
15-745 Lecture 615-745 Lecture 6

Data Dependence in Loops

C i ht © S th G ld t i 2008

Lecture 6 15-745 © 2005-8 1

Copyright © Seth Goldstein, 2008
Based on slides from Allen&Kennedy

Common loop optimizations

• Hoisting of loop-invariant computations
– pre-compute before entering the loop

• Elimination of induction variables
h i* b b h b i i– change p=i*w+b to p=b,p+=w, when w,b invariant

• Loop unrolling
to to improve scheduling of the loop body– to to improve scheduling of the loop body

• Software pipelining
– To improve scheduling of the loop body

Requires
understanding
data To improve scheduling of the loop body

• Loop permutation
– to improve cache memory performance

data
dependencies

Lecture 5 15-745 © 2008 2

Why Dependence Analysis
• Goal is to find best schedule:

– Improve memory localityImprove memory locality
– Increase parallelism
– Decrease scheduling stalls– Decrease scheduling stalls

• Before we schedule we need to know possible
legal schedules and impact of schedule on legal schedules and impact of schedule on
performance

Lecture 6 15-745 © 2005-8 3

Example to improve locality
for i=0 to N

for j=0 to M
A[j] f(A[j])

Is there a better schedule?
A[j] = f(A[j]);

A[0] A[0] A[1] A[1] A[2] A[2] A[3] A[3]

Iteration space

A[0] ←A[0] A[1] ←A[1] A[2] ←A[2] A[3] ←A[3]

A[0] ←A[0] A[1] ←A[1] A[2] ←A[2] A[3] ←A[3]

A[0] ←A[0] A[1] ←A[1] A[2] ←A[2] A[3] ←A[3]A[0] = f(A[0])
Unroll to see deps

i
A[0] ←A[0] A[1] ←A[1] A[2] ←A[2] A[3] ←A[3]A[1] = f(A[1])

A[2] = f(A[2]) j...
A[N] = f(A[N])
A[0] = f(A[0])

Lecture 6 15-745 © 2005-8 4

...

Example to improve locality
for i=0 to N

for j=0 to M
A[j] f(A[j])

Is there a better schedule?
A[j] = f(A[j]);

A[0] A[0] A[1] A[1] A[2] A[2] A[3] A[3]

Iteration space

A[0] ←A[0] A[1] ←A[1] A[2] ←A[2] A[3] ←A[3]

A[0] ←A[0] A[1] ←A[1] A[2] ←A[2] A[3] ←A[3]

A[0] ←A[0] A[1] ←A[1] A[2] ←A[2] A[3] ←A[3]A[0] = f(A[0])
Unroll to see deps

i
A[0] ←A[0] A[1] ←A[1] A[2] ←A[2] A[3] ←A[3]A[1] = f(A[1])

A[2] = f(A[2]) j...
A[N] = f(A[N])
A[0] = f(A[0]) for j=0 to M

for i=0 to N

Lecture 6 15-745 © 2005-8 5

... for i=0 to N
A[j] = f(A[j]);

Transformed iteration space
Old It ti

for i=0 to N A[0] ←A[0] A[1] ←A[1] A[2] ←A[2] A[3] ←A[3]

Old Iteration space

f
for j=0 to M

A[j] = f(A[j]);

A[0] ←A[0] A[1] ←A[1] A[2] ←A[2] A[3] ←A[3]

A[0] ←A[0] A[1] ←A[1] A[2] ←A[2] A[3] ←A[3]

A[0] ←A[0] A[1] ←A[1] A[2] ←A[2] A[3] ←A[3]

i

j

New Iteration space

for j=0 to M
f 0 N

A[3] ←A[3] A[3] ←A[3] A[3] ←A[3] A[3] ←A[3]

A[2] A[2] A[2] A[2] A[2] A[2] A[2] A[2]

New Iteration space

for i=0 to N
A[j] = f(A[j]);

A[2] ←A[2] A[2] ←A[2] A[2] ←A[2] A[2] ←A[2]

A[1] ←A[1] A[1] ←A[1] A[1] ←A[1] A[1] ←A[1]

A[0] ←A[0] A[0] ←A[0] A[0] ←A[0] A[0] ←A[0]

j

Lecture 6 15-745 © 2005-8 6

i

What about …
for i=0 to N

for j=0 to M
A[j] f(A[j])

