15-745 Lecture 6

Data Dependence in Loops

Copyright © Seth Goldstein, 2008

Based on slides from Allen&Kennedy

15-745 © 2005-8

Common loop optimizations

* Hoisting of loop-invariant computations

- pre-compute before entering the loop

+ Elimination of induction variables

- change p=i*w+b to p=b p+=w, when w,b invariant

* Loop unrolling

- to to improve scheduling of the loop body

+ Software pipelining

* Loop permutation

data

Requires
understanding

dependencies

15-745 © 2008

Why Dependence Analysis

« Goal is to find best schedule:

- Improve memory locality
- Increase parallelism
- Decrease scheduling stalls

- Before we schedule we need to know possible

legal schedules and impact of schedule on
performance

15-745 © 2005-8

Example to improve locality

fori=0 to N
for j=0 to M
A[j]= f(ALD):

Is there a better schedule?

Iteration space

Unroll to see deps

A[0] = f(A[O]) i

A[0]«A[0] | A[1]«A[1] | A[2] <A[2] | A[3]«A[3]
A[0] <A[0] | A[1]«A[1] | A[2] <A[2] | A[3] <A[3]
A[0] <A[O] | A[l]<A[1] | A[2]<A[2] | A[3]<«A[3]
A[0] <A[O0] | All]<A[1] | A[2]<A[2] | A[3]<«A[3]

Al1] = f(A[1])

Al2] = f(A[2])

j—)

AIN] = f(AIN])
A[O] = f(A[O])

15-745 © 2005-8

ecture

Example to improve locality

for i=0 to N
for j=0 to M
ALj1= f(ALD:

Is there a better schedule?

Iteration space

A[0] «A[0] | A[1]«A[1] | A[2] «<A[2] | A[3] «A[3]
Unroll to see deps . A[0] «<A[0] | A[1]«A[1] | A[2]«A[2] | A[3] «<A[3]
A[0] = f(A[O]) V| [A101 Al0] [AT <ALl | Al2] <AL2] | A3l <A[3]
A[1]= f(A[1]) AL0] <-A[0] | A[1]<-A[1] |A[2]<A[2] | A[3] <A[3]
Al2]= f(A[2]) j
AN = THAID for j=0 to M

A[0] = f(A[O])
ALjl= fALj):

15-745 © 2005-8

Transformed iteration space
Old Iteration space

A[0] <A[0] | A[1] «A[l]
A[O] «A[0] | A[1]<«A[1]
A[0] «<A[0] | A[1]<«A[1]
A[0] «A[0] | A[1] «A[1]

A[2] <A[2] | A[31<A[3]

fori=O to N
for j=0 to M
ALl = f(ALD):

A[2] <A[2] | A[3]<A[3]
A[2] < A[2] | A[3]1<A[3]
A[2] <A[2] | A[3]<A[3]

j—>

New Iteration space

A[3]<A[3] | A[3] «A[3] | A[3]1<A[3] | A[3] <A[3]
A[2] <A[2] | A[2] «<A[2] | A[2] <A[2] | A[2] «A[2]
A1l <A[1] | All]<A[1] | Al1]<A[1]
A[0] «<-A[0] | A[0] «-A[O] | A[0] «<-A[O] | A[0] «-A[O]

for j=0 to M

A[1] <A[1]

ALl= FALD:

i —

Lecture 6 15-745 © 2005-8 6

ecture

What about ...

fori=0 to N
for j=0 to M
Aljl=f(ALjD)
B[i]= f(B[il).

Is there a better schedule?

Iteration space

Unroll to see deps (451451 [35145 [481481 48045
A[0] = f(A[O]) A[0]<A[0] | A1l <A[1] | A[21<A[2] | A[3] <A[3]
B[O] = f(R[O]) B[2] <B[2] |B[2]«B[2] | B[2] «<B[2] | B[2]«B[2]
ARATD | [T [T
B[O] = f(B[O]) A70] —A[0] | Al1] A[1] | A[2] <A[2] | A[3]<A[3]

B[O] « B[O] | B[O] « B[O] | B[0] « B[O] | B[O] « B[O]

A[N] = f(A[N])
B[0] = f(B[O])
A[0] = f(A[O])
B[1]=f(B[1])

\/

J—)

15-745 © 2005-8

What about ...

fori=0 to N
for j=0 to M
Aljl= f(ALjD)
B[i]= f(B[il).

