Outline

15-745
 Optimizing For Data Locality - 1

Seth Copen Goldstein Seth@cs.cmu.Edu

CMU

Based on "A Data Locality Optimizing Algorithm, Wolf \& Lam, PLDI '91

- The Problem
- Loop Transformations
- dependence vectors
- Transformations
- Unimodular transformations
- Locality Analysis
- SRP

The Issue

- Improve cache reuse in nested loops
- Canonical simple case: Matrix Multiply
for $I_{1}:=1$ to n
for $I_{2}:=1$ to n for $I_{3}:=1$ to n

$$
C\left[I_{1}, I_{3}\right]+=A\left[I_{1}, I_{2}\right]^{*} B\left[I_{2}, I_{3}\right]
$$

Tiling solves problem for $I_{1}:=1$ to n
for $I_{2}:=1$ to n
for $I_{3}:=1$ to n
$C\left[I_{1}, I_{3}\right]+=A\left[I_{1}, I_{2}\right] * B\left[I_{2}, I_{3}\right]$
for $\mathrm{II}_{2}:=1$ to n by s
for $\mathrm{II}_{3}:=1$ to n by s
for $I_{1}:=1$ to n
for $I_{2}:=I I_{2}$ to $\min \left(I I_{2}+s-1, n\right)$ for $I_{3}:=I I_{3}$ to $\min \left(I I_{3}+s-1, n\right)$ $C\left[I_{1}, I_{3}\right]+=A\left[I_{1}, I_{2}\right]{ }^{*} B\left[I_{2}, I_{3}\right]$;

The Problem

- How to increase locality by transforming loop nest
- Matrix Mult is simple as it is both
- legal to tile
- advantageous to tile
- Can we determine the benefit? (reuse vector space and locality vector space)
- Is it legal (and if so, how) to transform loop? (unimodular transformations)

Handy Representation:
"Iteration Space"

- each position represents an iteration

When Do Cache Misses Occur?

```
for i = 0 to N-1
    for j = 0 to N-1
    A[i][j] = B[j][i];
```


A

```
i00000000
00000000
00000000
00000000
00000000
00000000
00000000
000000000,
j
```

B
i 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

[^0]
When Do Cache Misses Occur?

When Do Cache Misses Occur?

```
for i = 0 to N-1
    for j = 0 to N-1
        A[i][j] = B[j][i];
for \(i=0\) to \(N-1\)
or \(\mathrm{j}=0\) to \(\mathrm{N}-1\) A[i][j] = B[j][i];
```

O Hit O Miss

A
i 000000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

B

i 00000000 00000000 00000000 00000000 000000000
000000000 00000000 00000000


```
for i= 0 to N-1 
for i= 0 to N-1 
for i = 0 to N-1 
```

i00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
$\xrightarrow[j]{ }$ 00000000 00000000 00000000 00000000 00000000 00000000

When Do Cache Misses Occur?

Optimizing the Cache Behavior of Array Accesses

- We need to answer the following questions:
- when do cache misses occur?
- use "locality analysis"
- can we change the order of the iterations (or possibly data layout) to produce better behavior?
- evaluate the cost of various alternatives
- does the new ordering/layout still produce correct results?
- use "dependence analysis"

Examples of Loop Transformations

- Loop Interchange
- Cache Blocking
- Skewing
- Loop Reversal
-

Loop Interchange

 for \(j=0\) to \(N-1\)
 A[j][i] = i*j;
 or j = 0 to N-1
or j = 0 to N-1
for i = 0 to N-1
for i = 0 to N-1
A[j][i] = i*j;
A[j][i] = i*j;
i

- (assuming N is large relative to cache size)

