15-745 Lecture 7

Data Dependence in Loops - 2
Complex spaces
Delta Test
Merging vectors

Copyright © Seth Goldstein, 2008-9

Based on slides from Allen&Kennedy

Lecture 7 15-745 © 2005-9

The General Problem

DO i, = L,, U,
DO i, = L,, U,

DO i, = L,, U,

S, AP (g, -, i),---, (i, .-, iD) = ...
S YT C PN 1 VY W ¢ FON 1)\
ENDDO
ENDDO
ENDDO

A dependence exists from S1 to S2 if:

- There exist a and B such that
ca<pP (control flow requirement)
« fi(@)=g;(B)foralli, 1 <i<m (common access req)

Lecture 7 15-745 © 2005-9

ZIV Test

DO j = 1, 100
S A(el) = A(e2) + B(3)
ENDDO

el,e2 are constants or loop invariant
symbols

If (el-e2)!=0 No Dependence exists

Lecture 7 15-745 © 2005-9

wi - Strong SIV Test

DO i, = L,, U,

DO i, = L,, U,

S AEigs e ni) e Ty, i)) = Lo

S CTTCT 1 WS- N ¢ PR)
ENDDO

ENDDO

ENDDO

» Strong SIV test when
e f(...) = aiy+cy and g(...) = i +C,

* Plug in o, B and solve for dependence:
* B-a = (¢, - ¢;)/a

* A dependence exists from S1 to S2 if:
* B-a is an integer
s |B-a] <U,- L,

Lecture 7 15-745 © 2005-9

Can extend to symbolic constants

+ Determine d symbolically

« If dis a constant, use previous procedure
+ Otherwise, calculate U-L symbolically

+ Compare U-L and d symbolically (& hope)

- Egq.,
for 1=1 to N
A[i+2*N] = A[i]

ecture 7 15-745 © 2005-9

o - o Weak-zero SIV Test

DO i, = L,, U,

DO i, = L,, U,

S A(FCigsensi)see ol i)) = oo

S CTTC TR 1 WY N ¢ PR)
ENDDO

ENDDO

ENDDO

» Weak-Zero SIV test when
e f(..) = qaiy+c;and g(..) = ¢,

* Plug in o, B and solve for dependence:
e a=(c,-c)/a

* A dependence exists from S1 to S2 if:
* o is an integer
Ly < a<U,

Lecture 7 15-745 © 2005-9

w1 - .. Weak-crossing SIV Test

DO i, = L,, U,

DO i, =L,, U,

S, ACF (i, -, i)..--, LI CFpe i) = ...
S, ces S A,) (T, - i)
ENDDO
ENDDO
ENDDO

» Weak-Zero SIV test when
e f(...) = aiy+cy and g(...) = -qi,c,
* To find crossing point, set a = P and solve:
e a=(c,-cy)/2a
* A dependence exists from S1 to S2 if:
* 20 is an integer
L, < a<U,

eeeeee 7 15-745 © 2005-9

Non-rectangular spaces

* Triangular iteration space when only one loop
bound depends on an outer loop index

* Trapezoidal space when both loop bounds
depend on an outer loop index

+ Example:
for i=1 to N
for' \i:LO+L1*I to U0+U1*I
A[j+D] = ..
.= Al]

—Is d in loop bounds?

Lecture 7 15-745 © 2005-9

Complex Iteration Spaces

* For example consider this special case of a strong SIV
subscript

DO 1 = 1,N
DO J = L, + L;*I, U, + U;*I
S1 AQ + d) =
S2 = A(Jd) + B
ENDDO
ENDDO

Complex Iteration Spaces

» Strong SIV test gives dependence if

ld <t -1, +(U -L)

URCRS)
Ul_Ll

* Unless this inequality is violated for all values of

I inits iteration range, we must assume a
dependence in the loop

Breaking Conditions

» Consider the following example
DO1 =1, L

S1 A(1 + N) = A(1) + B
ENDDO

* If L<=N, then there is no dependence from s, to
itself

= L<=N is called the Breaking Condition

Using Breaking Conditions

+ Using breaking conditions the vectorizer can generate

alternative code
IF (L<=N) THEN
A(N+1:N+L) = A(l:L) + B

ELSE
DO I =1, L

S1 A(l + N) = A(1) + B
ENDDO

ENDIF

Index Set Splitting

DO I = 1,100
DO J =1, I

s1 A(J+20) = AQJ) + B
ENDDO

ENDDO

ld-(U,— L) 20-(-1
For values of < U(l_LllO): 1() o)

there is no dependence

Lecture 7 15-745 © 2005-9 13

Index Set Splitting

+ This condition can be used to partially vectorize
S1 by Index set splitting as shown