Unroll to see deps

A[0] = f(A[Q])
B[O] = f(B[O])
A[1]= f(A[1]) i
B[O] = f(B[O1])

Is there a better schedule?

Iteration space

A[O] <A[O] | A[1] «A[1] [A[2] «A[2] | A[3] «A[3]
B[1 [1] | B[1]1<«B[1] | B[1]<«B[1] | B[1]<«B[1]
'([0] «<A[0] | A[1]«<A[1] [A[2]<«A[2] | A[3]<«A[3]
B[O] <~ B[O] | B[O] <~ B[O] | B[O] <~ B[O] | B[O] < B[O]

—

J—)

A[N] = f(A[N])
B[0] = f(B[O])
A[0] = f(A[O])
B[1]=f(B[1])

Lecture 6 b 15-745 © 2005-8 8

But, what if ...

fori=0 to N
for j=1to M
A[j]= f(A[j-1])

Can we reschedule?

Iteration space

Unroll to see deps A[1] A[0] | Al2]<A[1] [A[3]A[2] | A[4] <A[3]

A[1]1<A[0] | A[2] «A[1] | A[3]<«A[2] | A[4] «A[3]

— A[1] = f(A[0])

— ARI=fA)+— !

A[1] «<A[0] | A[2] «A[1] | A[3]1<«A[2] | A[4] <A[3]

A[3]= flA[2]) <

A[1] «A[0] |A[2]<—A[1] A[3]1«A[2] | A[4] <A[3]
.

AIN] = f(AIN-1]) J]
A[1]= f(A[O))
Al[2] = f(A[1])
A[3] = f(A[2])

Lecture 6 15-745 © 2005-8 9

But, what if ...

fori=0 to N
for j=1to M
A[j]= f(A[j-1]):

Can we reschedule?

Iteration space

A[l]g@ A[2] «A[1] | A[3]<«A[2] | A[4] «<A[3]

TAHLCAL] [AlZR<ALL | ABBI A2 | Al4] CAL3]

AlO] wll Al2] | A[4] <A[3]

WJ <All] [AB1cALR] AT4] <A[3]
J >

15-745 © 2005-8 10

But, what if ...

fori=O to N
for j=1to M
Alj1= f(A[j-1D):

Can we reschedule?

Iteration space

A[1]1<A[0] | A[2] «A[1] | A[3]«A[2] | A[4] «<A[3]

A[1]1<A[0] | A[2] «A[1] | A[3]<«A[2] | A[4] «<A[3]

A[1] «<A[0] | A[2] «A[1] | A[3]1<«A[2] | A[4] «<A[3]

A[1]1<A[0] | A[2]«A[1] | A[3]«A[2] | A[4] «A[3]

j——>
A[1] <A[0] | A[2] «<A[1] [A[3]<«A[2]

A[]11<A[0] | A[2]«<A[1] |A[3]1<A[2] | A[4]<A[3]

A[1]<A[0] |Al21<A[l] |A[3]<A[2]
A[1] <A[0] | Al2]<A[1] |A[B]<A[2] |A[4]<A[3]

Lecture 6 15-745 © 2005-8 1

So, how do we know when/how?

When should we transform a loop?
What transforms are legal?
How should we transform the loop.

Dependence information helps with all three questions.

In short,

* Determine all dependence information

* Use dependence information o analyze loop
* Guide transformations using dependence info

* Key is:
Any transformation® that preserves every dependence
in a program preserves the meaning of the program

15-745 © 2005-8 12

Dependencies in Loops

* Loop independent data dependence occurs
between accesses in the same loop iteration.

* Loop-carried data dependence occurs between
accesses across different loop iterations.