Cache Blocking (aka "Tiling")

```for i = 0 to N-1 for j = 0 to N-1 \longrightarrow f(A[i],A[j]);```	```for JJ = 0 to N-1 by B for i = 0 to N-1 for j = JJ to max(N-1,JJ+B-1) f(A[i],A[j]);```
$\underline{A[i]} \quad \underline{A[j]}$	$\underline{A[i]} \quad \mathrm{A}[\mathrm{j}]$
io 0000000   00000000   -0000000   00000000   -0000000   00000000   ○○○○○○○○   00000000   io 0000000   00000000   ○○○○○○○○   00000000   ○○○○○○○○   ○○○○○○○○   -0000000   00000000 j	io 0000000 ○○○○○○○○ ○○○○○○○○ ○○○○○○○○ ○○○○○○○○ 00000000 ○○○○○○○○   io0000000 00000000 $\bigcirc \circ \circ$ ○○○○○ ○○○○○○○○ $\circ$ ○○○○○○○    ○○○○○○○○ 00000000
now we can exp	loit locality

now we can exploit locality
i
$0-0000000000000$ -00000-0-0-9-0-0 0-000-0-0-0-0-0-0-0 $0-0000000-0-0-0$ -000000-0-0-0-0-0 $0-0-0-0-0,0$ O-O 0-000-0-0-0-0-O-O $0-0,0-0-0-0-0,0-0$ O-000-0-0-0-0-0-0

for $\mathrm{JJ}=0$ to $\mathrm{N}-1$ by B for $i=0$ to $N-1$
for $\mathrm{j}=\mathrm{JJ}$ to $\max (\mathrm{N}-1, \mathrm{JJ}+\mathrm{B}-1)$ f(A[i],A[j]);
i $\uparrow$
Q-O-O O-O O-O O Qश्OO QNOO QशOO
 स्त्रि जस्ति बस्थि Q200 -200 Q200 बश्OO जश्नO -900
 Q-0, -2000 Q-0 QWOO QWO


## Cache Blocking (aka "Tiling")



## Cache Blocking in Two Dimensions

for $\mathrm{i}=0$ to $\mathrm{N}-1$
for $\mathrm{j}=0$ to $\mathrm{N}-1$ for $k=0$ to $N-1$ $c[i, k]+=a[i, j] * b[j, k] ;$
for $\mathrm{JJ}=0$ to $\mathrm{N}-1$ by B
for $\mathrm{KK}=0$ to $\mathrm{N}-1$ by B
for $\mathrm{i}=0$ to $\mathrm{N}-1$
for $\mathrm{j}=\mathrm{JJ}$ to $\max (\mathrm{N}-1, \mathrm{JJ}+\mathrm{B}-1)$
for $k=K K$ to $\max (N-1, K K+B-1)$ c[i,k] += $a[i, j] * b[j, k] ;$

- brings square sub-blocks of matrix "b" into the cache
- completely uses them up before moving on


## Steps in Locality Analysis

1. Find data reuse

- if caches were infinitely large, we would be finished

2. Determine "localized iteration space"

- set of inner loops where the data accessed by an iteration is expected to fit within the cache

3. Find data locality:

- reuse $\supseteq$ localized iteration space $\supseteq$ locality


## Types of Data Reuse/Locality



Kinds of reuse and the factor

```
for I I
 for }\mp@subsup{I}{2}{}:=0\mathrm{ to 6
```



## Kinds of reuse and the factor

```
for \(i=0\) to \(N-1\)
 for \(\mathrm{j}=0\) to \(\mathrm{N}-1\)
 f(A[i],A[j]);
 What kinds of reuse are there?
\(A[i]\) ?
```


## Kinds of reuse and the factor

```
for I}\mp@subsup{I}{1}{}:=0\mathrm{ to 5
 for }\mp@subsup{I}{2}{}:=0\mathrm{ to 6
```



