 Hoisting of loop-invariant computations pre-compute before entering the loop Elimination of induction variables change p=i*w+b to p=b,p+=w, when w,b invariant Loop unrolling to to improve scheduling of the loop body Software pipelining To improve scheduling of the loop body Loop permutation to improve cache memory performance 	15-745 Lecture 6		Common loop optimizations
Copyright © Seth Goldstein, 2008 - to improve cache memory performance Based on slides from Allen&Kennedy 1 Lecture 5 15-745 © 2008	Data Dependence in Loops		 Hoisting of loop-invariant computations pre-compute before entering the loop Elimination of induction variables change p=i*w+b to p=b,p+=w, when w,b invariant Loop unrolling to to improve scheduling of the loop body Software pipelining To improve scheduling of the loop body Loop permutation Requires understanding data dependencies
Based on slides from Allen&Kennedy ecture 6 15-745 © 2005-8 1 Lecture 5 15-745 © 2008	Copyright © Seth Goldstein, 2008		- to improve cache memory performance
	Based on slides from Allen&Kennedy 15-745 © 2005-8	1	Lecture 5 15-745 © 2008

Why Dependence Analysis

- Goal is to find best schedule:
 - Improve memory locality
 - Increase parallelism
 - Decrease scheduling stalls
- Before we schedule we need to know possible legal schedules and impact of schedule on performance

Example to improve locality

for i=0 to N for j=0 to M A[j] = f(A[j]);

Is there a better schedule?

Iteration space

A[2] ← A[2]

A[3] ← A[3]

Unroll to see deps

A[0] = f(A[0])A[1] = f(A[1])A[2] = f(A[2])

A[N] = f(A[N]) A[0] = f(A[0])

...

Lecture 6

 $A[0] \leftarrow A[0] \quad A[1] \leftarrow A[1]$

A[0] = f(A[0]) B[0] = f(B[0]) A[1] = f(A[1])B[0] = f(B[0])

... A[N] = f(A[N]) B[0] = f(B[0]) A[0] = f(A[0]) B[1] = f(B[1])

Iteration space					
	A[0] ← A[0] B[3] ← B[3]	A[1]←A[1] B[3]←B[3]	A[2]←A[2] B[3]←B[3]	A[3]←A[3] B[3]←B[3]	
	$\begin{array}{c} A[0] \leftarrow A[0] \\ B[2] \leftarrow B[2] \end{array}$	A[1]←A[1] B[2]←B[2]	A[2] ←A[2] B[2] ←B[2]	A[3] ←A[3] B[2] ←B[2]	
i	$\begin{array}{c} A[0] \leftarrow A[0] \\ B[1] \leftarrow B[1] \end{array}$	A[1] ← A[1] B[1] ← B[1]	A[2]←A[2] B[1]←B[1]	A[3] ← A[3] B[1] ← B[1]	
	A[0] ← A[0] B[0] ← B[0]	A[1]←A[1] B[0]←B[0]	A[2] ←A[2] B[0] ← B[0]	A[3] ←A[3] B[0] ← B[0]	
	J		→		

Lecture 6 •••

7

A[0] = f(A[0])

B[0] = f(B[0])

A[1] = f(A[1])

B[0] = f(B[0]])

A[N] = f(A[N])

B[0] = f(B[0])

A[0] = f(A[0])B[1] = f(B[1])

15-745 © 2005-8

101A→101A

B[2] ← B[2]

 $[0]A \rightarrow [0]A$

 $[0]A \rightarrow [0]A$

B[1]_B[1]

i

 $A[1] \leftarrow A[1]$

B[2] ← B[2]

 $A[1] \leftarrow A[1]$

 $B[1] \leftarrow B[1]$

 $A[1] \leftarrow A[1]$

 $B[0] \leftarrow B[0] | B[0] \leftarrow B[0]$

8

A[3] ← A[3]

B[2] ← B[2]

 $A[3] \leftarrow A[3]$

 $B[1] \leftarrow B[1]$

 $A[3] \leftarrow A[3]$

B[0] ← B[0]

 $\begin{array}{c} A[2] \leftarrow A[2] \\ B[2] \leftarrow B[2] \end{array}$

A[2] ← A[2]

B[1] ← B[1]

A[2] ← A[2] B[0] ← B[0]

But, what if ...

for i=0 to N for j=1 to M A[j] = f(A[j-1]);

Can we reschedule?