* There is data dependence between
access a at iteration i-k and
access b at iteration i when:

- aand b access the same memory location
- There is a path froma fo b
- Either aor b is a write

Lecture 5 15-745 © 2008

* Flow Dependence
- Anti-Dependence
* Output Dependence

Lecture 5

Defining Dependencies

W =>R Sf }true
R 22W ¢
W=2>W &

S1) a=0;

S2) b=a;

S3) c=a+d+e;
S4) d=b;

S5) b=5+e;

15-745 © 2008 14

Example Dependencies

S1) a=0; _

82) b=a- These are scalar dependencies. The
) b=a; same idea holds for memory accesses.

S3) c=a+d+e; l

54) d=b; source type target due to

S5) b=5+e;

S1 & S2 a
S1 " S3
S2 & S4
S3 62 S4
S4 % S5
S2 & S5

O O o T 9

What can we do with this information?
What are anti- and flow- called "false" dependences?

Lecture 5 15-745 © 2008

11/20/01

Data Dependence in Loops

- Dependence can flow across iterations of
the loop.

- Dependence information is annotated with
iteration information.

» If dependence is across iterations it is loop
carried otherwise loop independent.

for (i=0; i<n; i++) {
ALi] = BLi];
B[i+1] = A[i];

15-411 Fall '01 © Seth Copen Goldstein 2001 16

Data Dependence in Loops

- Dependence can flow across iterations of
the loop.

+ Dependence information is annotated with
iteration information.

+ If dependence is across iterations it is loop
carried otherwise loop independent.

for (i=0; i<n; i++) {

& loop carried

11/20/01

AL = BIiT:
< BLi+1] = A[il:

} &' loop independent

15-411 Fall '01 © Seth Copen Goldstein 2001

Data Dependence

- There is a data dependence from statement S; to statement S, (S,
depends on S) if:

1. Both statements access the same memory location and at least
one of them stores onto it, and

2. There is a feasible run-time execution path from S; to S,

* We need to characterize the dependence information in terms of
the loop iterations involved in the dependence, so we need a way to
talk about iterations of a loop.

- Tteration vector: a label for a loop iteration using the induction
variables.

- Iteration space: the set of all possible iteration vectors for a
loop

- Lexicographic order: The order of the iterations

cture 6 15-745 © 2005-8

Iteration Space

Every iteration generates a point in an n-
dimensional space, where n is the depth of
the loop nest.

for (i=0; i<n; i++) { ———o—o °
(YY)
}
b ° ° 0[3 }
2
for (i=0; i<n; i++) b ° ° ° (]

for (J=0; j<4; j++) {
(YY)

. Mowry

15-745 © 2005-8

Iteration Vectors
Need to consider the nesting level of a loop

Nesting level of a loop is equal o one more than
the number of loops that enclose it.

Given a nest of n loops, the iteration vector /of
a particular iteration of the innermost loop is a
vector of integers that contains the iteration
numbers for each of the loops in order of
nesting level.

Thus, the iteration vector is: {iy, i,, ..., i, }
where iy, 1 < k < n represents the iteration
number for the loop at nesting level k

cture 6 15-745 © 2005-8

Iteration Space

Every iteration generates a point in an n-
dimensional space, where n is the depth of

the loop nest.

for (i=0; i<n; i++) {
eeo

}

for (i=0; i<n; i++)
for (J=0; j<4; j++) {
(YY)

p
4
4
4
[]

T. Mowry

15-745 © 2005-8

21

Ordering of Iteration Vectors

* Dan ordering for iteration vectors
+ Use an intuitive, lexicographic order
« Tteration i precedes iteration j, denoted i< j,
iff:
1. i[1:n-1] < j[1:n-1], or

2.i[t:k-1] = j[Tk-1] and iy < i [0 jl
2 2
| |d
| [dn

cture 6 15-745 © 2005-8

Example Iteration Space

for i = 0 to N-1
for j = 0 to N-1
ALI10O] = 8O

(oONeNoNoNoNoNoNoNoNoNoNe
(oNeNoNoNoNoNoNoNoNoNoNe
(oNeNoNoNoNoNoNoNoNoNoNo
(oNeNoNoNoNoNoNoNoNoNoNe
(oNeNoNoNoNoNoNoNoNoNoNe
(oNeNeoNoNoNoNoNoNoNoNoNe
(oo oNoNoNoNoNoNoNoNoNe
(oNeNoNoNoNoNoNoNoNoNoNe