Is there a better schedule?
A[j] = f(A[j]);
B[i] = f(B[i]);

A[0] A[0] A[1] A[1] A[2] A[2] A[3] A[3]U ll d

Iteration space

A[0] ←A[0]
B[3] ←B[3]

A[1] ←A[1]
B[3] ←B[3]

A[2] ←A[2]
B[3] ←B[3]

A[3] ←A[3]
B[3] ←B[3]

A[0] ←A[0]
B[2] ←B[2]

A[1] ←A[1]
B[2] ←B[2]

A[2] ←A[2]
B[2] ←B[2]

A[3] ←A[3]
B[2] ←B[2]

A[0] = f(A[0])
B[0] = f(B[0])

Unroll to see deps

A[0] ←A[0]
B[1] ←B[1]

A[1] ←A[1]
B[1] ←B[1]

A[2] ←A[2]
B[1] ←B[1]

A[3] ←A[3]
B[1] ←B[1]

A[0] ←A[0]
B[0] ← B[0]

A[1] ←A[1]
B[0] ← B[0]

A[2] ←A[2]
B[0] ← B[0]

A[3] ←A[3]
B[0] ← B[0]

[] ([])
A[1] = f(A[1])
B[0] = f(B[0]])
...

N f(N)

i

A[N] = f(A[N])
B[0] = f(B[0])
A[0] = f(A[0])
B[1] f(B[1])

j

Lecture 6 15-745 © 2005-8 7

B[1] = f(B[1])

...

What about …
for i=0 to N

for j=0 to M
A[j] f(A[j])

Is there a better schedule?
A[j] = f(A[j]);
B[i] = f(B[i]);

A[0] A[0] A[1] A[1] A[2] A[2] A[3] A[3]U ll d

Iteration space

A[0] ←A[0]
B[3] ←B[3]

A[1] ←A[1]
B[3] ←B[3]

A[2] ←A[2]
B[3] ←B[3]

A[3] ←A[3]
B[3] ←B[3]

A[0] ←A[0]
B[2] ←B[2]

A[1] ←A[1]
B[2] ←B[2]

A[2] ←A[2]
B[2] ←B[2]

A[3] ←A[3]
B[2] ←B[2]

A[0] = f(A[0])
B[0] = f(B[0])

Unroll to see deps

A[0] ←A[0]
B[1] ←B[1]

A[1] ←A[1]
B[1] ←B[1]

A[2] ←A[2]
B[1] ←B[1]

A[3] ←A[3]
B[1] ←B[1]

A[0] ←A[0]
B[0] ← B[0]

A[1] ←A[1]
B[0] ← B[0]

A[2] ←A[2]
B[0] ← B[0]

A[3] ←A[3]
B[0] ← B[0]

[] ([])
A[1] = f(A[1])
B[0] = f(B[0]])
...

N f(N)

i

A[N] = f(A[N])
B[0] = f(B[0])
A[0] = f(A[0])
B[1] f(B[1])

j

Lecture 6 15-745 © 2005-8 8

B[1] = f(B[1])

...

But, what if …
for i=0 to N

for j=1 to M Can we reschedule?
A[j] = f(A[j-1]);

Iteration space

A[1] = f(A[0])
A[2] f(A[1])

Unroll to see deps A[1] ←A[0] A[2] ←A[1] A[3] ←A[2] A[4] ←A[3]

A[1] ←A[0] A[2] ←A[1] A[3] ←A[2] A[4] ←A[3]
iA[2] = f(A[1])

A[3] = f(A[2])
...

A[1] ←A[0] A[2] ←A[1] A[3] ←A[2] A[4] ←A[3]

A[1] ←A[0] A[2] ←A[1] A[3] ←A[2] A[4] ←A[3]

i

jA[N] = f(A[N-1])
A[1] = f(A[0])
A[2] = f(A[1])

j

Lecture 6 15-745 © 2005-8 9

A[2] = f(A[1])
A[3] = f(A[2])
...

