15-745 Lecture 6

Data Dependence in Loops

Copyright © Seth Goldstein, 2008
Based on slides from Allen\&Kennedy ${ }_{15-745}$ © 2005-8

Common loop optimizations

- Hoisting of loop-invariant computations
- pre-compute before entering the loop
- Elimination of induction variables
- change $p=i^{*} w+b$ to $p=b, p+=w$, when w, b invariant
- Loop unrolling
- to to improve scheduling of the loop body

```
- Software pipelining
    To improve scheduling of the loop body
Loop permutation
```


Why Dependence Analysis

- Goal is to find best schedule:
- Improve memory locality
- Increase parallelism
- Decrease scheduling stalls
- Before we schedule we need to know possible legal schedules and impact of schedule on performance

Example to improve locality

for $\mathrm{i}=0$ to N for $j=0$ to M $A[j]=f(A[j]) ;$

Is there a better schedule?

Iteration space

Unroll to see deps
$A[0]=f(A[0])$
$A[1]=f(A[1])$
$A[2]=f(A[2])$
$A[N]=f(A[N])$
$A[0]=\mathrm{f}(\mathrm{A}[0])$

Example to improve locality

Transformed iteration space

Old Iteration space

What about ...

for $i=0$ to N
for $j=0$ to M
$A[j]=f(A[j]) ;$
$B[i]=f(B[i]) ;$

Unroll to see deps
$A[0]=f(A[0])$
$B[0]=f(B[0])$
$A[1]=f(A[1])$
$B[0]=f(B[0]])$
$A[N]=f(A[N])$
$B[0]=f(B[0])$
$A[0]=f(A[0])$
$B[1]=f(B[1])$

Is there a better schedule?

Iteration space

What about ..

for $\mathrm{i}=0$ to N for $j=0$ to M $A[j]=f(A[j]) ;$ $B[i]=f(B[i]) ;$

Unroll to see deps
$A[0]=f(A[0])$
$B[0]=f(B[0])$
$A[1]=f(A[1])$
$B[0]=f(B[0]])$
$A[N]=f(A[N])$
$B[0]=f(B[0])$
$A[0]=f(A[0])$
$B[1]=f(B[1])$

Is there a better schedule?
Iteration space

But, what if .

But, what if ...
for $\mathrm{i}=0$ to N

$$
\begin{array}{ll}
\text { for } j=1 \text { to } M & \text { Can we reschedule? } \\
A[j]=f(A[j-1]) ;
\end{array}
$$

Iteration space

A[1] A A 0]	$A[2] \leftarrow A[1]$	$A[3] \leftarrow A[2]$	$A[4] \leftarrow A[3]$
$A[1] \leftarrow A[0]$	$A[2]<A[1]$	$A[3] \leftarrow A[2]$	$A[4] \leftarrow A[3]$
	$A[2]<A[1]$	$A[3]<A[2]$	$A[4] \leftarrow A[3]$
$A[1] \leqslant A[0]$	$A[2] \leqslant A[1]$	$A[3] \leftarrow A[2]$	$A[4] \leftarrow A[3]$

$A[N]=f(A[N-1])$
Iteration space

Unroll to see deps	i	A 11$] \leftarrow A[0]$	$A[2] \leftarrow A[1]$	$A[3] \leftarrow A[2]$	$A[4] \leftarrow A[3]$
$<A[1]=f(A[0])$		A $A 1] \leftarrow A[0]$	$A[2] \leftarrow A[1]$	$A[3] \leftarrow A[2]$	$A[4] \leftarrow A[3]$
$<A[2]=f(A[1])$ -		A $A 1] \leftarrow A[0]$	$A[2] \leftarrow A[1]$	$A[3] \leftarrow A[2]$	$A[4] \leftarrow A[3]$
$A[3]=f(A[2])$		$A[1] \leftarrow A[0]$	$A[2] \leftarrow A[1]$	$A[3] \leftarrow A[2]$	$A[4] \leftarrow A[3]$
$A[N]=f(A[N-1])$					
$A[1]=f(A[0])$					
$A[2]=f(A[1])$					
$A[3]=f(A[2])$					