(oNeNoNoNoNoNoNoNoNoNoNe

000000000000
J

« each position represents an iteration

Visitation Order in Iteration Space

050606680

2088 - T—T89

for i = 0 to N-1 00666729
for j = 0 to N-1 -850 60T TS9
ALi1[i1 = BLi1Li1: -0 C~T=89
-0 0666 TT=S9

-0 606659

-0 0TS99

2088 TS89

CE-6-C-0-6-6-6-8CT=S9

Note: iteration space is not data space

Formal Def of Loop Dependence

* There exists a dependence from statements S; to
statement S, in a common nest of loops iff there
exist two iteration vectors /and j for the nest, st.
(1) (@) /< jor

(b) /= jand there is a path from

S;t0 S, in the body of the loop,

(2) statement S; accesses memory location Mon
iteration /and statement S, accesses location Mon
iteration j, and
(3) one of these accesses is a write.
* la: Loop carried and 1b: Loop independent
+ Slis source of dependence, S2 is sink or target of dep

ecture 6 15-745 © 2005-8 25

Dependence Distance

« Using iteration vectors and def of dependence
we can determine the distance of a dependence:

* In n-deep loop nest if
- Slis source in iteration i
- S2 is sink in iteration j

- Distance of dependence is represented with a
distance vector: D

- Vector of length n, where
= d = i - i

ecture 6 15-745 © 2005-8

Distance Vector

for (i=0; i<n; i++) {

A[i] = B[i]: Distance vector is the
BLi+1] = A[i1; difference between the
¥ target and source iterations.
} - d=1l-lg
QE(S _ 2{8} Exactly the distance of the
A[1] = B[1l: } _ dependence, i.e.,
B[2] = A[11: =1
AL2] = B[2]; . +d=1
B[3] = Al2];
i

15-745 © 2005-8 27

for (i=0; i<n; i++)

Example of Distance Vectors

- - - AO,2: —/-\0’2 Al,2: :AJ 2 A2’2: :A2’2
forA(!—9, {<m,-J++){ Bos=| =By, | Bis3 =Bi, | Bys= |=B,y,
[i.3] = B Cis=| =Cus | Coo7 =Cis | Cs0= |=Css

= ALT,j1;
B[i,j+1] = : . A0,1: :Ao,l A1,1: :Al,l A2,1: :Az,l
- B[i j] N J BO,2: :BO,l Bl,2: :Bl,l 82’2: :Bz,l
- SLE-dd Cy1=| =Cy, | Co17 =Ci, | C31= |=Cyo

C [i+1 |] =

= C[i,j+1] ; Aoo=| =Ago | AT =Asp A= |=As0
} Bo1=| =Boo |\ B119 =Big B,,= [=B,,
C10=| =Co1 [C20 =Ci1 | Cs0= |=Cy1

Example of Distance Vectors

for (i=0; i<n; i++)

S - A0,2= :AO,Z A1,2= =A1,2 A2,2: :A2,2
forA(J_ —C_) ; J_<m, _J ++){ Bos=, =By, | Bis= =By, | Bos= =B,
[l 1_]] __ i L] Cl,2: I :C0,3 C2'2: :C:L3 03’2: :C2‘3

= A[i,]1]; T -
B[i ,j +1] = : . AO,l_ _AO 1 Al 1= _Al,l A2 = _A2 1
= B[i.j]1; J Bo2=9=Bg; | B1o=*=By, | Byo= =By,
- _ ? ’ Cl,l: :CO,Z C2.1: = T C3’l: :C2'2

C[I +1 ,J] =

= C[i.j+1] ; Aoo= oo | A= =g %‘ “Asg
b Boa= =Boo | B11i= =Big [B2i= =B
Cio= =Cp1|Cuo= =Cii|Cso= =C.,

Direction Vectors

* Less precise than distance vectors, but often
good enough

* In n-deep loop nest if
- Slis source in iteration i
- S2 is sink in iteration j
- Distance vector: F - Vector of length n, where
- fie = Jk - ik
Direction vector also vector of length n, where