But, what if …
for i=0 to N

for j=1 to M Can we reschedule?
A[j] = f(A[j-1]);

Iteration space

A[1] ←A[0] A[2] ←A[1] A[3] ←A[2] A[4] ←A[3]

A[1] ←A[0] A[2] ←A[1] A[3] ←A[2] A[4] ←A[3]
i A[1] ←A[0] A[2] ←A[1] A[3] ←A[2] A[4] ←A[3]

A[1] ←A[0] A[2] ←A[1] A[3] ←A[2] A[4] ←A[3]

i

jj

Lecture 6 15-745 © 2005-8 10

But, what if …
for i=0 to N

for j=1 to M Can we reschedule?
A[j] = f(A[j-1]);

Iteration space

A[1] ←A[0] A[2] ←A[1] A[3] ←A[2] A[4] ←A[3]

A[1] ←A[0] A[2] ←A[1] A[3] ←A[2] A[4] ←A[3]
i A[1] ←A[0] A[2] ←A[1] A[3] ←A[2] A[4] ←A[3]

A[1] ←A[0] A[2] ←A[1] A[3] ←A[2] A[4] ←A[3]

i

jj
A[1] ←A[0] A[2] ←A[1] A[3] ←A[2]

A[] 1←A[0] A[2] ←A[1] A[3] ←A[2] A[4] ←A[3]

A[1] A[0] A[2] A[1] A[3] A[2] A[4] A[3]

Lecture 6 15-745 © 2005-8 11

A[1] ←A[0] A[2] ←A[1] A[3] ←A[2] A[4] ←A[3]

A[1] ←A[0] A[2] ←A[1] A[3] ←A[2] A[4] ←A[3]

So, how do we know when/how?
When should we transform a loop?
What transforms are legal?
H h ld t f th lHow should we transform the loop.

Dependence information helps with all three questions.p p q

In short,
• Determine all dependence informationDetermine all dependence information
• Use dependence information to analyze loop
• Guide transformations using dependence info

• Key is:
Any transformation* that preserves every dependence

Lecture 6 15-745 © 2005-8 12

y p y p
in a program preserves the meaning of the program

Dependencies in Loops

• Loop independent data dependence occurs
between accesses in the same loop iterationbetween accesses in the same loop iteration.

• Loop-carried data dependence occurs between
accesses across different loop iterationsaccesses across different loop iterations.

• There is data dependence between
access a at iteration i-k and acc ss a at t rat on an
access b at iteration i when:

– a and b access the same memory locationy
– There is a path from a to b
– Either a or b is a write

Lecture 5 15-745 © 2008 13

E ther a or b s a wr te

Defining Dependencies
• Flow Dependence W R δf

• Anti-Dependence R W δa

true

Anti-Dependence R W δ
• Output Dependence W W δo false

S1) a=0;
S2) b=a;
S3) c=a+d+e;S3) c=a+d+e;
S4) d=b;
S5) b=5+e;

15-745 © 2008 14

S5) b 5+e;

Lecture 5

Example Dependencies
S1) a=0;S1) a=0;
S2) b=a;
S3) c=a+d+e;

1These are scalar dependencies. The
same idea holds for memory accesses.S3) c a+d+e;

S4) d=b;
S5) b=5+e; source type target due to

S1 δf S2 a

2

S1 δf S2 a
S1 δf S3 a
S2 δf S4 b

3

S2 δ S4 b
S3 δa S4 d
S4 δa S5 b

4

S2 δo S5 b
5

15-745 © 2008 15

What can we do with this information?
What are anti- and flow- called “false” dependences?

Lecture 5

Data Dependence in Loops
• Dependence can flow across iterations of

the loop.p
• Dependence information is annotated with

iteration information.
• If dependence is across iterations it is loop

carried otherwise loop independent.

for (i=0; i<n; i++) {for (i=0; i<n; i++) {
A[i] = B[i];
B[i+1] = A[i];

}

11/20/01 15-411 Fall '01 © Seth Copen Goldstein 2001 16

}

Data Dependence in Loops
• Dependence can flow across iterations of

the loop.p
• Dependence information is annotated with

iteration information.
• If dependence is across iterations it is loop

carried otherwise loop independent.

for (i=0; i<n; i++) {
A[i] = B[i];
B[i+1] = A[i];

} δf loop independent

δf loop carried

11/20/01 15-411 Fall '01 © Seth Copen Goldstein 2001 17

} p p

Data Dependence
– There is a data dependence from statement S1 to statement S2 (S2

depends on S1) if:
1 B th t t t th l ti d t l t 1. Both statements access the same memory location and at least

one of them stores onto it, and
2. There is a feasible run-time execution path from S1 to S2

• We need to characterize the dependence information in terms of
the loop iterations involved in the dependence, so we need a way to

lk b f ltalk about iterations of a loop.
– Iteration vector: a label for a loop iteration using the induction

variables.
– Iteration space: the set of all possible iteration vectors for a

loop
– Lexicographic order: The order of the iterationsg p

Lecture 6 15-745 © 2005-8 18

Iteration Space
Every iteration generates a point in an n-
dimensional space, where n is the depth of
th l stthe loop nest.

