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Common loop optimizations

• Hoisting of loop-invariant computations
– pre-compute before entering the loop

• Elimination of induction variables
h  i* b  b  h  b i i– change p=i*w+b to p=b,p+=w, when w,b invariant

• Loop unrolling
to to improve scheduling of the loop body– to to improve scheduling of the loop body

• Software pipelining
– To improve scheduling of the loop body

Requires 
understanding 
data To improve scheduling of the loop body

• Loop permutation
– to improve cache memory performance

data 
dependencies
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Why Dependence Analysis
• Goal is to find best schedule:

– Improve memory localityImprove memory locality
– Increase parallelism
– Decrease scheduling stalls– Decrease scheduling stalls

• Before we schedule we need to know possible 
legal schedules and impact of schedule on legal schedules and impact of schedule on 
performance
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Example to improve locality
for i=0 to N

for j=0 to M
A[j]  f(A[j])

Is there a better schedule?
A[j] = f(A[j]);

A[0] A[0] A[1] A[1] A[2] A[2] A[3] A[3]

Iteration space

A[0] ←A[0] A[1] ←A[1] A[2] ←A[2] A[3] ←A[3]

A[0] ←A[0] A[1] ←A[1] A[2] ←A[2] A[3] ←A[3]

A[0] ←A[0] A[1] ←A[1] A[2] ←A[2] A[3] ←A[3]A[0] = f(A[0])
Unroll to see deps

i
A[0] ←A[0] A[1] ←A[1] A[2] ←A[2] A[3] ←A[3]A[1] = f(A[1])

A[2] = f(A[2]) j...
A[N] = f(A[N])
A[0] = f(A[0])
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...



Example to improve locality
for i=0 to N

for j=0 to M
A[j]  f(A[j])

Is there a better schedule?
A[j] = f(A[j]);

A[0] A[0] A[1] A[1] A[2] A[2] A[3] A[3]

Iteration space

A[0] ←A[0] A[1] ←A[1] A[2] ←A[2] A[3] ←A[3]

A[0] ←A[0] A[1] ←A[1] A[2] ←A[2] A[3] ←A[3]

A[0] ←A[0] A[1] ←A[1] A[2] ←A[2] A[3] ←A[3]A[0] = f(A[0])
Unroll to see deps

i
A[0] ←A[0] A[1] ←A[1] A[2] ←A[2] A[3] ←A[3]A[1] = f(A[1])

A[2] = f(A[2]) j...
A[N] = f(A[N])
A[0] = f(A[0]) for j=0 to M

for i=0 to N
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... for i=0 to N
A[j] = f(A[j]);

Transformed iteration space
Old It ti  

for i=0 to N A[0] ←A[0] A[1] ←A[1] A[2] ←A[2] A[3] ←A[3]

Old Iteration space

f
for j=0 to M

A[j] = f(A[j]);

A[0] ←A[0] A[1] ←A[1] A[2] ←A[2] A[3] ←A[3]

A[0] ←A[0] A[1] ←A[1] A[2] ←A[2] A[3] ←A[3]

A[0] ←A[0] A[1] ←A[1] A[2] ←A[2] A[3] ←A[3]

i

j

New Iteration space

for j=0 to M
f  0  N

A[3] ←A[3] A[3] ←A[3] A[3] ←A[3] A[3] ←A[3]

A[2] A[2] A[2] A[2] A[2] A[2] A[2] A[2]

New Iteration space

for i=0 to N
A[j] = f(A[j]);

A[2] ←A[2] A[2] ←A[2] A[2] ←A[2] A[2] ←A[2]

A[1] ←A[1] A[1] ←A[1] A[1] ←A[1] A[1] ←A[1]

A[0] ←A[0] A[0] ←A[0] A[0] ←A[0] A[0] ←A[0]

j
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i

What about …
for i=0 to N

for j=0 to M
A[j]  f(A[j])

Is there a better schedule?
A[j] = f(A[j]);
B[i] = f(B[i]);

A[0] A[0] A[1] A[1] A[2] A[2] A[3] A[3]U ll   d

Iteration space

A[0] ←A[0] 
B[3] ←B[3]

A[1] ←A[1] 
B[3] ←B[3]