Iteration space

		↑	A[1	[0]A→[A[2]]←A[1]	A[3]	←A[2]	A[4]	←A[3]
		. [A[1	[0]A→[A[2]]←A[1]	A[3]	←A[2]	A[4]	←A[3]
		• [A[1]←A[0]	A[2]]←A[1]	A[3]	←A[2]	A[4]	←A[3]
			A[1]←A[0]	A[2]]←A[1]	A[3]	←A[2]	A[4]	←A[3]
		-						*		
				A[1] ← A	[0]	A[2] ← A	\[1]	A[3] ←	A[2]	
		A[]1←A[0)]	A[2] ← A	[1]	A[3] ← A	A[2]	A[4] ←	A[3]	
	A[1]←A[0]	A[2] ← A[2	1]	A[3] ← A	[2]	A[4] ← A	A[3]			
A[1] ← A[0]	A[2]←A[1]	A[3] ← A[3	2]	A[4] ← A	[3]					
15-745 © 2005-8 11										

So, how do we know when/how?

When should we transform a loop? What transforms are legal? How should we transform the loop.

Dependence information helps with all three questions.

In short.

- Determine all dependence information
- Use dependence information to analyze loop
- Guide transformations using dependence info
- Key is:

Any transformation^{*} that preserves every dependence in a program preserves the meaning of the program

Lecture 6

Defining Dependencies Dependencies in Loops Flow Dependence + true $W \rightarrow R$ Loop independent data dependence occurs between accesses in the same loop iteration. • Anti-Dependence →W δa false Loop-carried data dependence occurs between • Output Dependence $W \rightarrow W$ δ° accesses across different loop iterations. There is data dependence between access a at iteration i-k and S1) a=0; access b at iteration i when: S2) b=a;- a and b access the same memory location S3) c=a+d+e;- There is a path from a to b S4) d=b;- Fither a or b is a write s5) b=5+e;Lecture 5 15-745 @ 2008 13 Lecture 5 15-745 © 2008 14

Example Dependencies

S1) a=0; These are scalar dependencies. The S2) b=a;same idea holds for memory accesses. S3) c=a+d+e;S4) d=b; source type target due to s5) b=5+e;S1 S2 δ^{f} а S3 δf S1 а S2 δ^{f} S4 b **S**3 d δ^{a} **S**4 **S**4 δ^{a} **S**5 b **S**5 **S**2 δ٥ b

> What can we do with this information? What are anti- and flow- called "false" dependences?

Data Dependence in Loops

- Dependence can flow across iterations of the loop.
- Dependence information is annotated with iteration information.
- If dependence is across iterations it is loop carried otherwise loop independent.

```
for (i=0; i<n; i++) {
    A[i] = B[i];
    B[i+1] = A[i];
}</pre>
```

15

11/20/01

Data Dependence in Loops

- Dependence can flow across iterations of the loop.
- Dependence information is annotated with iteration information.
- If dependence is across iterations it is loop carried otherwise loop independent.

Iteration Space

Every iteration generates a point in an ndimensional space, where n is the depth of the loop nest.

Data Dependence

- There is a data dependence from statement S_1 to statement S_2 (S $_2$ depends on $S_1)$ if:
- 1. Both statements access the same memory location and at least one of them stores onto it, and
- 2. There is a feasible run-time execution path from S_1 to S_2
- We need to characterize the dependence information in terms of the loop iterations involved in the dependence, so we need a way to talk about iterations of a loop.
 - Iteration vector: a label for a loop iteration using the induction variables.
 - Iteration space: the set of all possible iteration vectors for a loop

15-745 © 2005-8

- Lexicographic order: The order of the iterations

Iteration Vectors

- Need to consider the nesting level of a loop
- Nesting level of a loop is equal to one more than the number of loops that enclose it.
- Given a nest of n loops, the iteration vector i of a particular iteration of the innermost loop is a vector of integers that contains the iteration numbers for each of the loops in order of nesting level.
- Thus, the iteration vector is: $\{i_1, i_2, ..., i_n\}$ where i_k , $1 \le k \le n$ represents the iteration number for the loop at nesting level k

Lecture 6

19

Iteration Space

Every iteration generates a point in an ndimensional space, where n is the depth of the loop nest.