```
 self-temporal in 1, self-spatial in 2
 Also, group spatial in 2
 What is different about this and previous?
 for i = 0 to N-1
 for j = 0 to N-1
 f(A[i],A[j]);
```


## Uniformly Generated references

- $f$ and $g$ are indexing functions: $Z^{n} \rightarrow Z^{d}$
$-n$ is depth of loop nest
- $d$ is dimensions of array, $A$
- Two references $A[f(i)]$ and $A[g(i)]$ are uniformly generated if

$$
f(i)=H i+c_{f} \text { AND } g(i)=H i+c_{g}
$$

- $H$ is a linear transform
- $c_{f}$ and $c_{g}$ are constant vectors


## Eg of Uniformly generated sets

These references all belong to the same
for $I_{1}:=0$ to uniformly generated set: $H=\left[\begin{array}{ll}0 & 1\end{array}\right]$ for $I_{2}$ := 0 to 6
$\mathrm{A}\left[I_{2}+1\right]=1 / 3 *\left(\mathrm{~A}\left[I_{2}\right]+\mathrm{A}\left[I_{2}+1\right]+\mathrm{A}\left[I_{2}+2\right]\right)$
$\mathrm{A}\left[I_{2}+1\right]$
$\left[\begin{array}{lll}0 & 1\end{array}\right]\binom{I_{1}}{I_{2}}+\left[\begin{array}{ll}1 & 1\end{array}\right]$
$\mathrm{A}\left[I_{2}\right]$
$\left[\begin{array}{lll}0 & 1\end{array}\right]\binom{\mathbf{I}_{1}}{\mathbf{I}_{2}}+\left[\begin{array}{lll}0 & 0\end{array}\right]$
$\mathrm{A}\left[I_{2}+2\right]$
$\left[\begin{array}{lll}0 & 1\end{array}\right]\binom{I_{1}}{I_{2}}+\left[\begin{array}{ll}2 & 1\end{array}\right]$
15-745

## Quantifying Reuse

-Why should we quantify reuse?

- How do we quantify locality?
- Use vector spaces to identify loops with reuse
- We convert that reuse into locality by making the "best" loop the inner loop
- Metric: memory accesses/iter of innermost loop. No locality $\rightarrow$ mem access
-Why should we quantify reuse?
- How do we quantify locality?


## Self-Temporal

- For a reference, $\mathrm{A}[\mathrm{Hi}+\mathrm{c}]$, there is self-temporal reuse between $m$ and $n$ when $H m+c=H n+c$, i.e., $H(r)=0$, where $\mathbf{r}=\mathbf{m}-\mathrm{n}$.
- The direction of reuse is $r$.
- The self-temporal reuse vector space is: $\mathrm{R}_{S T}=\operatorname{Ker} H$
- There is locality if $R_{S T}$ is in the localized vector space.

Recall that for $n \times m$ matrix $A$, the $\operatorname{ker} A=\operatorname{nullspace}(A)=\left\{x^{m} \mid A x=0\right\}$

## Example of self-temporal reuse

for $I_{1}:=1$ to $n$
for $I_{2}:=1$ to $n$
for $I_{3}:=1$ to $n$
$\mathrm{C}\left[\mathrm{I}_{1}, \mathrm{I}_{3}\right]+=\mathrm{A}\left[\mathrm{I}_{1}, \mathrm{I}_{2}\right] * \mathrm{~B}\left[\mathrm{I}_{2}, \mathrm{I}_{3}\right]$

$$
\begin{aligned}
& \text { Access } H \text { ker } H \text { reuse? Local? } \\
& C\left[I_{1}, I_{3}\right]\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \operatorname{span}\{(0,1,0)\} n \text { in } I_{2} \\
& A\left[I_{1}, I_{2}\right]\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \operatorname{span}\{(0,0,1)\} \\
& B\left[I_{2}, I_{3}\right]\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \operatorname{span}\{(1,0,0)\}
\end{aligned}
$$

- Reuse is $s^{\text {dim(Rst) }}$
- $R_{S T}$ insersect $L=$ locality
- \# of mem refs = 1/above


## Self-Spatial

- Occurs when we access in order
- A[i,j]: best gain, I
- $A[i, j * k]$ : best gain, $1 / k$ if $|k|<=1$
- How do we get spatial reuse for UG: H?


## Self-Spatial

- Occurs when we access in order
- A[i,j]: best gain, I
- A[i,j*k]: best gain, $1 / k$ if $|k|<=1$
- How do we get spatial reuse for UG: H?
- Since all but row must be identical, set last row in H to $\mathrm{O}, \mathrm{H}_{\text {s }}$ self-spatial reuse vector space $=R_{S S}$

$$
R_{S S}=\operatorname{ker} H_{S}
$$

- Notice, ker $\mathrm{H} \subseteq$ ker $\mathrm{H}_{s}$
- If, $R_{s S} \cap L=R_{S T} \cap L$, then no additional benefit to SS $\qquad$


## Example of self-spatial reuse

    Access H}\mp@subsup{H}{s}{}\mathrm{ ker Hs reuse? Local?
    C[I',I_ ] ] (llll}
    A[\mp@subsup{I}{1}{\prime},\mp@subsup{I}{2}{}]}(\begin{array}{lll}{1}&{0}&{0}\\{0}&{0}&{0}\end{array})\quad\begin{array}{r}{\operatorname{span{(0,0,1),}}\\{(0,1,0)}}
    B[I, I, I_ ] (llll}\begin{array}{lll}{0}&{1}&{0}\\{0}&{0}&{0}\end{array})\quad\begin{array}{r}{\operatorname{span{(1,0,0),}}\\{(0,0,1)}}
    ```
```

```
for }\mp@subsup{I}{1}{}:=1\mathrm{ to n
```

```
for }\mp@subsup{I}{1}{}:=1\mathrm{ to n
 for }\mp@subsup{I}{2}{}:=1\mathrm{ to n
 for }\mp@subsup{I}{2}{}:=1\mathrm{ to n
 for }\mp@subsup{I}{3}{}:=1\mathrm{ to }
 for }\mp@subsup{I}{3}{}:=1\mathrm{ to }
 C[I
 C[I
```