A[2] ←A[2] 
B[3] ←B[3]

A[3] ←A[3]
B[3] ←B[3]

A[0] ←A[0] 
B[2] ←B[2]

A[1] ←A[1] 
B[2] ←B[2]

A[2] ←A[2] 
B[2] ←B[2]

A[3] ←A[3] 
B[2] ←B[2]

A[0] = f(A[0])
B[0] = f(B[0])

Unroll to see deps

A[0] ←A[0]
B[1] ←B[1]

A[1] ←A[1] 
B[1] ←B[1]

A[2] ←A[2] 
B[1] ←B[1]

A[3] ←A[3] 
B[1] ←B[1]

A[0] ←A[0]
B[0] ← B[0]

A[1] ←A[1] 
B[0] ← B[0]

A[2] ←A[2] 
B[0] ← B[0]

A[3] ←A[3] 
B[0] ← B[0]

[ ] ( [ ])
A[1] = f(A[1])
B[0] = f(B[0]])
...

N   f( N )

i

A[N] = f(A[N])
B[0] = f(B[0])
A[0] = f(A[0])
B[1]  f(B[1])

j
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B[1] = f(B[1])

...

What about …
for i=0 to N

for j=0 to M
A[j]  f(A[j])

Is there a better schedule?
A[j] = f(A[j]);
B[i] = f(B[i]);

A[0] A[0] A[1] A[1] A[2] A[2] A[3] A[3]U ll   d

Iteration space

A[0] ←A[0] 
B[3] ←B[3]

A[1] ←A[1] 
B[3] ←B[3]

A[2] ←A[2] 
B[3] ←B[3]

A[3] ←A[3]
B[3] ←B[3]

A[0] ←A[0] 
B[2] ←B[2]

A[1] ←A[1] 
B[2] ←B[2]

A[2] ←A[2] 
B[2] ←B[2]

A[3] ←A[3] 
B[2] ←B[2]

A[0] = f(A[0])
B[0] = f(B[0])

Unroll to see deps

A[0] ←A[0]
B[1] ←B[1]

A[1] ←A[1] 
B[1] ←B[1]

A[2] ←A[2] 
B[1] ←B[1]

A[3] ←A[3] 
B[1] ←B[1]

A[0] ←A[0]
B[0] ← B[0]

A[1] ←A[1] 
B[0] ← B[0]

A[2] ←A[2] 
B[0] ← B[0]

A[3] ←A[3] 
B[0] ← B[0]

[ ] ( [ ])
A[1] = f(A[1])
B[0] = f(B[0]])
...

N   f( N )

i

A[N] = f(A[N])
B[0] = f(B[0])
A[0] = f(A[0])
B[1]  f(B[1])

j
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B[1] = f(B[1])

...



But, what if …
for i=0 to N

for j=1 to M Can we reschedule?
A[j] = f(A[j-1]);

Iteration space

A[1] = f(A[0])
A[2]  f(A[1])

Unroll to see deps A[1] ←A[0] A[2] ←A[1] A[3] ←A[2] A[4] ←A[3]

A[1] ←A[0] A[2] ←A[1] A[3] ←A[2] A[4] ←A[3]
iA[2] = f(A[1])

A[3] = f(A[2])
...

A[1] ←A[0] A[2] ←A[1] A[3] ←A[2] A[4] ←A[3]

A[1] ←A[0] A[2] ←A[1] A[3] ←A[2] A[4] ←A[3]

i

jA[N] = f(A[N-1])
A[1] = f(A[0])
A[2] = f(A[1])

j
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A[2] = f(A[1])
A[3] = f(A[2])
...