But, what if .

for $i=0$ to N	Can we reschedule?
for $j=1$ to M	
$A[j]=f(A[j-1]) ;$	

Iteration space
\(i \quad \begin{gathered}

i\end{gathered}\)| $A[1] \leftarrow A[0]$ | $A[2] \leftarrow A[1]$ | $A[3] \leftarrow A[2]$ | $A[4] \leftarrow A[3]$ |
| :--- | :--- | :--- | :--- |
| $A[1] \leftarrow A[0]$ | $A[2] \leftarrow A[1]$ | $A[3] \leftarrow A[2]$ | $A[4] \leftarrow A[3]$ |
| $A[1] \leftarrow A[0]$ | $A[2] \leftarrow A[1]$ | $A[3] \leftarrow A[2]$ | $A[4] \leftarrow A[3]$ |
| $A[1] \leftarrow A[0]$ | $A[2] \leftarrow A[1]$ | $A[3] \leftarrow A[2]$ | $A[4] \leftarrow A[3]$ |

			$A[1] \leftarrow A[0]$	$A[2] \leftarrow A[1]$	$A[3] \leftarrow A[2]$
		$A[] 1 \leftarrow A[0]$	$A[2] \leftarrow A[1]$	$A[3] \leftarrow A[2]$	$A[4] \leftarrow A[3]$
	$A[1] \leftarrow A[0]$	$A[2] \leftarrow A[1]$	$A[3] \leftarrow A[2]$	$A[4] \leftarrow A[3]$	
$A[1] \leftarrow A[0]$	$A[2] \leftarrow A[1]$	$A[3] \leftarrow A[2]$	$A[4] \leftarrow A[3]$		

So, how do we know when/how?

When should we transform a loop?
What transforms are legal?
How should we transform the loop.
Dependence information helps with all three questions.
In short,

- Determine all dependence information
- Use dependence information to analyze loop
- Guide transformations using dependence info
- Key is:

Any transformation* that preserves every dependence in a program preserves the meaning of the program

Dependencies in Loops

- Loop independent data dependence occurs between accesses in the same loop iteration.
- Loop-carried data dependence occurs between accesses across different loop iterations.
- There is data dependence between
access a at iteration i-k and access b at iteration i when:
- a and b access the same memory location
- There is a path from a to b
- Either a or b is a write

Defining Dependencies

- Flow Dependence
$\left.\begin{array}{lll}W \rightarrow R & \delta^{f} \\ R \rightarrow W & \delta^{a} \\ W & \rightarrow W & \delta^{\circ}\end{array}\right\}_{\text {true }}$
- Anti-Dependence
- Output Dependence

Example Dependencies

S1) $a=0$;
S2) $b=a$;
S3) $c=a+d+e$;
S4) d=b;
S5) b=5+e;

What can we do with this information? What are anti- and flow-called "false" dependences?

These are scalar dependencies. The same idea holds for memory accesses.

Data Dependence in Loops

- Dependence can flow across iterations of the loop.
- Dependence information is annotated with iteration information.
- If dependence is across iterations it is loop carried otherwise loop independent.

```
for (i=0; i<n; i++) {
    A[i] = B[i];
    B[i+1] = A[i];
}
```

S1) $a=0$;
S2) $b=a$;
S3) c=a+d+e;
S4) d=b;
S5) b=5+e;

Data Dependence in Loops

- Dependence can flow across iterations of the loop.
- Dependence information is annotated with iteration information.
- If dependence is across iterations it is loop carried otherwise loop independent.

