15-745 Lecture 7

Data Dependence in Loops - 2
Complex spaces
Delta Test
Merging vectors

Copyright © Seth Goldstein, 2008-9
Based on slides from Allen\&Kennedy $15-745$ © 2005-9

The General Problem

```
DO i
    DO i}\mp@subsup{i}{2}{}=\mp@subsup{L}{2}{\prime},\mp@subsup{U}{2}{
        DO in}=\mp@subsup{L}{n}{\prime},\mp@subsup{U}{n}{
    S
    \mp@subsup{S}{2}{}\quad\ldots=A(\mp@subsup{g}{1}{}(\mp@subsup{i}{1}{},\ldots,\mp@subsup{i}{n}{}),\ldots,\mp@subsup{g}{m}{}(\mp@subsup{i}{1}{},\ldots,\mp@subsup{i}{n}{}))
        ENDDO
    ENDDO
ENDDO
A dependence exists from S1 to S2 if:
- There exist \alpha and \beta such that
    -\alpha<\beta (control flow requirement)
    - }\mp@subsup{f}{i}{}(\alpha)=\mp@subsup{g}{i}{}(\beta)\mathrm{ for all i,1 sism (common access req)
```


Strong SIV Test

DO $i_{1}=L_{1}, U_{1}$
DO $i_{2}=L_{2}, U_{2}$

ZIV Test

```
    DO j = 1, 100
S A(e1) = A(e2) + B(j)
    ENDDO
e1,e2 are constants or loop invariant
    symbols
If (e1-e2)!=0 No Dependence exists
```


Can extend to symbolic constants

- Determine d symbolically
- If d is a constant, use previous procedure
- Otherwise, calculate U-L symbolically
- Compare U-L and d symbolically (\& hope)
- E.g.,
for $i=1$ to N
$A[i+2 \star N]=A[i]$

DO $i_{1}=L_{1}, U_{1}$

Weak-zero SIV Tes \dagger

DO $\mathrm{i}_{2}=\mathrm{L}_{2}, \mathrm{U}_{2}$

DO $\mathrm{i}_{\mathrm{n}}=\mathrm{L}_{\mathrm{n}}, \quad \mathrm{U}_{\mathrm{n}}$
$S_{1} \quad A\left(f_{1}\left(i_{1}, \ldots, i_{n}\right), \ldots, f_{m}\left(i_{1}, \ldots, i_{n}\right)\right)=\ldots$
$S_{2} \quad \ldots=A\left(g_{1}\left(i_{1}, \ldots, i_{n}\right), \ldots, g_{m}\left(i_{1}, \ldots, i_{n}\right)\right)$
ENDDO
ENDDO
ENDDO

- Weak-Zero SIV test when
- $f(. .)=.a i_{k}+c_{1}$ and $g(. .)=.c_{2}$
- Plug in α, β and solve for dependence:
- $\alpha=\left(c_{2}-c_{1}\right) / a$
- A dependence exists from S1 to S2 if:
- α is an integer
- $L_{k} \leq \alpha \leq U_{k}$

Weak-crossing SIV Tes \dagger
DO $i_{1}=L_{1}$,
DO $i_{2}=L_{2}, U_{2}$

```
    S
    S _ ... = A( }\mp@subsup{g}{1}{}(\mp@subsup{i}{1}{},\ldots,\mp@subsup{i}{n}{}),\ldots,\mp@subsup{g}{m}{}(\mp@subsup{i}{1}{},\ldots,\mp@subsup{i}{n}{})
```

 ENDDO
 ENDDO
ENDDO

- Weak-Zero SIV test when
- $f(\ldots)=a i_{k}+c_{1}$ and $g(\ldots)=-a i_{k} c_{2}$
- To find crossing point, set $\alpha=\beta$ and solve:
- $\alpha=\left(c_{2}-c_{1}\right) / 2 a$
- A dependence exists from S1 to S2 if:
- 2α is an integer
- $L_{k} \leq \alpha \leq U_{k}$

Non-rectangular spaces

- Triangular iteration space when only one loop bound depends on an outer loop index
- Trapezoidal space when both loop bounds depend on an outer loop index
- Example:

```
    for i=1 to N
        for j=L + +L_L *I to U U + + (1*I
            A[j+D] = .
            ... = A[j]
    -Is d in loop bounds?
```


Complex Iteration Spaces

- For example consider this special case of a strong SIV subscript

$$
\text { DO } I=1, N
$$

$$
\text { DO } \mathrm{J}=\mathrm{L}_{0}+\mathrm{L}_{1}{ }^{*} \mathrm{I}, \mathrm{U}_{0}+\mathrm{U}_{1}^{*} \mathrm{I}
$$

S1

$$
A(J+d)=
$$

$S 2=A(J)+B$
ENDDO
ENDDO

Complex Iteration Spaces

- Strong SIV test gives dependence if

$$
\begin{gathered}
|d| \leq U_{0}-L_{0}+\left(U_{1}-L_{1}\right) I \\
I \geq \frac{|d|-\left(U_{0}-L_{0}\right)}{U_{1}-L_{1}}
\end{gathered}
$$

- Unless this inequality is violated for all values of I in its iteration range, we must assume a dependence in the loop

Breaking Conditions

- Consider the following example

DO I = 1, L

S1 $\quad A(I+N)=A(I)+B$ ENDDO

- If $L<=N$, then there is no dependence from S_{1} to itself
- $\mathrm{L}<=\mathrm{N}$ is called the Breaking Condition

Using Breaking Conditions

- Using breaking conditions the vectorizer can generate alternative code

IF ($\mathrm{L}<=\mathrm{N}$) THEN
$A(N+1: N+L)=A(1: L)+B$
ELSE
DO $\mathrm{I}=1$, L
S1 $\quad A(I+N)=A(I)+B$
ENDDO
ENDIF