Ordering of Iteration Vectors

- Dan ordering for iteration vectors
- Use an intuitive, lexicographic order
- Iteration i precedes iteration j, denoted i < j, iff:

J1

Ĵ2

Ĵk

Jn

22

i₂

... i_k < •••

in

1. i[1:n-1] < j[1:n-1], or 2. i[1:k-1] = j[1:k-1] and $i_k < j_k$

Lecture 6

T. Mowry

Example Iteration Spa

each position represents an iteration

Visitation Order in Iteration Space

15-745 © 2005-8

Note: iteration space is not data space

Formal Def of Loop Dependence

- There exists a dependence from statements S_1 to statement S_2 in a common nest of loops iff there exist two iteration vectors *i* and *j* for the nest, st. (1) (a) *i* < *j* or
 - (b) *i* = *j* and there is a path from
 - S_1 to S_2 in the body of the loop, (2) statement S_1 accesses memory location M on iteration i and statement S_2 accesses location M on iteration *j*, and
 - (3) one of these accesses is a write.
- 1a: Loop carried and 1b: Loop independent
- S1 is source of dependence, S2 is sink or target of dep

15-745 @ 2005-8

Dependence Distance

- Using iteration vectors and def of dependence we can determine the distance of a dependence:
- In n-deep loop nest if
 - S1 is source in iteration i
 - S2 is sink in iteration j
- Distance of dependence is represented with a distance vector: D
 - Vector of length n, where
 - $-d_{k} = j_{k} i_{k}$

Distance Vector

Example of Distance Vectors

15-745 © 2005-8

for (i=0; i <n; i++)<="" th=""></n;>
<pre>for (j=0; j<m; j++){<="" pre=""></m;></pre>
A[i,j] = ;
= A[i,j];
B[i,j+1] = ;
= B[i,j];
C[i+1,j] = ;
= C[i,j+1] ;
}

		1			
$\begin{bmatrix} A_{0,2} = \\ B_{0,3} = \\ C_{1,2} = \end{bmatrix}$	=A _{0,2}	A _{1,2} =	=A _{1,2}	A _{2,2} =	=A _{2,2}
	=B _{0,2}	B _{1,3} =	=B _{1,2}	B _{2,3} =	=B _{2,2}
	=C _{0,3}	C _{2,2} =	=C _{1,3}	C _{3,2} =	=C _{2,3}
A _{0,1} =	=A _{0,1}	A _{1,1} =	=A _{1,1}	A _{2,1} =	=A _{2,1}
B _{0,2} =	=B _{0,1}	B _{1,2} =	=B _{1,1}	B _{2,2} =	=B _{2,1}
C _{1,1} =	=C _{0,2}	C _{2,1} =	=C _{1,2}	C _{3,1} =	=C _{2,2}
$\begin{array}{c} A_{0,0} = \\ B_{0,1} = \\ C_{1,0} = \end{array}$	=A _{0,0}	A _{1,0} =	=A _{1,0}	A _{2,0} =	=A _{2,0}
	=B _{0,0}	B _{1,1} =	=B _{1,0}	B _{2,1} =	=B _{2,0}
	=C _{0,1}	C _{2,0} =	=C _{1,1}	C _{3,0} =	=C _{2,1}
		Ţ	i		

26

Lecture 6

27

25

Lecture 6

T. Mowry

Example of Distance Vectors

Direction Vectors

- Less precise than distance vectors, but often good enough
- In n-deep loop nest if
 - S1 is source in iteration i
 - S2 is sink in iteration j
- Distance vector: F Vector of length n, where $-f_k = j_k i_k$

• Direction vector also vector of length n, where

- d _k = ["<" if f _k > 0, or j _k < i _k "=" if f _k = 0, or j _k = i _k ">" if f _k < 0, or j _k > i _k
	15-745 © 2005-8