Data Dependence

- There is a data dependence from statement S_{1} to statement $S_{2}\left(S_{2}\right.$ depends on S_{1}) if:

1. Both statements access the same memory location and at least one of them stores onto it, and
2. There is a feasible run-time execution path from S_{1} to S_{2}

- We need to characterize the dependence information in terms of the loop iterations involved in the dependence, so we need a way to talk about iterations of a loop.
- Iteration vector: a label for a loop iteration using the induction variables.
- Iteration space: the set of all possible iteration vectors for a loop
- Lexicographic order: The order of the iterations

Iteration Vectors

- Need to consider the nesting level of a loop
- Nesting level of a loop is equal to one more than the number of loops that enclose it.
- Given a nest of n loops, the iteration vector iof a particular iteration of the innermost loop is a vector of integers that contains the iteration numbers for each of the loops in order of nesting level.
- Thus, the iteration vector is: $\left\{i_{1}, i_{2}, \ldots, i_{n}\right\}$ where $i_{k}, 1 \leq k \leq n$ represents the iteration number for the loop at nesting level k

Iteration Space

Every iteration generates a point in an n dimensional space, where n is the depth of the loop nest.
for (i=0; i<n; i++) \{

- ••
\}
for (i=0; i<n; i++) for ($j=0 ; j<4 ; j++$) $\{$
$\}$

Ordering of Iteration Vectors

- Dan ordering for iteration vectors
- Use an intuitive, lexicographic order
- Iteration i precedes iteration j , denoted i < j , iff:

1. $i[1: n-1]<j[1: n-1]$, or
2. $i[1: k-1]=j[1: k-1]$ and $i_{k}<j_{k}\left(\begin{array}{l}i_{1} \\ i_{2} \\ \cdots \\ i_{k} \\ \cdots \\ i_{n}\end{array}\right)<\left(\begin{array}{l}j_{1} \\ j_{2} \\ \cdots \\ j_{k} \\ \cdots \\ \ddot{j_{n}}\end{array}\right]$

Example Iteration Space

- each position represents an iteration

Visitation Order in Iteration Space

```
i
0-0000-0-0-0-0-0
O-0000-0-9 O-OCO 0000000000000 O-0000-0-0-O-O-O
```



``` O-0 O-O-O-O-O-O-O
```


Note: iteration space is not data space

Formal Def of Loop Dependence

- There exists a dependence from statements S_{1} to statement S_{2} in a common nest of loops iff there exist two iteration vectors i and j for the nest, st.
(1) (a) $i<j$ or
(b) $i=j$ and there is a path from
S_{1} to S_{2} in the body of the loop,
(2) statement S_{1} accesses memory location M on iteration iand statement S_{2} accesses location M on iteration j, and
(3) one of these accesses is a write.
- 1a: Loop carried and 1b: Loop independent
- S1 is source of dependence, S2 is sink or target of dep

Dependence Distance

- Using iteration vectors and def of dependence we can determine the distance of a dependence:
- In n-deep loop nest if
- S1 is source in iteration i
- S2 is sink in iteration j
- Distance of dependence is represented with a distance vector: D
- Vector of length n, where
$-d_{k}=j_{k}-i_{k}$

Distance Vector

for (i=0; i<n; i++) \{ $A[i]=B[i] ;$
$B[i+1]=A[i] ;$
\}

Distance vector is the difference between the target and source iterations.

$$
\mathbf{d}=I_{t}-I_{s}
$$

Exactly the distance of the dependence, i.e.,

$$
I_{s}+d=I_{t}
$$

Example of Distance Vectors

```
for (i=0; i<n; i++)
    for (j=0; j<m; j++){
        A[i,j] = ;
            = A[i,j];
        B[i,j+1] = ;
            = в[i,j];
        C[i+1,j] = ;
            = C[i,j+1] ;
    }
```


Example of Distance Vectors

```
for (i=0; i<n; i++)
    for (j=0; j<m; j++){
        A[i,j] = ;
            = A[i,j];
        B[i,j+1] = ;
            = B[i,j];
        C[i+1,j] = ;
            = C[i,j+1] ;
    }
```

