reuse, R_{GT} = ker H+span{r_p}
- However, there is no extra benefit if $R_{GT} \cap L$ = $R_{ST} \cap L$

33

Example:

If L = span{j}, since ker H = \emptyset : A[i,j] and A[i,j-1] \rightarrow (0,0)-(0,-1) \in span{(0,1)} yes A[i,j-1] and A[i+1,j] \rightarrow (0,-1)-(1,0) \notin span{(0,1)} no

Notice equivalence classes

Evaluating group temporal reuse

- Divide all references from a uniformly generated set into equiv classes that satisfy the $\rm R_{GT}$
- For a particular L and g references
 - Don't count any group reuse when $R_{GT} \cap L$ = $R_{ST} \cap L$
 - number of equiv classes is g_T .
 - Number of mem references is g_{T} instead of g

Total memory accesses

© 2005-9 Seth Copen Goldstein

 For each uniformly generated set localized space, L line size, z

 $\frac{g_{S}+(g_{T}-g_{S})/z}{z^{e}s^{\dim(R_{S})}(L)}$

where e = $\begin{bmatrix} 0 \text{ if } R_{ST} \cap L = R_{SS} \cap L \\ 1 \text{ otherwise} \end{bmatrix}$

Now what?

© 2005-9 Seth Copen Goldsteir

- We have a way to characterize
 - Reuse (potential for locality)
 - Local iteration space
- Can we transform loop to take advantage of reuse?
- If so, can we?

15-745

39

37

15-745

Loop	Transformation Theory		Loo	p Nests and the Iter spa	ce
• Iterat • Depen • Unimo	ion Space dence vectors dular transformations		• Gen fo • The in Z • Eac ider	heral form of tightly nested loop or $I_1 := low_1$ to high_1 by step_1 for $I_2 := low_2$ to high_2 by step_2 for $I_i := low_i$ to high_i by step_1 for $I_n := low_n$ to high_n by step_n stmts e iteration space is a convex polyhedre in bounded by the loop bounds. h iteration is a node in the polyhedre high by its vector: $\mathbf{p} = (p_1, p_2,, p_n)$	ron on
15-745	© 2005-9 Seth Copen Goldstein	41	15-745	© 2005-9 Seth Copen Goldstein	42

Lexicographical Ordering

- Iterations are executed in lexicographic order.
- for \mathbf{p} =(\mathbf{p}_1 , \mathbf{p}_2 , ..., \mathbf{p}_n) and \mathbf{q} =(q_1 , q_2 , ..., q_n) if $\mathbf{p} \succ_k \mathbf{q}$ iff for $1 \le k \le n$,

 $\label{eq:product} \begin{array}{l} \forall \ 1 \leq i < k, \ (p_i = q_i) \ and \ p_k > q_k \\ \bullet \ \mbox{For MM:} \\ - \ (1,1,1), \ (1,1,2), \ (1,1,3), \ ..., \\ \ (1,2,1), \ (1,2,2), \ (1,2,3), \ ..., \\ \ ..., \end{array}$

- (1,2,1)
$$\succ_2$$
 (1,1,2), (2,1,1) \succ_1 (1,4,2), etc.

Iteration Space

Every iteration generates a point in an n-dimensional space, where n is the depth of the loop nest.

for (i=0; i<n; i++) {
 ...
}
for (i=0; i<n; i++)
 for (j=0; j<4; j++) {
 ...
}</pre>

15-745

Dependence Vectors

- Dependence vector in an n-nested loop is denoted as a vector: $d=(d_1, d_2, ..., d_n)$.
- Each d_i is a possibly infinite range of ints in $\begin{bmatrix} d_i^{\min}, d_i^{\max} \end{bmatrix}$, where $d_i^{\min} \in \mathbb{Z} \cup \{-\infty\}, d_i^{\max} \in \mathbb{Z} \cup \{\infty\} \text{ and } d_i^{\min} \leq d_i^{\max}$
- So, a single dep vector represents a set of distance vectors.
- A distance vector defines a distance in the iteration space.
- A dependence vector is a distance vector if each d_i is a singleton.