4

for (i=0; i<n; i++) {

}

for (i=0; i<n; i++)
3
2

for (j=0; j<4; j++) {

}

Lecture 6 15-745 © 2005-8 19

T. Mowry

Iteration Vectors
• Need to consider the nesting level of a loop• Need to consider the nesting level of a loop
• Nesting level of a loop is equal to one more than

the number of loops that enclose itthe number of loops that enclose it.
• Given a nest of n loops, the iteration vector i of

a particular iteration of the innermost loop is a a particular iteration of the innermost loop is a
vector of integers that contains the iteration
numbers for each of the loops in order of p
nesting level.

• Thus, the iteration vector is: {i1, i2, ..., in }1 2 n
where ik, 1 ≤ k ≤ n represents the iteration
number for the loop at nesting level k

Lecture 6 15-745 © 2005-8 20

Iteration Space
Every iteration generates a point in an n-
dimensional space, where n is the depth of
th l stthe loop nest.

4

for (i=0; i<n; i++) {

}

for (i=0; i<n; i++)
3
2

for (j=0; j<4; j++) {

}

Lecture 6 15-745 © 2005-8 21

T. Mowry

Ordering of Iteration Vectorsg f
• Dan ordering for iteration vectors
• Use an intuitive lexicographic orderUse an intuitive, lexicographic order
• Iteration i precedes iteration j, denoted i < j,

iff:iff:
1. i[1:n-1] < j[1:n-1], or
2 i[1:k-1] = j[1:k-1] and ik < jk

i1 j12. i[1:k-1] = j[1:k-1] and ik < jk i2
…
ik

j
j2
…
jk

<
ik
…
in

jk
…
jn

Lecture 6 15-745 © 2005-8 22

Example Iteration SpaceExample Iteration Space

f i 0 1

i

for i = 0 to N-1
for j = 0 to N-1

A[i][j] = B[j][i];

• each position represents an iteration
j

T. Mowry

each position represents an iteration

Visitation Order in Iteration Space

f i 0 1

i

for i = 0 to N-1
for j = 0 to N-1

A[i][j] = B[j][i];

• Note: iteration space is not data space

j

T. Mowry

Note: iteration space is not data space

Formal Def of Loop DependenceF m f f p p
• There exists a dependence from statements S1 to

statement S2 in a common nest of loops iff there statement S2 n a common nest of loops ff there
exist two iteration vectors i and j for the nest, st.
(1) (a) i < j or

(b) i = j and there is a path from
S1 to S2 in the body of the loop,

(2) statement S accesses memory location M on (2) statement S1 accesses memory location M on
iteration i and statement S2 accesses location M on
iteration j and iteration j, and
(3) one of these accesses is a write.

• 1a: Loop carried and 1b: Loop independent

Lecture 6 15-745 © 2005-8 25

p p p
• S1 is source of dependence, S2 is sink or target of dep

Dependence Distance
• Using iteration vectors and def of dependence

we can determine the distance of a dependence:we can determ ne the d stance of a dependence
• In n-deep loop nest if

– S1 is source in iteration iS1 is source in iteration i
– S2 is sink in iteration j

• Distance of dependence is represented with a Distance of dependence is represented with a
distance vector: D
– Vector of length n whereVector of length n, where
– dk = jk - ik

Lecture 6 15-745 © 2005-8 26

Distance Vector
for (i=0; i<n; i++) {

A[i] = B[i]; Distance vector is the [] []
B[i+1] = A[i];

}
difference between the

target and source iterations.