_ 4. - “<Mif £,,>0,0r j < iy
K7 "=if f= 0, 0r i = i

>Yif £, <0, or ji > iy

Lecture 6 15-745 © 2005-8

Example of Direction Vectors

for (i=0; i<n; i++)

for (j=0; j<m: j+o{ |55 _
0,37 4~

A[l ,J] :_ _; C1’2:I:C0'3 C2'2: :C113 C3’2: :C2'3
= ALl.j];

BLi.j+11 = : A°'1:l:A°'l A= FAg [A= =A,

= B[i,jl; J BO,Z: :Bo,l Bl,zz\iBi; Bz,2: :Bz,l

- o Ci1= =Coo | Coi= =Cia| C31= =Cyp
C[|+1,J] = ;

= CL1.j+1] Roo= ZRoo [Are= Ao %‘fAZ,o

Ayields:[z] B yields:[z] C yields:[i]

Direction Vectors

Example:
DO 1 =1, N
DOJ =1, M
DO K =1, L
S, A(I+1, J, K-1) = A(1, J, K) + 10
ENDDO
ENDDO
ENDDO

S, has a true dependence on itself.
Distance Vector: (1,0, -1)
Direction Vector: (<, =,>)

Lecture 6 15-745 © 2005-8

Note on vectors

+ A dependence cannot exist if it has a direction

vector whose leftmost non "=" component is not
"<" as this would imply that the sink of the
dependence occurs before the source.

- Likewise, the first non-zero distance in a

distance vector must be postive.

The Key

* Any reordering tfransformation that preserves
every dependence in a program preserves the
meaning of the program

* A reordering fransformation may change order
of execution but does not add or remove
statements.

Finding Data Dependences

Main Theme

- Determining whether dependencies exist
between two subscripted references to the
same array in a loop nest

- Several tests to detect these dependencies

The General Problem

DO &1, = L;, U,
DO i, = L,, U,
DO 1, = L,, U,
S, AP (g, .-, i), -, (i, .-, i) = ...

S, B YCRCTVT 1 SRR SR 1))
ENDDO

ENDDO
ENDDO

A dependence exists from S1 to S2 if:
- There exist a and B such that
ca<P (control flow requirement)

s fi(aw)=g;(B) foralli, 1 <i<m (common access
requirement)

Basics: Conservative Testing

+ Consider only linear subscript expressions

» Finding integer solutions to system of linear
Diophantine Equations is NP-Complete

* Most common approximation is Conservative
Testing, i.e., See if you can assert

"No dependence exists between two
subscripted references of the same array”

* Never incorrect, may be less than optimal

Basics: Indices and Subscripts

Index: Index variable for some loop surrounding a
pair of references

Subscript: A PAIR of subscript positions in a pair
of array references

For Example:
A(I,j) = A(I,k) + C
<I,I> is the first subscript
<j, k> is the second subscript

Basics: Complexity

A subscript is said to be

- ZIV if it contains no index
zero index variable

- SIV if it contains only one index
single index variable

- MIV if it contains more than one index
multiple index variable

For Example:
A(5,I+1,3) = A(1,I,k) + C
First subscript is ZIV
Second subscript is SIV
Third subscript is MIV

Basics: Separability

+ A subscript is separable if its indices do not
occur in other subscripts

+ If two different subscripts contain the same
index they are coupled

For Example:
A(I+1,3) = A(k,j) + C

Both subscripts are separable
A(Iljlj) = A(Iljlk) + C
Second and third subscripts are coupled

Basics:Coupled Subscript Groups

* Why are they important?

Coupling can cause imprecision in dependence
testing

DO 1 = 1, 100
s1 A(I+1,1) = B(l) + C
s2 D(I) = A(1,1) * E
ENDDO

Dependence Testing: Overview

* Partition subscripts of a pair of array references into
separable and coupled groups
» Classify each subscript as ZIV, SIV or MIV
- Reason for classification is to reduce complexity of
the tests.

« For each separable subscript apply single subscript test.