    for }\mp@subsup{\textrm{I}}{2}{
    ```
```

    for }\mp@subsup{\textrm{I}}{2}{
    ```

\section*{Self-spatial reuse/locality}
- \(\operatorname{Dim}\left(R_{S S}\right)\) is dimensionality of reuse vector space.
- If \(R_{S S}=0 \rightarrow\) no reuse
- If \(R_{S S}=R_{S T}\) no extra reuse from spatial
- Reuse of each element is \(\mathrm{k} / \mathrm{Is} \mathrm{s}^{\text {dim(R_ss) }}\) where, \(s\) is number of iters per dim.
- \(R_{S S} \cap L\) is amount of reuse exploited, therefore number of memory references generated is:
\[
\text { k/ISdim(R_ST } \sim L)
\]

\section*{Group Temporal}
- Two refs \(\mathrm{A}[\mathrm{Hi}+\mathrm{c}]\) and \(\mathrm{A}[\mathrm{Hi}+\mathrm{d}]\) can have group temporal reuse in Liff
- they are from same uniformly generated set
- There is an \(r \in L\) s.t. \(\mathrm{Hr}=\mathrm{c}-\mathrm{d}\)
- if \(c-d=r_{p}\), then there is group temporal reuse, \(R_{G T}=\) ker \(H+s p a n\left\{r_{p}\right\}\)
- However, there is no extra benefit if \(R_{G T} \cap L=R_{S T} \cap L\)

\section*{Example:}
```

For i = 1 to n
for j=i to n
A[i,j] = 0.2*(A[i,j]+A[i+1,j]+
A[i-1,j]+A[i,j+1]+A[i,j-1])
If L = span{j}, since ker H=\varnothing:
A[i,j] and A[i,j-1] > (0,0)-(0,-1) \inspan{(0,1)} yes
A[i,j-1] and A[i+1,j] -> (0,-1)-(1,0) \not\in\operatorname{span{(0,1)} no}

```

Notice equivalence classes

Evaluating group temporal reuse
- Divide all references from a uniformly generated set into equiv classes that satisfy the \(R_{G T}\)
- For a particular \(L\) and \(g\) references
- Don't count any group reuse when \(R_{G T} \cap L=R_{S T} \cap L\)
- number of equiv classes is \(9_{T}\).
- Number of mem references is \(g_{T}\) instead of 9

\section*{Total memory accesses}
- For each uniformly generated se \(\dagger\) localized space, L
line size, \(z\)
\[
\begin{aligned}
& \frac{g_{S}+\left(g_{T}-g_{S}\right) / z}{z^{e} S^{\operatorname{dim}\left(R_{S S} \cap L\right)}} \\
& \text { where } e=\left\{\begin{array}{l}
0 \text { if } R_{S T} \cap L=R_{S S} \cap L \\
1 \text { otherwise }
\end{array}\right.
\end{aligned}
\]

\section*{Now what?}
- We have a way to characterize
- Reuse (potential for locality)
- Local iteration space
- Can we transform loop to take advantage of reuse?
- If so, can we?

\section*{Loop Transformation Theory}
- Iteration Space
- Dependence vectors
- Unimodular transformations

Loop Nests and the Iter space
- General form of tightly nested loop
```

for I}\mp@subsup{I}{1}{}:=\mp@subsup{low}{1}{}\mathrm{ to high by step
for I}\mp@subsup{I}{2}{}:= = low to high b by step 2

```

```

            for }\mp@subsup{I}{n}{}:= low to highn by step n
                Stmts
    ```
- The iteration space is a convex polyhedron in \(z^{n}\) bounded by the loop bounds.
- Each iteration is a node in the polyhedron identified by its vector: \(p=\left(p_{1}, p_{2}, \ldots, p_{n}\right)\)

\section*{Iteration Space}

Every iteration generates a point in an \(n\)-dimensional space, where \(n\) is the depth of the loop nest.
```

for (i=0; i<n; i++) {

```
\}
```

for (i=0; i<n; i++)

```
 for (\(\mathrm{j}=0\); \(\mathrm{j}<4\); \(\mathrm{j}++\)) \{
\}
(4)

(2,1,1), (2,1,2), (2,1,3), ...
- \((1,2,1)>_{2}(1,1,2),(2,1,1)>_{1}(1,4,2)\), etc.