A yields: $\binom{0}{0}$
B yields: $\binom{0}{1}$
C yields: $\binom{1}{-1}$

Direction Vectors

- Less precise than distance vectors, but often good enough
- In n-deep loop nest if
- S1 is source in iteration i
- S2 is sink in iteration j
- Distance vector: F - Vector of length n, where $-f_{k}=j_{k}-i_{k}$
- Direction vector also vector of length n, where

Example of Direction Vectors

```
for (i=0; i<n; i++)
    for (j=0; j<m; j++){
            A[i,j] = ;
            = A[i,j];
        B[i,j+1] =
            = B[i,j];
        C[i+1,j] = ;
            = C[i,j+1] ;
    }
```

| $\mathrm{A}_{0,2}==\mathrm{A}_{0,2}$ | $\mathrm{~A}_{1,2}==\mathrm{A}_{1,2}$ | $\mathrm{~A}_{2,2}==\mathrm{A}_{2,2}$ | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~B}_{0,3}=$ | $=\mathrm{B}_{0,2}$ | $\mathrm{~B}_{1,3}==\mathrm{B}_{1,2}$ | $\mathrm{~B}_{2,3}===\mathrm{B}_{2,2}$ |
| $\mathrm{C}_{1,2}=$ | $=\mathrm{C}_{0,3}$ | $\mathrm{C}_{2,2}==\mathrm{C}_{1,3}$ | $\mathrm{C}_{3,2}==\mathrm{C}_{2,3}$ |
| $\mathrm{~A}_{0,1}=$ | $=\mathrm{A}_{0,1}$ | $\mathrm{~A}_{1,1}==\mathrm{A}_{1,1}$ | $\mathrm{~A}_{2,1}==\mathrm{A}_{2,1}$ |
| $\mathrm{~B}_{0,2}=d=\mathrm{B}_{0,1}$ | $\mathrm{~B}_{1,2}==\mathrm{B}_{1,1}$ | $\mathrm{~B}_{2,2}==\mathrm{B}_{2,1}$ | |
| $\mathrm{C}_{1,1}==\mathrm{C}_{0,2}$ | $\mathrm{C}_{2,1}==\mathrm{C}_{1,2}$ | $\mathrm{C}_{3,1}==\mathrm{C}_{2,2}$ | |
| $\mathrm{~A}_{0,0}===\mathrm{A}_{0,0}$ | $\mathrm{~A}_{1,0}==\mathrm{A}_{1,0}$ | $\mathrm{~A}_{2,0}==\mathrm{A}_{2,0}$ | |
| $\mathrm{~B}_{0,1}==\mathrm{B}_{0,0}$ | $\mathrm{~B}_{1,1}==\mathrm{B}_{1,0}$ | $\mathrm{~B}_{2,1}===\mathrm{B}_{2,0}$ | |
| $\mathrm{C}_{1,0}==\mathrm{C}_{0,1}$ | $\mathrm{C}_{2,0}==\mathrm{C}_{1,1}$ | $\mathrm{C}_{3,0}==\mathrm{C}_{2,1}$ | |

i
A yields: $\binom{=}{=}$
B yields: $\binom{=}{<}$
C yields: $\binom{<}{>}$

Direction Vectors

Example:
DO $\mathrm{I}=1$, N
DO J = 1, M
DO $K=1$, L
$\mathrm{S}_{1} \quad \mathrm{~A}(\mathrm{I}+1, \mathrm{~J}, \mathrm{~K}-1)=\mathrm{A}(\mathrm{I}, \mathrm{J}, \mathrm{K})+10$
ENDDO
ENDDO
ENDDO

- S_{1} has a true dependence on itself.
- Distance Vector: ($1,0,-1$)
- Direction Vector: (<, =, >)

Note on vectors

- A dependence cannot exist if it has a direction vector whose leftmost non "=" component is not "く" as this would imply that the sink of the dependence occurs before the source.
- Likewise, the first non-zero distance in a distance vector must be postive.