© 2005-9 Seth Copen Goldstein

Other defs

- Common ranges in dependence vectors
 - $[1, \infty]$ as + or >
 - [- ∞ , -1] as or <
 - [- ∞ , ∞] as \pm or *
- A distance vector is the difference between the target and source iterations (for a dependent ref), e.g., d = I_t-I_s

© 2005-9 Seth Copen Goldstein

Examples

```
for I_1 := 0 to 5
for I_2 := 0 to 6
A[I_2 + 1] := 1/3 * (A[I_2] + A[I_2 + 1] + A[I_2 + 2])
```

Plausible Dependence vectors

- A dependence vector is plausible iff it is lexicographically non-negative.
- All sequential programs have plausible dependence vectors. Why?
- Plausible: (1,-1)
- implausible (-1,0)

15-745

15-745

45

Loop Transforms

- A loop transformation changes the order in which iterations in the iteration space are visited.
- For example, Loop Interchange

for i := 0 to n for j := 0 to m body i 0	<pre>for j := 0 to m for i := 0 to n body j 0</pre>
15-745	© 2005-9 Seth Copen Goldstein

Unimodular Transforms

- Interchange permute nesting order
- Reversal reverse order of iterations
- Skewing scale iterations by an outer loop index

Interchange

- Change order of loops
- For some permutation p of 1 ... n

• When is this legal?

Transform and matrix notation

© 2005-9 Seth Copen Goldstein

- If dependences are vectors in iter space, then transforms can be represented as matrix transforms
- E.g., for a 2-deep loop, interchange is:

 $T = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \end{bmatrix} = \begin{bmatrix} p_2 \\ p_1 \end{bmatrix}$

• Since, T is a linear transform, T**d** is transformed dependence:

51

49

15-745

15-745

Reversal

 Reversal of ith loop reverses its traversal, so it can be represented as:

Reversal

- Reversal of ith loop reverses its traversal, so it can be represented as: Diagonal matrix with ith element = -1.
- For 2 deep loop, reversal of outermost is:

 $T = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \end{bmatrix} = \begin{bmatrix} -p_1 \\ p_2 \end{bmatrix}$

© 2005-9 Seth Copen Goldstein

 Skew loop I_j by a factor f w.r.t. loop I_i maps

```
(p_1,...,p_i,...,p_j,...) (p_1,...,p_i,...,p_j + fp_i,...)
```

• Example for 2D

$$T = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \end{bmatrix} = \begin{bmatrix} p_1 \\ p_2 + p_1 \end{bmatrix}$$

Loop Skewing Example

© 2005-9 Seth Copen Goldstein

15-745

55

53

15-745

15-745

But...is the transform legal?

- Distance/direction vectors give a partial order among points in the iteration space
- A loop transform changes the order in which 'points' are visited
- The new visit order must respect the dependence

But...is the transform legal?

- · Loop reversal ok?
- Loop interchange ok?

But...is the transform legal?

- Loop reversal ok?
- Loop interchange ok?

for i = 0 to N-1
 for j = 0 to N-1
A[i+1][j+1] += A[i][j];

But...is the transform legal?

 What other visit order is legal here?

15-745

59

But...is the transform legal?

 Skewing...now we can block

But...is the transform legal?

• Skewing...now we can loop interchange

Dim and Basis

- dimensionality of V is dim(V)
 the number of independent vectors in V
- A basis for an m-dimensional vector space is a set of linearly independent vectors such that every point in V can be expressed as a linear comb of the vectors in the basis.
 - The vectors in the basis are called basis vectors

Subspaces and span

- Let V be a set of vectors
- The subspace spanned by V, span(V), is a subset of Rⁿ such that
 - V \subseteq span(V)
 - $\textbf{-x,y} \in span(V) \Rightarrow \textbf{x+y} \in span(V)$
 - x \in span(V) and $\alpha \in \mathfrak{R} \Rightarrow \alpha$ x \in span(V)

© 2005-9 Seth Copen Goldsteir

70

Range, Span, Kernel

© 2005-9 Seth Copen Goldstein

- A matrix A can be viewed as a set of column vectors.
- Range $A^{n\times m}$ is $\{Ax | x \in \Re^m\}$
- span(A) = Range $A^{n \times m}$
- nullspace(A) = ker(A) = ker(A^{nxm}) = $\{x^m | Ax \in 0\}$
- rank(A) = dim(span(A))
- nullity(A) = dim(ker(A))
- rank(A)+nullity(A) = n, for $A^{n \times m}$

15-745

71

69