But, what if …
for i=0 to N

for j=1 to M Can we reschedule?
A[j] = f(A[j-1]);

Iteration space

A[1] ←A[0] A[2] ←A[1] A[3] ←A[2] A[4] ←A[3]

A[1] ←A[0] A[2] ←A[1] A[3] ←A[2] A[4] ←A[3]
i A[1] ←A[0] A[2] ←A[1] A[3] ←A[2] A[4] ←A[3]

A[1] ←A[0] A[2] ←A[1] A[3] ←A[2] A[4] ←A[3]

i

jj
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But, what if …
for i=0 to N

for j=1 to M Can we reschedule?
A[j] = f(A[j-1]);

Iteration space

A[1] ←A[0] A[2] ←A[1] A[3] ←A[2] A[4] ←A[3]

A[1] ←A[0] A[2] ←A[1] A[3] ←A[2] A[4] ←A[3]
i A[1] ←A[0] A[2] ←A[1] A[3] ←A[2] A[4] ←A[3]

A[1] ←A[0] A[2] ←A[1] A[3] ←A[2] A[4] ←A[3]

i

jj
A[1] ←A[0] A[2] ←A[1] A[3] ←A[2]

A[] 1←A[0] A[2] ←A[1] A[3] ←A[2] A[4] ←A[3]

A[1] A[0] A[2] A[1] A[3] A[2] A[4] A[3]
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A[1] ←A[0] A[2] ←A[1] A[3] ←A[2] A[4] ←A[3]

A[1] ←A[0] A[2] ←A[1] A[3] ←A[2] A[4] ←A[3]

So, how do we know when/how?
When should we transform a loop?
What transforms are legal?
H  h ld  t f  th  lHow should we transform the loop.

Dependence information helps with all three questions.p p q

In short,
• Determine all dependence informationDetermine all dependence information
• Use dependence information to analyze loop
• Guide transformations using dependence info

• Key is: 
Any transformation* that preserves every dependence 
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y p y p
in a program preserves the meaning of the program



Dependencies in Loops

• Loop independent data dependence occurs 
between accesses in the same loop iterationbetween accesses in the same loop iteration.

• Loop-carried data dependence occurs between 
accesses across different loop iterationsaccesses across different loop iterations.

• There is data dependence between 
access a at iteration i-k and acc ss a at t rat on  an  
access b at iteration i when: 

– a and b access the same memory locationy
– There is a path from a to b
– Either a or b is a write
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E ther a or b s a wr te

Defining Dependencies
• Flow Dependence W R δf

• Anti-Dependence R W δa

true

Anti-Dependence R W δ
• Output Dependence W W δo false

S1) a=0;
S2) b=a;
S3) c=a+d+e;S3) c=a+d+e;
S4) d=b;
S5) b=5+e;
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S5) b 5+e;

Lecture 5

Example Dependencies
S1) a=0;S1) a=0;
S2) b=a;
S3) c=a+d+e;

1These are scalar dependencies.  The 
same idea holds for memory accesses.S3) c a+d+e;

S4) d=b;
S5) b=5+e; source type target due to

S1 δf S2 a

2

S1 δf S2 a
S1 δf S3 a
S2 δf S4 b

3

S2 δ S4 b
S3 δa S4 d
S4 δa S5 b

4

S2 δo S5 b
5
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What can we do with this information?
What are anti- and flow- called “false” dependences?

Lecture 5

Data Dependence in Loops
• Dependence can flow across iterations of 

the loop.p
• Dependence information is annotated with 

iteration information.
• If dependence is across iterations it is loop 

carried otherwise loop independent.

for (i=0; i<n; i++) {for (i=0; i<n; i++) {
A[i] = B[i];
B[i+1] = A[i];

}
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}



Data Dependence in Loops
• Dependence can flow across iterations of 

the loop.p
• Dependence information is annotated with 

iteration information.
• If dependence is across iterations it is loop 

carried otherwise loop independent.

for (i=0; i<n; i++) {
A[i] = B[i];
B[i+1] = A[i];

} δf loop independent

δf loop carried
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} p p

Data Dependence
– There is a data dependence from statement S1 to statement S2 (S2

depends on S1) if:  
1  B th t t t   th    l ti  d t l t     1. Both statements access the same memory location and at least     

one of them stores onto it, and
2. There is a feasible run-time execution path from S1 to S2

• We need to characterize the dependence information in terms of 
the loop iterations involved in the dependence, so we need a way to 

lk b   f  ltalk about iterations of a loop.
– Iteration vector: a label for a loop iteration using the induction 

variables.
– Iteration space: the set of all possible iteration vectors for a 

loop
– Lexicographic order: The order of the iterationsg p
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Iteration Space
Every iteration generates a point in an n-
dimensional space, where n is the depth of 
th  l  stthe loop nest.