Lecture 6

Lecture 6

Example of Direction Vectors

for (i=0; i
for (j=0; j

$$A[i,j] = ;$$

 $= A[i,j];$
 $B[i,j+1] = ;$
 $= B[i,j];$
 $C[i+1,j] = ;$
 $= C[i,j+1] ;$
 $A yields: \begin{bmatrix} = \\ = \end{bmatrix}$ B yields: $\begin{bmatrix} = \\ < \end{bmatrix}$ A $A_{0,2} = A_{0,2}$ A $A_{1,2} = A_{1,2}$ A $A_{2,2} = A_{2,2}$ B $B_{2,3} = B_{2,2}$ C $B_{2,3} = B_{2,2}$ C $B_{2,3} = B_{2,3}$ C $B_{2,3} = B_{2,2}$ C $B_{2,3} = B_{2,3}$ C $B_{3,3} = B_{3,3}$ C $B_{3,1} = B_{3,3}$ C $B_{3,2} = B_{3,3}$ C $B_{3,3} = B_{3,3}$

Direction Vectors

- S_1 has a true dependence on itself.
- Distance Vector: (1, 0, -1)
- Direction Vector: (<, =, >)

Note on vectors

- A dependence cannot exist if it has a direction vector whose leftmost non "=" component is not "<" as this would imply that the sink of the dependence occurs before the source.
- Likewise, the first non-zero distance in a distance vector must be postive.

The Key

- Any reordering transformation that preserves every dependence in a program preserves the meaning of the program
- A reordering transformation may change order of execution but does not add or remove statements.

Lecture ó	15-745 © 2005-8	33	Lecture 6	15-745 @ 2005-8	34
				Main Theme	
	Finding Data Dependences		• Deter betwo same • Sever	mining whether dependencies exist een two subscripted references to the array in a loop nest al tests to detect these dependencies	

The General Problem

A dependence exists from S1 to S2 if:

- There exist α and β such that
- $\alpha < \beta$ (control flow requirement)
- $f_i(\alpha) = g_i(\beta)$ for all $i, 1 \le i \le m$ (common access requirement)

Basics: Conservative Testing

- Consider only linear subscript expressions
- Finding integer solutions to system of linear Diophantine Equations is NP-Complete
- Most common approximation is Conservative Testing, i.e., See if you can assert

"No dependence exists between two subscripted references of the same array"

• Never incorrect, may be less than optimal

Basics: Indices and Subscripts

- Index: Index variable for some loop surrounding a pair of references
- Subscript: A <u>PAIR</u> of subscript positions in a pair of array references

For Example:

A(I,j) = A(I,k) + C <I,I> is the first subscript <j,k> is the second subscript

Basics: Complexity

A subscript is said to be

- ZIV if it contains no index zero index variable
- SIV if it contains only one index single index variable
- MIV if it contains more than one index multiple index variable

For Example:

A(5,I+1,j) = A(1,I,k) + C
First subscript is ZIV
Second subscript is SIV
Third subscript is MIV

Basics: Separability

- A subscript is separable if its indices do not occur in other subscripts
- If two different subscripts contain the same index they are coupled

For Example:

A(I+1,j) = A(k,j) + C
Both subscripts are separable
A(I,j,j) = A(I,j,k) + C
Second and third subscripts are coupled

Basics: Coupled Subscript Groups

• Why are they important? Coupling can cause imprecision in dependence testing

DO I = 1, 100 S1 A(I+1,I) = B(I) + C S2 D(I) = A(I,I) * E ENDDO

Dependence Testing: Overview

- Partition subscripts of a pair of array references into separable and coupled groups
- Classify each subscript as ZIV, SIV or MIV
 - Reason for classification is to reduce complexity of the tests.
- For each separable subscript apply single subscript test. Continue until prove independence.
- Deal with coupled groups
- If independent, done
- Otherwise, merge all direction vectors computed in the previous steps into a single set of direction vectors

Step 1: Subscript Partitioning

- Partitions the subscripts into separable and minimal coupled groups
- Notations
 - // S is a set of m subscript pairs S₁, S₂, ...S_m each enclosed in n loops with indexes I₁, I₂, ... I_n, which is to be partitioned into separable or minimal coupled groups.
 - $/\!/\,P$ is an output variable, containing the set of partitions
 - $// n_p$ is the number of partitions