A[0] = B[0];
B[1] = A[0];

i=0
d = It-Is

Exactly the distance of the [] [];
A[1] = B[1];
B[2] = A[1];
A[2] = B[2];

i=1
dependence, i.e.,

Is + d = ItB[3] = A[2];
i=2

s t

Lecture 6 15-745 © 2005-8 27

T. Mowry

Example of Distance Vectors

for (i=0; i<n; i++) ()
for (j=0; j<m; j++){

A[i,j] = ;
[i j]

A0,2= =A0,2
B0,3= =B0,2
C1,2= =C0,3

A1,2= =A1,2
B1,3= =B1,2
C2,2= =C1,3

A2,2= =A2,2
B2,3= =B2,2
C3,2= =C2,3= A[i,j];

B[i,j+1] = ;
= B[i,j];

A0,1= =A0,1
B0,2= =B0,1
C1 1= =C0 2

A1,1= =A1,1
B1,2= =B1,1
C2 1= =C1 2

A2,1= =A2,1
B2,2= =B2,1
C3 1= =C2 2

j

C[i+1,j] = ;
= C[i,j+1] ;

}
A0,0= =A0,0
B0,1= =B0,0

C1,1 C0,2

A1,0= =A1,0
B1,1= =B1,0

C2,1 C1,2

A2,0= =A2,0
B2,1= =B2,0

C3,1 C2,2

} C1,0= =C0,1 C2,0= =C1,1 C3,0= =C2,1

i

T. Mowry

Example of Distance Vectors
for (i=0; i<n; i++)

for (j=0; j<m; j++){ A0,2= =A0,2
B0 3= =B0 2

A1,2= =A1,2
B1 3= =B1 2

A2,2= =A2,2
B2 3= =B2 2A[i,j] = ;

= A[i,j];
B[i,j+1] = ; j

A0,1= =A0,1
B B

0,3 0,2
C1,2= =C0,3

A1,1= =A1,1
B B

1,3 1,2
C2,2= =C1,3

A2,1= =A2,1
B B

2,3 2,2
C3,2= =C2,3

[,j] ;
= B[i,j];

C[i+1,j] = ;
= C[i j+1] ;

j

A0 0= =A0 0

B0,2= =B0,1
C1,1= =C0,2

A1 0= =A1 0

B1,2= =B1,1
C2,1= =C1,2

A2 0= =A2 0

B2,2= =B2,1
C3,1= =C2,2

= C[i,j+1] ;
}

A0,0 A0,0
B0,1= =B0,0
C1,0= =C0,1

A1,0 A1,0
B1,1= =B1,0
C2,0= =C1,1

A2,0 A2,0
B2,1= =B2,0
C3,0= =C2,1

A yields: 0
0 B yields: 0

1 C yields: 1
1

i

T. Mowry

0 1 -1

Direction Vectors
• Less precise than distance vectors, but often

good enough
• In n-deep loop nest if

– S1 is source in iteration i
– S2 is sink in iteration j

• Distance vector: F - Vector of length n, whereg
- fk = jk – ik

• Direction vector also vector of length n, where

– dk = “<“ if fk > 0, or jk < ik
“ “ if f 0 j ik

Lecture 6 15-745 © 2005-8 30

“=“ if fk = 0, or jk = ik
“>“ if fk < 0, or jk > ik

Example of Direction Vectors
for (i=0; i<n; i++)

for (j=0; j<m; j++){ A0,2= =A0,2
B0 3= =B0 2

A1,2= =A1,2
B1 3= =B1 2

A2,2= =A2,2
B2 3= =B2 2A[i,j] = ;

= A[i,j];
B[i,j+1] = ; j

A0,1= =A0,1
B B

0,3 0,2
C1,2= =C0,3

A1,1= =A1,1
B B

1,3 1,2
C2,2= =C1,3

A2,1= =A2,1
B B

2,3 2,2
C3,2= =C2,3

[,j] ;
= B[i,j];

C[i+1,j] = ;
= C[i j+1] ;

j

A0 0= =A0 0

B0,2= =B0,1
C1,1= =C0,2

A1 0= =A1 0

B1,2= =B1,1
C2,1= =C1,2

A2 0= =A2 0

B2,2= =B2,1
C3,1= =C2,2

= C[i,j+1] ;
}

A0,0 A0,0
B0,1= =B0,0
C1,0= =C0,1

A1,0 A1,0
B1,1= =B1,0
C2,0= =C1,1

A2,0 A2,0
B2,1= =B2,0
C3,0= =C2,1

A yields: =
= B yields: =

< C yields: <
>

i

T. Mowry

= < >

Direction Vectors
Example:

DO I = 1, N
DO J = 1, M

DO K = 1, L
S1 A(I+1, J, K-1) = A(I, J, K) + 10

ENDDO
ENDDO

ENDDO

• S1 has a true dependence on itself.
• Distance Vector: (1 0 -1)• Distance Vector: (1, 0, -1)
• Direction Vector: (<, =, >)

Lecture 6 15-745 © 2005-8 32

Note on vectors
• A dependence cannot exist if it has a direction

vector whose leftmost non "=" component is not vector whose leftmost non component s not
"<" as this would imply that the sink of the
dependence occurs before the source.

• Likewise, the first non-zero distance in a
distance vector must be postive.

Lecture 6 15-745 © 2005-8 33

The Key
• Any reordering transformation that preserves

every dependence in a program preserves the every dependence n a program preserves the
meaning of the program

• A reordering transformation may change order
of execution but does not add or remove
statements.

Lecture 6 15-745 © 2005-8 34

Finding Data Dependences

Lecture 6 15-745 © 2005-8 35

Main Theme

D i i h h d d i i • Determining whether dependencies exist
between two subscripted references to the
same array in a loop nestsame array in a loop nest

• Several tests to detect these dependencies

The General Problem
DO i1 = L1, U1
DO i2 = L2, U2

...
DO in = Ln, Un

S1 A(f1(i1,...,in),...,fm(i1,...,in)) = ...
S2 ... = A(g1(i1,...,in),...,gm(i1,...,in))

ENDDO
...

ENDDO
ENDDOENDDO

A dependence exists from S1 to S2 if:
h d h h– There exist α and β such that

• α < β (control flow requirement)
• f (α) = g (β) for all i 1 ≤ i ≤ m (common access • fi (α) = gi (β) for all i, 1 ≤ i ≤ m (common access

requirement)

Basics: Conservative Testing
• Consider only linear subscript expressions
• Finding integer solutions to system of linear Finding integer solutions to system of linear

Diophantine Equations is NP-Complete
• Most common approximation is Conservative Most common approximation is Conservative

Testing, i.e., See if you can assert
“No dependence exists between two No dependence exists between two
subscripted references of the same array”

• Never incorrect, may be less than optimal, y p

Basics: Indices and Subscripts

Index: Index variable for some loop surrounding a
pair of referencespair of references

Subscript: A PAIR of subscript positions in a pair
of array referencesof array references

For Example:
A(I,j) = A(I,k) + C

<I,I> is the first subscript
<j,k> is the second subscript

Basics: Complexity
A subscript is said to be

– ZIV if it contains no indexZIV if it contains no index
zero index variable

– SIV if it contains only one indexSIV if it contains only one index
single index variable

– MIV if it contains more than one indexMIV if it contains more than one index
multiple index variable

For Example: For Example:
A(5,I+1,j) = A(1,I,k) + C

First subscript is ZIV

Second subscript is SIV

Third subscript is MIV

Basics: Separability
• A subscript is separable if its indices do not

occur in other subscriptsoccur n other subscr pts
• If two different subscripts contain the same

index they are coupledy p
For Example:

A(I+1,j) = A(k,j) + Cj j

Both subscripts are separable
A(I,j,j) = A(I,j,k) + C

S d d thi d b i t l dSecond and third subscripts are coupled

Basics:Coupled Subscript Groups
• Why are they important?

Coupling can cause imprecision in dependence Coupling can cause imprecision in dependence
testing

DO I = 1, 100
S1 A(I+1,I) = B(I) + C(,) ()
S2 D(I) = A(I,I) * E

ENDDO

Dependence Testing: Overview
• Partition subscripts of a pair of array references into

separable and coupled groups
• Classify each subscript as ZIV, SIV or MIV

– Reason for classification is to reduce complexity of
the teststhe tests.

• For each separable subscript apply single subscript test.
Continue until prove independence.p p

• Deal with coupled groups
• If independent, done
• Otherwise, merge all direction vectors computed in the

previous steps into a single set of direction vectors

Step 1: Subscript Partitioning
• Partitions the subscripts into separable and minimal

coupled groups
• Notations

// S is a set of m subscript pairs S1, S2, ...Sm each enclosed in
n loops with indexes I I I which is to ben loops with indexes I1, I2, ... In, which is to be
partitioned into separable or minimal coupled groups.