4

for (i=0; i<n; i++) {

}

for (i=0; i<n; i++) 
3
2

for (j=0; j<4; j++) {

}
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T. Mowry

Iteration Vectors
• Need to consider the nesting level of a loop• Need to consider the nesting level of a loop
• Nesting level of a loop is equal to one more than 

the number of loops that enclose itthe number of loops that enclose it.
• Given a nest of n loops, the iteration vector i of 

a particular iteration of the innermost loop is a a particular iteration of the innermost loop is a 
vector of integers that contains the iteration 
numbers for each of the loops in order of p
nesting level.

• Thus, the iteration vector is: {i1, i2, ..., in }1 2 n
where ik, 1 ≤ k ≤ n represents the iteration 
number for the loop at nesting level k

Lecture 6 15-745  ©  2005-8 20



Iteration Space
Every iteration generates a point in an n-
dimensional space, where n is the depth of 
th  l  stthe loop nest.

4

for (i=0; i<n; i++) {

}

for (i=0; i<n; i++) 
3
2

for (j=0; j<4; j++) {

}
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T. Mowry

Ordering of Iteration Vectorsg f
• Dan ordering for iteration vectors
• Use an intuitive  lexicographic orderUse an intuitive, lexicographic order
• Iteration i precedes iteration j, denoted i < j,  

iff:iff:
1. i[1:n-1] < j[1:n-1], or
2  i[1:k-1] = j[1:k-1] and ik < jk

i1 j12. i[1:k-1] = j[1:k-1] and ik < jk i2
…
ik

j
j2
…
jk

<
ik
…
in

jk
…
jn
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Example Iteration SpaceExample Iteration Space

f i 0 1

i

for i = 0 to N-1
for j = 0 to N-1

A[i][j] = B[j][i];

• each position represents an iteration
j

T. Mowry

each position represents an iteration

Visitation Order in Iteration Space

f i 0 1

i

for i = 0 to N-1
for j = 0 to N-1

A[i][j] = B[j][i];

• Note: iteration space is not data space

j

T. Mowry

Note: iteration space is not data space



Formal Def of Loop DependenceF m f f p p
• There exists a dependence from statements S1 to 

statement S2 in a common nest of loops iff there statement S2 n a common nest of loops ff there 
exist two iteration vectors i and j for the nest, st.
(1) (a) i < j or 

(b) i = j and there is a path from 
S1 to S2 in the body of the loop, 

(2) statement S accesses memory location M on (2) statement S1 accesses memory location M on 
iteration i and statement S2 accesses location M on 
iteration j  and iteration j, and 
(3) one of these accesses is a write.

• 1a: Loop carried and 1b: Loop independent
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p p p
• S1 is source of dependence, S2 is sink or target of dep

Dependence Distance
• Using iteration vectors and def of dependence 

we can determine the distance of a dependence:we can determ ne the d stance of a dependence
• In n-deep loop nest if

– S1 is source in iteration iS1 is source in iteration i
– S2 is sink in iteration j

• Distance of dependence is represented with a Distance of dependence is represented with a 
distance vector: D
– Vector of length n  whereVector of length n, where
– dk = jk - ik
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Distance Vector
for (i=0; i<n; i++) {

A[i] = B[i]; Distance vector is the [ ] [ ]
B[i+1] = A[i];

}
difference between the 

target and source iterations.

A[0] = B[0];
B[1] = A[0];

i=0
d = It-Is

Exactly the distance of the [ ] [ ];
A[1] = B[1];
B[2] = A[1];
A[2] = B[2];

i=1
dependence, i.e.,

Is + d = ItB[3] = A[2];
i=2

s t
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T. Mowry

Example of Distance Vectors

for (i=0; i<n; i++) ( )
for (j=0; j<m; j++){

A[i,j] =   ;
[i j]

A0,2=   =A0,2
B0,3=   =B0,2
C1,2=   =C0,3

A1,2=   =A1,2
B1,3=   =B1,2
C2,2=   =C1,3

A2,2=   =A2,2
B2,3=   =B2,2
C3,2=   =C2,3= A[i,j];