\section*{Dependence Vectors}
- Dependence vector in an n-nested loop is denoted as a vector: \(d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)\).
- Each \(d_{i}\) is a possibly infinite range of ints in \(\left[d_{i}^{\min }, d_{i}^{\max }\right]\), where
\[
d_{i}^{\min } \in \mathrm{Z} \cup\{-\infty\}, d_{i}^{\max } \in \mathrm{Z} \cup\{\infty\} \text { and } d_{i}^{\min } \leq d_{i}^{\max }
\]
- So, a single dep vector represents a set of distance vectors.
- A distance vector defines a distance in the iteration space.
- A dependence vector is a distance vector if each \(\mathrm{d}_{\mathrm{i}}\) is a singleton.

\section*{Other defs}
- Common ranges in dependence vectors
\(-[1, \infty]\) as + or >
- \([-\infty,-1]\) as - or <
- \([-\infty, \infty]\) as \(\pm\) or *
- A distance vector is the difference between the target and source iterations (for a dependent ref), e.g.,
\[
d=I_{t}-I_{s}
\]

\section*{Examples}
```

for }\mp@subsup{I}{1}{}:=1 to
for }\mp@subsup{I}{2}{}:=1\mathrm{ to n
for I I
C[I},\mp@subsup{I}{1}{},\mp@subsup{I}{3}{\prime}+=A[\mp@subsup{I}{1}{},\mp@subsup{I}{2}{}]*B[\mp@subsup{I}{2}{},\mp@subsup{I}{3}{}

```
```

for I
for }\mp@subsup{I}{2}{}:=0\mathrm{ to 6

```


\section*{Plausible Dependence vectors}
- A dependence vector is plausible iff it is lexicographically non-negative.
- All sequential programs have plausible dependence vectors. Why?
- Plausible: \((1,-1)\)
- implausible \((-1,0)\)