// P is an output variable, containing the set of partitions
// np is the number of partitions

Subscript Partitioning Algorithm
procedure partition(S,P, np)

np = m;
f 1 d {S }for i := 1 to m do Pi = {Si};
for i := 1 to n do begin

k := <none>
for each remaining partition Pj do

if there exists s ε Pj such that s contains Ii then
if k = < none > then k = j;
l b i P P P di d P 1 delse begin Pk = Pk ∪ Pj; discard Pj; np = np – 1; end

end
end partition

Step 2: Classify as ZIV/SIV/MIV
• Easy step
• Just count the number of different indices in a Just count the number of different indices in a

subscript

Step 3: Applying Single Subscript Tests

• ZIV Test
• SIV TestSIV Test

– Strong SIV Test
– Weak SIV Test– Weak SIV Test

• Weak-zero SIV
• Weak Crossing SIV

• SIV Tests in Complex Iteration Spaces

ZIV Test
DO j = 1, 100

S A(e1) = A(e2) + B(j)S A(e1) = A(e2) + B(j)

ENDDO

e1,e2 are constants or loop invariant
symbolsy

If (e1-e2)!=0 No Dependence exists

Strong SIV Test
• Strong SIV subscripts are of the form

caicai ++

• For example the following are strong SIV

21, caicai ++

• For example the following are strong SIV
subscripts ii ,1+

4424 , ++ ii

Strong SIV Test Example

DO k = 1, 100
DO j = 1, 100

S1 A(j+1,k) = ...
S2 ... = A(j,k) + 32(j,)

ENDDO
ENDDO

Strong SIV Test

cc 21 −
a

ccii'd 21
=−=

LUd −≤Dependence exists if UDependence exists if

Weak SIV Tests
• Weak SIV subscripts are of the form

ai+c ai+c

• For example the following are weak SIV

a1i+c1,a2i+c2

• For example the following are weak SIV
subscripts i +1,5

2i + 1 i + 52i + 1, i + 5
2i + 1,−2i

Geometric view of weak SIV

Lecture 6 15-745 © 2005-8 53

Weak-zero SIV Test
• Special case of Weak SIV where one of the

coefficients of the index is zerocoeff c ents of the ndex s zero
• The test consists merely of checking whether

the solution is an integer and is within loop g p
bounds i =

c2 − c1

a1

Weak-zero SIV Test Weak-zero SIV & Loop Peeling
DO i = 1, N

S1 Y(i, N) = Y(1, N) + Y(N, N)
ENDDO

Can be loop peeled toCan be loop peeled to...
Y(1, N) = Y(1, N) + Y(N, N)
DO i = 2, N-1

S1 Y(i, N) = Y(1, N) + Y(N, N)
ENDDO
Y(N, N) = Y(1, N) + Y(N, N)Y(N, N) Y(1, N) + Y(N, N)

Weak-crossing SIV Test
• Special case of Weak SIV where the

coefficients of the index are equal in magnitude coeff c ents of the ndex are equal n magn tude
but opposite in sign

• The test consists merely of checking whether y g
the solution index

is 1. within loop bounds and isp
2. either an integer or has a non-integer

part equal to 1/2
i =

c2 − c1

2 a1p q

Weak-crossing SIV Test

Weak-crossing SIV &
Loop SplittingLoop Splitting

DO i = 1, N
S1 A(i) = A(N-i+1) + C

ENDDO

This loop can be split intoThis loop can be split into...

DO i = 1,(N+1)/2
A(i) = A(N-i+1) + C

ENDDO
DO i = (N+1)/2 + 1, N() ,

A(i) = A(N-i+1) + C
ENDDO

Complex Iteration Spaces
• Till now we have applied the tests only to

rectangular iteration spacesrectangular terat on spaces
• These tests can also be extended to apply to

triangular or trapezoidal loopsg p p
– Triangular: One of the loop bounds is a

function of at least one other loop indexp
– Trapezoidal: Both the loop bounds are

functions of at least one other loop index

Next Time...
• Complex iteration spaces
• MIV TestsMIV Tests
• Tests in Coupled groups
• Merging direction vectors• Merging direction vectors