B[i,j+1] =   ;
= B[i,j];

A0,1=   =A0,1
B0,2=   =B0,1
C1 1= =C0 2

A1,1=   =A1,1
B1,2=   =B1,1
C2 1= =C1 2

A2,1=   =A2,1
B2,2=   =B2,1
C3 1= =C2 2

j

C[i+1,j] =   ;
= C[i,j+1] ;

}
A0,0=   =A0,0
B0,1=   =B0,0

C1,1    C0,2

A1,0=   =A1,0
B1,1=   =B1,0

C2,1    C1,2

A2,0=   =A2,0
B2,1=   =B2,0

C3,1    C2,2

} C1,0=   =C0,1 C2,0=   =C1,1 C3,0=   =C2,1

i

T. Mowry



Example of Distance Vectors
for (i=0; i<n; i++) 

for (j=0; j<m; j++){ A0,2=   =A0,2
B0 3=   =B0 2

A1,2=   =A1,2
B1 3=   =B1 2

A2,2=   =A2,2
B2 3=   =B2 2A[i,j] =   ;

= A[i,j];
B[i,j+1] =   ; j

A0,1=   =A0,1
B B

0,3 0,2
C1,2=   =C0,3

A1,1=   =A1,1
B B

1,3 1,2
C2,2=   =C1,3

A2,1=   =A2,1
B B

2,3 2,2
C3,2=   =C2,3

[ ,j ] ;
= B[i,j];

C[i+1,j] =   ;
= C[i j+1] ;

j

A0 0= =A0 0

B0,2= =B0,1
C1,1=   =C0,2

A1 0= =A1 0

B1,2=   =B1,1
C2,1= =C1,2

A2 0= =A2 0

B2,2=   =B2,1
C3,1=   =C2,2

= C[i,j+1] ;
}

A0,0    A0,0
B0,1=   =B0,0
C1,0=   =C0,1

A1,0    A1,0
B1,1=   =B1,0
C2,0=   =C1,1

A2,0    A2,0
B2,1=   =B2,0
C3,0=   =C2,1

A yields: 0
0 B yields: 0

1 C yields: 1
1

i

T. Mowry

0 1 -1

Direction Vectors
• Less precise than distance vectors, but often 

good enough
• In n-deep loop nest if

– S1 is source in iteration i
– S2 is sink in iteration j

• Distance vector: F - Vector of length n, whereg
- fk = jk – ik

• Direction vector also vector of length n, where

– dk = “<“ if fk > 0, or jk < ik
“ “ if f  0   j  ik

Lecture 6 15-745  ©  2005-8 30

“=“ if fk = 0, or jk = ik
“>“ if fk < 0, or jk > ik

Example of Direction Vectors
for (i=0; i<n; i++) 

for (j=0; j<m; j++){ A0,2=   =A0,2
B0 3=   =B0 2

A1,2=   =A1,2
B1 3=   =B1 2

A2,2=   =A2,2
B2 3=   =B2 2A[i,j] =   ;

= A[i,j];
B[i,j+1] =   ; j

A0,1=   =A0,1
B B

0,3 0,2
C1,2=   =C0,3

A1,1=   =A1,1
B B

1,3 1,2
C2,2=   =C1,3

A2,1=   =A2,1
B B

2,3 2,2
C3,2=   =C2,3

[ ,j ] ;
= B[i,j];

C[i+1,j] =   ;
= C[i j+1] ;

j

A0 0= =A0 0

B0,2= =B0,1
C1,1=   =C0,2

A1 0= =A1 0

B1,2=   =B1,1
C2,1= =C1,2

A2 0= =A2 0

B2,2=   =B2,1
C3,1=   =C2,2

= C[i,j+1] ;
}

A0,0    A0,0
B0,1=   =B0,0
C1,0=   =C0,1

A1,0    A1,0
B1,1=   =B1,0
C2,0=   =C1,1

A2,0    A2,0
B2,1=   =B2,0
C3,0=   =C2,1

A yields: =
= B yields: =

< C yields: <
>

i

T. Mowry

= < >

Direction Vectors
Example:

DO I = 1, N
DO J = 1, M

DO K = 1, L
S1 A(I+1, J, K-1) = A(I, J, K) + 10

ENDDO
ENDDO

ENDDO

• S1 has a true dependence on itself.
• Distance Vector:   (1  0  -1)• Distance Vector:   (1, 0, -1)
• Direction Vector:  (<, =, >)
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Note on vectors
• A dependence cannot exist if it has a direction 

vector whose leftmost non "=" component is not vector whose leftmost non  component s not 
"<" as this would imply that the sink of the 
dependence occurs before the source.