The Key

- Any reordering transformation that preserves every dependence in a program preserves the meaning of the program
- A reordering transformation may change order of execution but does not add or remove statements.

Main Theme

Finding Data Dependences

- Determining whether dependencies exist between two subscripted references to the same array in a loop nest
- Several tests to detect these dependencies

The General Problem

DO $i_{1}=L_{1}, U_{1}$

DO $i_{2}=L_{2}, U_{2}$

```
    DO in}=\mp@subsup{i}{n}{\prime
    A(f
    \ldots=A(\mp@subsup{g}{1}{}(\mp@subsup{i}{1}{},\ldots,\mp@subsup{i}{n}{}),\ldots,\mp@subsup{g}{m}{\prime}(\mp@subsup{i}{1}{},\ldots,\mp@subsup{i}{n}{}))
    ENDDO
```

 ENDDO
 ENDDO

A dependence exists from S1 to S2 if:

- There exist α and β such that
- $\alpha<\beta \quad$ (control flow requirement)
- $f_{i}(\alpha)=g_{i}(\beta)$ for all $i, 1 \leq i \leq m \quad$ (common access requirement)

Basics: Conservative Testing

- Consider only linear subscript expressions
- Finding integer solutions to system of linear Diophantine Equations is NP-Complete
- Most common approximation is Conservative Testing, i.e., See if you can assert
"No dependence exists between two subscripted references of the same array"
- Never incorrect, may be less than optimal

Basics: Indices and Subscripts

Index: Index variable for some loop surrounding a pair of references
Subscript: A PAIR of subscript positions in a pair of array references

For Example:
$A(I, j)=A(I, k)+C$
$<I, I>$ is the first subscript
$<j, k>$ is the second subscript

Basics: Complexity

A subscript is said to be

- ZIV if it contains no index zero index variable
- SIV if it contains only one index single index variable
- MIV if it contains more than one index multiple index variable

For Example:
$A(5, I+1, j)=A(1, I, k)+C$
First subscript is ZIV
Second subscript is SIV
Third subscript is MIV

Basics: Separability

- A subscript is separable if its indices do not occur in other subscripts
- If two different subscripts contain the same index they are coupled

For Example:

```
\(A(I+1, j)=A(k, j)+C\)
```

Both subscripts are separable
$A(I, j, j)=A(I, j, k)+C$
Second and third subscripts are coupled

Basics:Coupled Subscript Groups

-Why are they important?
Coupling can cause imprecision in dependence testing

```
    DO I = 1, 100
S1 A(I+1,I) = B(I) + C
S2 D(I) = A(I,I) * E
ENDDO
```


Dependence Testing: Overview

- Partition subscripts of a pair of array references into separable and coupled groups
- Classify each subscript as ZIV, SIV or MIV
- Reason for classification is to reduce complexity of the tests.
- For each separable subscript apply single subscript test. Continue until prove independence.
- Deal with coupled groups
- If independent, done
- Otherwise, merge all direction vectors computed in the previous steps into a single set of direction vectors

Step 1: Subscript Partitioning

- Partitions the subscripts into separable and minimal coupled groups
- Notations
$/ / S$ is a set of m subscript pairs $\mathrm{S}_{1}, \mathrm{~S}_{2}, \ldots \mathrm{~S}_{m}$ each enclosed in
n loops with indexes $\mathrm{I}_{1}, \mathrm{I}_{2}, \ldots \mathrm{I}_{n}$, which is to be
partitioned into separable or minimal coupled groups.
$/ / P$ is an output variable, containing the set of partitions
$/ / n_{p}$ is the number of partitions

