PRE and Loop Invariant Code Motion

15-745 Spring 2008

Common Subexpression Elimination

Find computations that are always performed at least twice on an execution path and eliminate all but the first

Usually limited to algebraic expressions

• put in some cannonical form

Almost always improves performance

• except when?

CSE Limitation

Searches for "totally" redundant expressions

- An expression is totally redundant if it is recomputed along all paths leading to the redundant expression
- An expression is partially redundant if it is recomputed along some but not all paths

Loop-Invariant Code Motion

Moves computations that produce the same value on every iteration of a loop outside of the loop

When is a statement loop invariant?

• when all its operands are loop invariant...

Loop Invariance

An operand is loop-invariant if Naïve approach: move all loopinvariant statements to the preheader 1.it is a constant, 2.all defs (use ud-chain) are located Not always valid for statements which outside the loop, or define variables 3.has a single def (ud-chain again) which is inside the loop and that def is itself loop If statement s defines v_i can only invariant move s if Can use iterative algorithm to • s dominates all uses of v in the loop compute loop invariant statements • s dominates all loop exits Why? 5 Partial Redundancy Elimination Loop Invariant Code Motion Moves computations that are at least partially Loop invariant expressions are a form

7

of partially redundant expressions. Why?

Moves computations that are at least partially redundant to their optimal computation points and eliminates totally redundant ones 6

8

Loop Invariant Code Motion

Encompasses CSE and loop-invariant code motion

Optimal Computation Point

Optimal?

- Result used and never recalculated
- Expression placed late as possible *Why?*

PRE Example

10

PRE Example

PRE Example

9

PRE Example

Critical Edge Splitting

In order for PRE to work well, we must split critical edges

A *critical edge* is an edge that connects a block with multiple successors to a block with multiple predecessors

Critical Edge Splitting

In order for PRE to work well, we must split critical edges

A *critical edge* is an edge that connects a block with multiple successors to a block with multiple predecessors

PRE History

15

PRE was first formulated as a *bidirectional* data flow analysis by Morel and Renvoise in 1979

Knoop, Rüthing, and Steffen came up with a way to do it using several unidirectional analysis in 1992 (called their approach *lazy code motion*)

- this is a much simpler method
- but it is still very complicated

Local Anticipatable (ANTIoc)

An expression's value is *locally anticipatable* in a block if

- there is a computation of the expression in the block
- the computation can be safely moved to the beginning of the block

Block	ANTIOC
entry	{}
B1	{a+1}
B2	{x*y}
B2a	{}
B3	{}
B3a	{}
B4	{x*y}
B5	{}
B6	{}
B7	$\{x^*y\}$
exit	{}

Globally Anticipatable (ANT)

An expression's value is *globally anticipatable* on entry to a block if

- every path from this point includes a computation of the expression
- it would be valid to place a computation of an expression anywhere along these paths

This is like liveness, only for expressions

Globally Anticipatable (ANT)

 $ANTin(i) = ANTloc(i) \cup (TRANSloc(i) \cap ANTout(i))$

 $ANTout(i) = \bigcap_{\substack{i \in succ(i)}} ANTin(j)$

 $ANTout(exit) = \{\}$

Block	ANTin	ANTout
entry	{a+1}	{a+1}
B1	{a+1}	{}
B2	{x*y}	{x*y}
B2a	{x*y}	{x*y}
B3	{}	{}
B3a	{x*y}	{x*y}
B4	{x*y}	{}
B5	{x*y}	{x*y}
B6	{}	{}
B7	{x*y}	{}
exit	{}	{}
		2'

Earliest (EARL)

An expression's value is *earliest* on entry to a block if

 no path from entry to the block evaluates the expression to produce the same value as evaluating it at the block's entry would

Intuition:

at this point if we compute the expression we are computing something completely new

says nothing about usefulness of computing expression 22

Earliest (EARL)