• Likewise, the first non-zero distance in a 
distance vector must be postive.

Lecture 6 15-745  ©  2005-8 33

The Key
• Any reordering transformation that preserves 

every dependence in a program preserves the every dependence n a program preserves the 
meaning of the program

• A reordering transformation may change order 
of execution but does not add or remove 
statements.
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Finding Data Dependences
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Main Theme

D i i  h h  d d i  i  • Determining whether dependencies exist 
between two subscripted references to the 
same array in a loop nestsame array in a loop nest

• Several tests to detect these dependencies



The General Problem
DO i1 = L1, U1
DO i2 = L2, U2

...
DO in = Ln, Un

S1 A(f1(i1,...,in),...,fm(i1,...,in)) = ...
S2 ... = A(g1(i1,...,in),...,gm(i1,...,in))

ENDDO
...

ENDDO
ENDDOENDDO

A dependence exists from S1 to S2 if:
h   d h h– There exist α and β such that

• α < β (control flow requirement)
• f (α) = g (β) for all i 1 ≤ i ≤ m (common access • fi (α) = gi (β) for all i, 1 ≤ i ≤ m (common access 

requirement)

Basics: Conservative Testing
• Consider only linear subscript expressions
• Finding integer solutions to system of linear Finding integer solutions to system of linear 

Diophantine Equations is NP-Complete
• Most common approximation is Conservative Most common approximation is Conservative 

Testing, i.e., See if you can assert
“No dependence exists between two          No dependence exists between two          
subscripted references of the same array”

• Never incorrect, may be less than optimal, y p

Basics: Indices and Subscripts

Index: Index variable for some loop surrounding a 
pair of referencespair of references

Subscript: A PAIR of subscript positions in a pair 
of array referencesof array references

For Example: 
A(I,j) = A(I,k) + C

<I,I> is the first subscript
<j,k> is the second subscript

Basics: Complexity
A subscript is said to be

– ZIV if it contains no indexZIV if it contains no index
zero index variable

– SIV if it contains only one indexSIV if it contains only one index
single index variable

– MIV if it contains more than one indexMIV if it contains more than one index
multiple index variable

For Example: For Example: 
A(5,I+1,j) = A(1,I,k) + C

First subscript is ZIV

Second subscript is SIV

Third subscript is MIV



Basics: Separability
• A subscript is separable if its indices do not 

occur in other subscriptsoccur n other subscr pts
• If two different subscripts contain the same 

index they are coupledy p
For Example: 

A(I+1,j) = A(k,j) + Cj j

Both subscripts are separable
A(I,j,j) = A(I,j,k) + C

S d d thi d b i t   l dSecond and third subscripts are coupled

Basics:Coupled Subscript Groups
• Why are they important?

Coupling can cause imprecision in dependence Coupling can cause imprecision in dependence 
testing

DO I = 1, 100
S1 A(I+1,I) = B(I) + C( , ) ( )
S2 D(I) = A(I,I) * E

ENDDO

Dependence Testing: Overview
• Partition subscripts of a pair of array references into 

separable and coupled groups
• Classify each subscript as ZIV, SIV or MIV

– Reason for classification is to reduce complexity of 
the teststhe tests.

• For each separable subscript apply single subscript test. 
Continue until prove independence.p p

• Deal with coupled groups
• If independent, done
• Otherwise, merge all direction vectors computed in the 

previous steps into a single set of direction vectors

Step 1: Subscript Partitioning 
• Partitions the subscripts into separable and minimal 

coupled groups
• Notations

// S is a set of m subscript pairs S1, S2, ...Sm each enclosed in 
n loops with indexes I I I which is to ben loops with indexes I1, I2, ... In, which is to be 
partitioned into separable or minimal coupled groups.