Subscript Partitioning Algorithm

```
procedure partition(S,P, np)
    n}=m
    for i := 1 to m do P
    for i}:=1\mathrm{ to }n\mathrm{ do begin
        k:= <none>
        for each remaining partition }\mp@subsup{\textrm{P}}{j}{}\mathrm{ do
            if there exists s\varepsilon P}\mp@subsup{\textrm{P}}{j}{}\mathrm{ such that }s\mathrm{ contains I I then
                if }k=<\mathrm{ none > then }k=j\mathrm{ ,
                else begin }\mp@subsup{\textrm{P}}{k}{}=\mp@subsup{\textrm{P}}{k}{}\cup\mp@subsup{\textrm{P}}{j}{};\mathrm{ ; discard Pj; n
    end
end partition
```


Step 2: Classify as ZIV/SIV/MIV

- Easy step
- Just count the number of different indices in a subscript

Step 3: Applying Single Subscript Tests

- ZIV Test
- SIV Test
- Strong SIV Test
- Weak SIV Tes \dagger
- Weak-zero SIV
- Weak Crossing SIV
- SIV Tests in Complex Iteration Spaces

ZIV Test

```
    DO j = 1, 100
```

S
$A(e 1)=A(e 2)+B(j)$
ENDDO
e1,e2 are constants or loop invariant
symbols
If (e1-e2) !=0 No Dependence exists

Strong SIV Test

- Strong SIV subscripts are of the form

$$
\left\langle a i+c_{1}, a i+c_{2}\right\rangle
$$

- For example the following are strong SIV subscripts

$$
\begin{gathered}
\langle i+1, i\rangle \\
\langle 4 i+2,4 i+4\rangle
\end{gathered}
$$

Strong SIV Test Example

```
DO k = 1, 100
    DO j = 1, 100
S1 A(j+1,k) =
S2 ... = A(j,k) + 32
    ENDDO
ENDDO
```


Strong SIV Tes \dagger

Geometric View of Strong SIV Tests

Dependence exists if $\quad|d| \leq U-L$

Weak SIV Tests

- Weak SIV subscripts are of the form

$$
\left\langle a_{1} i+c_{1}, a_{2} i+c_{2}\right\rangle
$$

- For example the following are weak SIV subscripts

$$
\begin{gathered}
\langle i+1,5\rangle \\
\langle 2 i+1, i+5\rangle \\
\langle 2 i+1,-2 i\rangle
\end{gathered}
$$

Geometric view of weak SIV

Weak-zero SIV Tes \dagger

- Special case of Weak SIV where one of the coefficients of the index is zero
- The test consists merely of checking whether the solution is an integer and is within loop bounds

$$
i=\frac{c_{2}-c_{1}}{a_{1}}
$$

Weak-zero SIV Tes \dagger

Geometric View of Weak-zero SIV Subscripts

Weak-zero SIV \& Loop Peeling

DO $i=1$, N
$S_{1} \quad Y(i, N)=Y(1, N)+Y(N, N)$
ENDDO

Can be loop peeled to...
$Y(1, N)=Y(1, N)+Y(N, N)$
DO $i=2, N-1$
S1 $\quad Y(i, N)=Y(1, N)+Y(N, N)$
ENDDO
$\mathbf{Y}(\mathbf{N}, \mathrm{N})=\mathrm{Y}(\mathbf{1}, \mathbf{N})+\mathrm{Y}(\mathbf{N}, \mathbf{N})$

Weak-crossing SIV Tes \dagger

- Special case of Weak SIV where the coefficients of the index are equal in magnitude but opposite in sign
- The test consists merely of checking whether the solution index
is 1 . within loop bounds and is

2. either an integer ${ }_{c}$ or has a non-integer part equal $\overline{\text { fo }} 1 / 1 / 2$

Weak-crossing SIV Test

Complex Iteration Spaces

- Till now we have applied the tests only to rectangular iteration spaces
- These tests can also be extended to apply to triangular or trapezoidal loops
- Triangular: One of the loop bounds is a function of at least one other loop index
- Trapezoidal: Both the loop bounds are functions of at least one other loop index

Next Time...

- Complex iteration spaces
- MIV Tests
- Tests in Coupled groups
- Merging direction vectors