DO I = 1,20
DO J =1, 1
Sla A(J+20) = A(J) + B
=NDBO Now the inner loop f
i
ENDDO Thoewfi r‘se‘r ne:: c?z%pbeor
DO I = 21,100 vectorized.
DO J =1, Ix
S1b A(J+20) = AQJ) + B
ENDDO
ENDDO

Lecture 7 15-745 © 2005-9 14

How are we doing so far?
* Empirical study froom Goff, Kennedy, & Tseng

- Look at how often independence and exact
dependence information is found in 4 suites of
fortran programs

- Compare ZIV, SIV (strong, weak-0, weak-crossing,
exact), MIV, Delta

- Check usefulness of symbolic analysis
* ZIV used 447% of time and proves 85% of indep

+ Strong-SIV used 33% of time and proves 5%
(success per application 97%)

+ S5-SIV, 0-SIV, x-SIV used 41%
* MIV used only 5% of time
+ Delta used 8% of time, proves 5% of indep

Basics:Coupled Subscript Groups

* Why are they important?

Coupling can cause imprecision in dependence
testing

DO I = 1, 100
st A(1+1,1) = B(l) + C
s2 D(I) = A(1,1) * E
ENDDO

Lecture 7 15-745 © 2005-9 16

Dealing w/ Coupled Groups

* subscript-by-subscript testing too imprecise
However, we could intersect deps
DO I = 1, 100
s1 A(1+1,1) = B(1) + C
S2 D(1) = A(l,1) * E
ENDDO
first yields d=+1, second d=0. That's
impossible. Therefore, no dependence
+ Delta test uses this intuition when the
subscripts are SIV to apply information
between indices

Lecture 7 15-745 © 2005-9

Constraints

« An assertion about an index that must hold for
a dependence to exist.

* So, when intersection of constraints is empty,
must be independent

* In Delta test we generate constraints from
SIV tests, so distance (or direction vector) is
sufficient

ecture 7 15-745 © 2005-9

Delta Test

Procedure delta(subscr, constr)
Init constraint vector C to <none>

while exist untested SIV subscripts in subscr
apply SIV test to all untested SIV subscripts
return independence, or derive new constraint vector C’.
C><-CnC”
IT C” = @ then return independence
else if C 1= C* then
C<-2C~
propagate C into MIV subscripts
apply ZI1V test to untested ZI1V subscripts
return independence if no solution
while exist untested RDIV subscripts
test and propogate RDIV constants
test remaining MIV subscripts using MIV tests
intersect direction vectors with C, and return

Lecture 7 15-745 © 2005-9

Examples
For I Apply SIV to yield: AI=1
For J
A[T+1,T+7] = .. fog LT
.. = A[L, I+J-1] 1+ AJ-1

AT=0
For I, For J, For K
A[T-I,I+1,J+K] = A[J-I,I,J+K]

Apply SIV fo yield: AI=1 Jo+Ko = Jo+tAT+Ky+AK

‘IO_IO = Jo"’AJ-Io'AI _
0= AJ-AI 0= AT +AK
0= AJ-1 0=1 +AK

- AK = -1

AJ - 1 15-745 © 2005-9

Merging Results

+ After we test all subscripts we have vectors
for each partition. Now we need to merge
these into a set of direction vectors for the
memory reference

+ Since we partitioned into separable sets we can
do cross-product of vectors from each
partition.

- Start with a single vector = (**,...,*) of length
depth of loop nest.

+ Foreach parition, for each index involved in
vector create new set from
old vector-these indicies x this set

Lecture 7 15-745 © 2005-9

Lecture

Example Merge

ForI
For J
S, A[J-1]1=.
S, ..=A[J]

For 1sf subscript in A using S; as source and S, as
target: J has DV of -1

Merge -1 into (*,*) -> (*,-1). What does this mean?
* (<,-1): true dep in outer loop

* (=,-1): anti-dep from S, to S; > (=,1)

. (>,-1): anti-dep from Sz‘roSl in outer loop > (<,—1)22

Next Time...

+ Improving cache locality using dependence
information