 $EARLout(i) = \overline{TRANSloc(i)} \cup \left(\overline{ANTin(i)} \cap EARLin(i)\right)$

 $EARLin(i) = \bigcup_{j \in pred(i)} EARLout(j)$ EARLin(entry) = U

Block	EARLin	EARLout	
entry	${a+1,x*y}$	{x*y}	
B1	{x*y}	{x*y}	
B2	{x*y}	{a+1}	
B2a	{a+1}	{a+1}	
B3	{x*y}	{x*y}	
B3a	{x*y}	{}	
B4	{a+1}	{a+1}	
B5	{a+1}	{a+1}	
B6	{x*y}	$\{x^*y\}$	
B7	{a+1}	{a+1}	
exit	${a+1,x*y}$	${a+1, x*y}$	

Delayedness (DELAY)

An expression is *delayed* on entry to a block if

• it is both anticipatable and earliest

Delayedness (DELAY)

 $DELAYin(i) = (ANTin(i) \cap EARLin(i)) \cup \bigcap_{j \in pred(i)} DELAYout(j)$

$DELAYout(i) = \overline{ANTloc(i)} \cap DELAYin(i)$

ANTin(entry) \cap	<i>EARLin(entry)</i>
---------------------	----------------------

Block	ANTin(i) ∩ EARLin(i)
entry	{a+1}
B2	{x*y}
B3a	{x*y}

LATEin

{ }

{a+1}

 $\{x^*y\}$

{}

{} {x*y}

{ }
{ }

{}

{} {}

Block

entry

Β1

B2

B2a

Β3

B3a

Β4

B5

B6 B7

exit

m(i)		
Block	DELAYin	DELAYout
entry	{a+1}	{a+1}
B1	{a+1}	{}
B2	{x*y}	{}
B2a	{ }	{}
B3	{ }	{}
B3a	{x*y}	{x*y}
B4	{ }	{}
B5	{ }	{}
B6	{}	{}
B7	{}	{}
exit	{ }	{}
	•	25

Lateness (LATE)

An expression is *latest* on entry to a block if

- it is the optimal point for computing the expression and
- on every path from the block entry to exit, any other optimal computation point occurs after an expression computation in the original flowgraph

i.e., there is no "later" placement for this expression

Latestness (LATE)

$LATEin(i) = DELAYin(i) \cap$	$ANTloc(i) \cup$	$\bigcap DELAYin(j)$
		$j \in succ(i)$

Isolatedness (ISOL)

An optimal placement in a block for the computation of an expression is *isolated* iff

 on every path from a successor of the block to the exit block, every original computation is preceded by the optimal placement point

Isolatedness (ISOL)

OLout(i) = ISOLin(j)	Block	ISOLin	ISOLout
$j \in succ(i)$	entry	{}	{ }
$OLout(exit) = \{\}$	B1	{a+1}	{ }
	B2	{x*y}	{ }
	B2a	{}	{}
	B3	{}	{}
	B3a	{x*y}	{}
	B4	{}	{}
	B5	{}	{}
	B6	{}	{}
	B7	{}	{}
	exit	{}	{}

Optimal Placement

The set of expression for which a given block is the optimal computation point is the set of expressions that are latest and not isolated

$OPT(i) = LATEin(i) \cap ISOLout(i)$

Redundant Computations

The set of redundant expressions in a block consist of those used in the block that are neither isolated nor latest

 $REDN(i) = ANTloc(i) \cap LATEin(i) \cup ISOLout(i)$

OPT and REDN

	Block	ΟΡΤ	REDN	_
	entry	{ }	{}	
	B1	{a+1}	{}	-
insort those	B2	{x*y}	{}	-
(if necessary)	B2a	{}	{}	-
(II Hecessaly)	B3	{}	{}	-
	B3a	{x*y}	{}	
	B4	{}	{x*y}	-
	B5	{}	{}	-
	B6	{ }	{ }	remove these
	B7	{ }	{x*y}	
	exit	{ }	{}	-

29