Index Set Splitting

DO $\mathrm{I}=1,100$
DO $\mathrm{J}=1, \mathrm{I}$
S1 $\quad A(J+20)=A(J)+B$
ENDDO
ENDDO
For values of $\quad I<\frac{|d|-\left(U_{0}-L_{0}\right)}{U_{1}-L_{1}}=\frac{20-(-1)}{1}=21$
there is no dependence

Index Set Splitting

- This condition can be used to partially vectorize S1 by Index set splitting as shown

DO I = 1, 20
DO $\mathrm{J}=1$, I
S1a $A(J+20)=A(J)+B$
ENDDO
ENDDO
DO $I=21,100$
DO J = 1, Ix
S1b

$$
A(J+20)=A(J)+B
$$

ENDDO
ENDDO

Now the inner loop for the first nest can be vectorized.

How are we doing so far?

- Empirical study froom Goff, Kennedy, \& Tseng
- Look at how often independence and exact dependence information is found in 4 suites of fortran programs
- Compare ZIV, SIV (strong, weak-0, weak-crossing, exact), MIV, Delta
- Check usefulness of symbolic analysis
- ZIV used 44% of time and proves 85% of indep
- Strong-SIV used 33% of time and proves 5% (success per application 97\%)
- S-SIV, 0-SIV, x-SIV used 41%
- MIV used only 5% of time
- Delta used 8% of time, proves 5% of indep
netwive Coupled subscripts rare ${ }_{5}\left(20 \%{ }_{2} \%\right.$ overall, but concentrated)

Basics:Coupled Subscript Groups

-Why are they important?
Coupling can cause imprecision in dependence testing

```
DO I = 1, 100
S1 A(I+1,I)=B(I) + C
S2 D(I) = A(I,I) * E
ENDDO
```


Dealing w/ Coupled Groups

- subscript-by-subscript testing too imprecise

However, we could intersect deps DO I = 1, 100
S1 $\quad A(I+1, I)=B(I)+C$
S2 $D(I)=A(I, I)$ * E
ENDDO
first yields $d=+1$, second $d=0$. That's impossible. Therefore, no dependence

- Delta test uses this intuition when the subscripts are SIV to apply information between indices

Constraints

- An assertion about an index that must hold for a dependence to exist.
- So, when intersection of constraints is empty, must be independent
- In Delta test we generate constraints from SIV tests, so distance (or direction vector) is sufficient

Delta Test

Procedure delta(subscr, constr)
Init constraint vector C to <none>
while exist untested SIV subscripts in subscr apply SIV test to all untested SIV subscripts return independence, or derive new constraint vector C^{\prime}. $C^{\prime}<-C \cap C^{\prime}$
If $C^{\prime}=\varnothing$ then return independence
else if C ! $=C^{\prime}$ then
C <- C'
propagate C into MIV subscripts
apply ZIV test to untested ZIV subscripts return independence if no solution
while exist untested RDIV subscripts
test and propogate RDIV constants
test remaining MIV subscripts using MIV tests
intersect direction vectors with C, and return

Examples

For I
For J

$$
\begin{aligned}
& A[I+1, I+J]=\ldots \\
& \ldots=A[I, I+J-1]
\end{aligned}
$$

Apply SIV to yield: $\Delta \mathrm{I}=1$

$\mathrm{I}_{0}+\mathrm{J}_{0}$	$=\mathrm{I}_{0}+\Delta \mathrm{II}+\mathrm{J}_{0}+\Delta J \mathrm{~J}-1$		
0	$=\Delta \mathrm{II}$	$\Delta \mathrm{J}-1$	
	$=$	$1+$	$\Delta \mathrm{J}-1$
$\Delta \mathrm{~J}$	$=$		

$$
\Delta J=0
$$

For I, For J, For K

$$
A[J-I, I+1, J+K]=A[J-I, I, J+K]
$$

Apply SIV to yield: $\Delta \mathrm{I}=1$ $J_{0}-I_{0}=J_{0}+\Delta J-I_{0}-\Delta I$
$0=\Delta J-\Delta I$
$0=\Delta J-1$
$\Delta \mathrm{J}=1$

$$
\begin{aligned}
\mathrm{J}_{0}+\mathrm{K}_{0} & =\mathrm{J}_{0}+\Delta \mathrm{J}+\mathrm{K}_{0}+\Delta \mathrm{K} \\
0 & =\Delta \mathrm{J}+\Delta \mathrm{K} \\
0 & =1+\Delta \mathrm{K} \\
\Delta \mathrm{~K} & =-1
\end{aligned}
$$

Merging Results

- After we test all subscripts we have vectors for each partition. Now we need to merge these into a set of direction vectors for the memory reference
- Since we partitioned into separable sets we can do cross-product of vectors from each partition.
- Start with a single vector $=\left({ }^{*}, *, \ldots,{ }^{*}\right)$ of length depth of loop nest.
- Foreach parition, for each index involved in vector create new set from
old vector-these indicies x this set

Example Merge

```
For I
    For J
S1 A[J-1]=
S2 ... = A[J]
```

For $1^{\text {st }}$ subscript in A using S_{1} as source and S_{2} as target: J has DV of -1
Merge -1 into (*,*) -> (*, -1). What does this mean?

- ($<,-1$): true dep in outer loop
- (=,-1): anti-dep from S_{2} to $S_{1} \rightarrow(=, 1)$
- $(>,-1)$: anti-dep from S_{2} to $S_{1} \mathrm{~S}_{1}$ in outer loop $\rightarrow(<,-1)$