Subscript Partitioning Algorithm

procedure $partition(S,P, n_p)$
$n_p = m;$
for $i := 1$ to m do $P_i = \{S_i\};$
for $i := 1$ to n do begin
$k := \langle \text{none} \rangle$
for each remaining partition P_j do
if there exists $s \in P_j$ such that s contains I_i then
if $k = <$ none > then $k = j$;
else begin $P_k = P_k \cup P_j$; discard P_j ; $n_p = n_p - 1$; end
end

end partition

Step 2: Classify as ZIV/SIV/MIV

- Easy step
- Just count the number of different indices in a subscript

Step 3: Applying Single Subscript Tests

- ZIV Test
- SIV Test
 - Strong SIV Test
 - Weak SIV Test
 - Weak-zero SIV
 - Weak Crossing SIV
- SIV Tests in Complex Iteration Spaces

ZIV Test

```
DO j = 1, 100
S A(e1) = A(e2) + B(j)
ENDDO
```

- el,e2 are constants or loop invariant symbols
- If (e1-e2)!=0 No Dependence exists

Strong SIV Test

Strong SIV subscripts are of the form

 $\langle ai+c_1,ai+c_2\rangle$

+ For example the following are strong SIV subscripts $\langle i+1,i \rangle$

$$\langle 4i+2,4i+4\rangle$$

Strong SIV Test Example

DO k = 1, 100 DO j = 1, 100 S1 A(j+1,k) = ... S2 ... = A(j,k) + 32 ENDDO ENDDO

Strong SIV Test

Dependence exists if $|d| \leq U - L$

Weak SIV Tests

- Weak SIV subscripts are of the form $\langle a_1i + c_1, a_2i + c_2 \rangle$
- For example the following are weak SIV subscripts $\langle i+1,5 \rangle$ $\langle 2i+1,i+5 \rangle$

$$\langle 2i+1,-2i\rangle$$

Geometric view of weak SIV	Weak-zero SIV Test
Geometric View of Strong SIV Tests y A (m) $-c_1/a_1$ $-c_2/a_2$ N_{\pm} i	 Special case of Weak SIV where one of the coefficients of the index is zero The test consists merely of checking whether the solution is an integer and is within loop bounds i = cience.org
Lecture 6 15-745 © 2005-8 53	
Weak-zero SIV Test	Weak-zero SIV & Loop Peeling
Geometric View of Weak-zero SIV Subscripts y A (m) c_2 $c_1/a1$ g(i) N_{\perp} j	DO i = 1, N S_1 Y(i, N) = Y(1, N) + Y(N, N) ENDDO Can be loop peeled to Y(1, N) = Y(1, N) + Y(N, N) DO i = 2, N-1 S1 Y(i, N) = Y(1, N) + Y(N, N) ENDDO Y(N, N) = Y(1, N) + Y(N, N)

Weak-crossing SIV Test

- Special case of Weak SIV where the coefficients of the index are equal in magnitude but opposite in sign
- The test consists merely of checking whether the solution index
 - is 1. within loop bounds and is
 - 2. either an integer or has a non-integer part equal $\overline{\overline{100}}$

Weak-crossing SIV Test

Weak-crossing SIV & Loop Splitting

 $S1 \quad A(i) = A(N-i+1) + C$ ENDDO

This loop can be split into...

```
DO i = 1,(N+1)/2
    A(i) = A(N-i+1) + C
ENDDO
DO i = (N+1)/2 + 1, N
    A(i) = A(N-i+1) + C
ENDDO
```

Complex Iteration Spaces

- Till now we have applied the tests only to rectangular iteration spaces
- These tests can also be extended to apply to triangular or trapezoidal loops
 - Triangular: One of the loop bounds is a function of at least one other loop index
 - Trapezoidal: Both the loop bounds are functions of at least one other loop index

Next Time...

- Complex iteration spaces
- \cdot MIV Tests
- Tests in Coupled groups
- Merging direction vectors