Continue until prove independence.
+ Deal with coupled groups
- If independent, done

* Otherwise, merge all direction vectors computed in the
previous steps into a single set of direction vectors

Step 1: Subscript Partitioning

+ Partitions the subscripts into separable and minimal

coupled groups

« Notations

/1§ is a set of m subscript pairs S, S,, ...S,, each enclosed in
n loops with indexes I, L, ... I, which is to be
partitioned into separable or minimal coupled groups.

// P is an output variable, containing the set of partitions

// n,, is the number of partitions

Subscript Partitioning Algorithm

procedure partition(S,P, n,)

Step 2: Classify as ZIV/SIV/MIV

+ Weak-zero SIV
*+ Weak Crossing SIV

+ SIV Tests in Complex Iteration Spaces

* Easy step
i - ltomdo P,= {S}: « Just count the number of different indices in a
fori := 1tondobegin SUbSCFipT
k := <none>
for each remaining partition P; do
if there exists s & P; such that s contains I, then
if k=<none > then k=;
else begin P, = P, U P;; discard Pj; n,=n, - 1; end
end
end partition
Step 3: Applying Single Subscript Tests LIV Test
« ZIV Test DO j = 1, 100
+ SIV Test S A(el) = A(e2) + B(J)
- Strong SIV Test ENDDO
- Weak SIV Test

el,e2 are constants or loop invariant
symbols

If (el-e2)!=0 No Dependence exists

Strong SIV Test

+ Strong SIV subscripts are of the form
<ai +ci,ai + C2>

* For example the following are strong SIV
subscripts <i+1 i>

(4i +2,4i +4)

Strong SIV Test Example

DO k = 1, 100
DO j = 1, 100

S1 A(g+1,k)

S2

AG LK) + 32
ENDDO
ENDDO

Strong SIV Test

Geometric View of Strong SIV Tests

-Ciﬂ'l;'l| *leilz Hy i

., . C
d=i'-i=

Dependence exists if |d|<U-L

Weak SIV Tests

Weak SIV subscripts are of the form

[- P
\dyl +C, A +Cyf
* For example the following are weak SIV
subscripts (i+1,5)
(2i+1,i+5)
(2i +1,-2i)

Geometric view of weak SIV Weak-zero SIV Test

Geometric View of Strong SIV Tests . Special case of Weak SIV where one of the
| coefficients of the index is zero

* The test consists merely of checking whether
the solution is an integer and is within loop
bounds .6 —¢

1 =
a,

Weak-zero SIV Test Weak-zero SIV & Loop Peeling

DO i =1, N
S, Y@, N) = Y, N) + YN, N)
ENDDO

Geometric View of Weak-zero SIV Subscripts
I |

Can be loop peeled to...

Y(1, N) = Y1, N) + Y(N, N)
DO i = 2, N-1

Alm s1 Y@, N) = Y, N) + YN, N)
ENDDO
8(i) | Y(N, N) = Y(1, N) + Y(N, N)

-¢/al My

Weak-crossing SIV Test

+ Special case of Weak SIV where the
coefficients of the index are equal in magnitude
but opposite in sign

« The test consists merely of checking whether
the solution index

is 1. within loop bounds and is
2. either an integer.or has a non-integer
part equal To 142

Weak-crossing SIV Test

Geometric View of Weak-crossing SIV Subscripts

‘ line of symmetry

=

Weak-crossing SIV &
Loop Splitting

DO i =1, N
S1 A(i) = A(N-i+1) + C
ENDDO

This loop can be split into...

DO i = 1,(N+1)/2
A(i) = A(N-i+1) + C
ENDDO
DO i = (N+1)/2 + 1, N
A(i) = A(N-i+1) + C
ENDDO

Complex Tteration Spaces

+ Till now we have applied the tests only to

rectangular iteration spaces

* These tests can also be extended to apply to

triangular or trapezoidal loops

- Triangular: One of the loop bounds is a
function of at least one other loop index

- Trapezoidal: Both the loop bounds are
functions of at least one other loop index

Next Time...

+ Complex iteration spaces

« MIV Tests

+ Tests in Coupled groups
* Merging direction vectors