\section*{Loop Transforms}
- A loop transformation changes the order in which iterations in the iteration space are visited.
- For example, Loop Interchange
```

for i:=0 to n
for j :=0 to m
body
io oooo
00000
Q0000
00-0
000-0
O-O-O


## Interchange

- Change order of loops
- For some permutation p of 1 ... $n$

-When is this legal?


## Unimodular Transforms

- Interchange permute nesting order
- Reversal reverse order of iterations
- Skewing
scale iterations by an outer loop index

Transform and matrix notation

- If dependences are vectors in iter space, then transforms can be represented as matrix transforms
- E.g., for a 2-deep loop, interchange is:

$$
T=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
p_{1} \\
p_{2}
\end{array}\right]=\left[\begin{array}{c}
p_{2} \\
p_{1}
\end{array}\right]
$$

- Since, T is a linear transform, Td is transformed dependence:

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
d_{1} \\
d_{2}
\end{array}\right]=\left[\begin{array}{l}
d_{2} \\
d_{1}
\end{array}\right]
$$

## Reversal

- Reversal of $i^{\text {th }}$ loop reverses its traversal, so it can be represented as:


## Reversal

- Reversal of $i^{\text {th }}$ loop reverses its traversal, so it can be represented as: Diagonal matrix with $i^{\text {th }}$ element $=-1$.
- For 2 deep loop, reversal of outermost is:

$$
T=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right] \quad\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
p_{1} \\
p_{2}
\end{array}\right]=\left[\begin{array}{c}
-p_{1} \\
p 2
\end{array}\right]
$$

15-745

## Skewing

- Skew loop $I_{j}$ by a factor $f$ w.r.t. loop $I_{i}$ maps

$$
\left(p_{1}, \ldots, p_{i}, \ldots, p_{j}, \ldots\right) \quad\left(p_{1}, \ldots, p_{i}, \ldots, p_{j}+f p_{i}, \ldots\right)
$$

- Example for 2D

$$
T=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right] \quad\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{c}
p_{1} \\
p_{2}
\end{array}\right]=\left[\begin{array}{c}
p_{1} \\
p_{2}+p_{1}
\end{array}\right]
$$

## Loop Skewing Example


for $I_{1}:=0$ to 5

$$
\text { for } I_{2}:=I_{1} \text { to } 6+I_{1}
$$

$$
A\left[I_{2}-I_{1}+1\right]:=1 / 3^{*}\left(A\left[I_{2}-I_{1}\right]+A\left[I_{2}-I_{1}+1\right]+A\left[I_{2}-I_{1}+2\right]\right)
$$

$$
D=\{(0,1),(1,1),(1,0)\}
$$

But...is the transform legal?

- Distance/direction vectors give a partial order among points in the iteration space
- A loop transform changes the order in which 'points' are visited
- The new visit order must respect the dependence

But...is the transform legal?

- Loop reversal ok?
- Loop interchange ok?
for $i=0$ to $N-1$
for $\mathrm{j}=0$ to $\mathrm{N}-1$
A[i+1][j+1] += A[i][j];

But...is the transform legal?

- Loop reversal ok?
- Loop interchange ok?
for $i=0$ to $N-1$
for $\mathrm{j}=0$ to $\mathrm{N}-1$ A[i+1][j] += A[i][j];


But....is the transform legal?

- What other visit order is legal here?
for $i=0$ to TS
for $j=0$ to $N-2$
$A[j+1]=$
$(A[j]+A[j+1]+A[j+2]) / 3$


But...is the transform legal?

- What other visit order is legal here?
for $i=0$ to $T S$
for $\mathrm{j}=0$ to $\mathrm{N}-2$
$A[j+1]=$
$(A[j]+A[j+1]+A[j+2]) / 3 ;$

But...is the transform legal?

- Skewing...


But...is the transform legal?

- Skewing...now we can loop interchange



## Unimodular transformations

- Express loop transformation as a matrix multiplication
- Check if any dependence is violated by multiplying the distance vector by the matrix if the resulting vector is still lexicographically positive, then the involved iterations are visited in an order that respects the dependence.
Reversal Interchange Skew

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & -1
\end{array}\right) \quad\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

"A Data Locality Optimizing Algorithm", M.E.Wolf and M.Lam

## Next Time

- Putting it all together: SRP
- Other loop transformations for locality


## Linear Algebra

- Vector Spaces
- Linear Combinations
- dimensions
- Spans
- Kernels


## Vector Spaces

- n is a point in n -space
- $V=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ is a finite set of $n$ vectors over $m \mathfrak{R}^{n}$.
- Linear combination of vectors of V is a vector $x$ as defined by

$$
\boldsymbol{x}=\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\ldots+\alpha_{m} \mathbf{v}_{m}
$$ where $\alpha_{i}$ are real numbers.

- $V$ is linearly dependent if a combination results in the $\mathbf{0}$ vector, otherwise it is linearly independent.


## Dim and Basis

- dimensionality of V is $\operatorname{dim}(\mathrm{V})$ the number of independent vectors in $V$
- A basis for an m-dimensional vector space is a set of linearly independent vectors such that every point in $V$ can be expressed as a linear comb of the vectors in the basis.
- The vectors in the basis are called basis vectors

Subspaces and span

- Let $V$ be a set of vectors
- The subspace spanned by $V$, $\operatorname{span}(\mathrm{V})$, is a subset of $\mathfrak{R}^{n}$ such that
$-\mathrm{V} \subseteq \operatorname{span}(\mathrm{V})$
$-x, y \in \operatorname{span}(V) \Rightarrow x+y \in \operatorname{span}(V)$
$-x \in \operatorname{span}(V)$ and $\alpha \in \mathfrak{R} \Rightarrow \alpha x \in \operatorname{span}(V)$


## Range, Span, Kernel

- A matrix A can be viewed as a set of column vectors.
- Range $A^{n \times m}$ is $\left\{A x \mid x \in \mathfrak{R}^{m}\right\}$
- $\operatorname{span}(A)=$ Range $A^{n \times m}$
- $\operatorname{nullspace}(A)=\operatorname{ker}(A)=\operatorname{ker}\left(A^{n \times m}\right)=$ $\left\{x^{m} \mid A x \in 0\right\}$
- $\operatorname{rank}(A)=\operatorname{dim}(\operatorname{span}(A))$
- $\operatorname{nullity}(A)=\operatorname{dim}(\operatorname{ker}(A))$
- $\operatorname{rank}(A)+n u l l i t y(A)=n$, for $A^{n \times m}$


[^0]:    Note: iteration space is not data space