// P is an output variable, containing the set of partitions
// np is the number of partitions



Subscript Partitioning Algorithm
procedure partition(S,P, np)

np = m;
f 1 d  {S }for i := 1 to m do Pi = {Si};
for i := 1 to n do begin

k := <none>
for each remaining partition Pj do 

if there exists s ε Pj such that s contains Ii then
if k = < none > then k = j;
l b i P  P P di d P 1 delse begin Pk = Pk ∪ Pj; discard Pj; np = np – 1; end 

end
end partition

Step 2: Classify as ZIV/SIV/MIV
• Easy step
• Just count the number of different indices in a Just count the number of different indices in a 

subscript

Step 3: Applying Single Subscript Tests

• ZIV Test
• SIV TestSIV Test

– Strong SIV Test
– Weak SIV Test– Weak SIV Test

• Weak-zero SIV
• Weak Crossing SIV

• SIV Tests in Complex Iteration Spaces

ZIV Test
DO j = 1, 100

S A(e1) = A(e2) + B(j)S A(e1) = A(e2) + B(j)

ENDDO

e1,e2 are constants or loop invariant 
symbolsy

If (e1-e2)!=0 No Dependence exists 



Strong SIV Test
• Strong SIV subscripts are of the form

caicai ++

• For example the following are strong SIV 

21, caicai ++

• For example the following are strong SIV 
subscripts ii ,1+

4424 , ++ ii

Strong SIV Test Example

DO k = 1, 100 
DO j = 1, 100

S1 A(j+1,k) = ...
S2 ... = A(j,k) + 32(j, )

ENDDO 
ENDDO

Strong SIV Test

cc 21 −
a

ccii'd 21
=−=

LUd −≤Dependence exists if UDependence exists if

Weak SIV Tests
• Weak SIV subscripts are of the form

ai+c ai+c

• For example the following are weak SIV 

a1i+c1,a2i+c2

• For example the following are weak SIV 
subscripts i +1,5

2i + 1 i + 52i + 1, i + 5
2i + 1,−2i



Geometric view of weak SIV
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Weak-zero SIV Test
• Special case of Weak SIV where one of the 

coefficients of the index is zerocoeff c ents of the ndex s zero
• The test consists merely of checking whether 

the solution is an integer and is within loop g p
bounds i =

c2 − c1

a1

Weak-zero SIV Test Weak-zero SIV & Loop Peeling
DO i = 1, N

S1 Y(i, N) = Y(1, N) + Y(N, N)
ENDDO

Can be loop peeled toCan be loop peeled to...
Y(1, N) = Y(1, N) + Y(N, N)
DO i = 2, N-1

S1 Y(i, N) = Y(1, N) + Y(N, N)
ENDDO
Y(N, N) = Y(1, N) + Y(N, N)Y(N, N)  Y(1, N) + Y(N, N)



Weak-crossing SIV Test
• Special case of Weak SIV where the 

coefficients of the index are equal in magnitude coeff c ents of the ndex are equal n magn tude 
but opposite in sign

• The test consists merely of checking whether y g
the solution index 

is 1. within loop bounds and isp
2. either an integer or has a non-integer 

part equal to 1/2
i =

c2 − c1

2 a1p q

Weak-crossing SIV Test

Weak-crossing SIV & 
Loop SplittingLoop Splitting

DO i = 1, N
S1 A(i) = A(N-i+1) + C

ENDDO

This loop can be split intoThis loop can be split into...

DO i = 1,(N+1)/2
A(i) = A(N-i+1) + C

ENDDO
DO i = (N+1)/2 + 1, N( ) ,

A(i) = A(N-i+1) + C
ENDDO

Complex Iteration Spaces
• Till now we have applied the tests only to 

rectangular iteration spacesrectangular terat on spaces
• These tests can also be extended to apply to 

triangular or trapezoidal loopsg p p
– Triangular: One of the loop bounds is a 

function of at least one other loop indexp
– Trapezoidal: Both the loop bounds are 

functions of at least one other loop index



Next Time...
• Complex iteration spaces
• MIV TestsMIV Tests
• Tests in Coupled groups
• Merging direction vectors• Merging direction vectors


