PRE and Loop Invariant Code Motion

Common Subexpression Elimination

Find computations that are always performed at least twice on an execution path and eliminate all but the first

Usually limited to algebraic expressions

- put in some cannonical form

Almost always improves performance

- except when?

CSE Limitation

Searches for "totally" redundant expressions

- An expression is totally redundant if it is recomputed along all paths leading to the redundant expression
- An expression is partially redundant if it is recomputed along some but not all paths

Loop-Invariant Code Motion

Moves computations that produce the same value on every iteration of a loop outside of the loop

When is a statement loop invariant?

- when all its operands are loop invariant...

Loop Invariance

An operand is loop-invariant if
1.it is a constant,
2. all defs (use ud-chain) are located outside the loop, or
3.has a single def (ud-chain again) which is inside the loop and that def is itself loop invariant

Can use iterative algorithm to compute loop invariant statements

Loop Invariant Code Motion

Loop invariant expressions are a form of partially redundant expressions.
Why?

Loop Invariant Code Motion

Naïve approach: move all loopinvariant statements to the preheader

Not always valid for statements which define variables

If statement s defines v, can only move s if

- s dominates all uses of v in the loop
-s dominates all loop exits
Why?

Partial Redundancy Elimination

Moves computations that are at least partially redundant to their optimal computation points and eliminates totally redundant ones

Encompasses CSE and loop-invariant code motion

Optimal Computation Point

Optimal?

- Result used and never recalculated
- Expression placed late as possible Why?

PRE Example

PRE Example

PRE Example

Critical Edge Splitting

In order for PRE to work well, we must split critical edges

A critical edge is an edge that connects a block with multiple successors to a block with multiple predecessors

Critical Edge Splitting

In order for PRE to work well, we must split critical edges

A critical edge is an edge that connects a block with multiple successors to a block with multiple predecessors

PRE History

PRE was first formulated as a bidirectional data flow analysis by Morel and Renvoise in 1979

Knoop, Rüthing, and Steffen came up with a way to do it using several unidirectional analysis in 1992 (called their approach lazy code motion)

- this is a much simpler method
- but it is still very complicated

PRE Example

General Approach to analysis

- Computationally Optimal Placement
- Lazy Code Motion
- Latest

Cannot move exp past p on any path

- Isolated
all uses of exp follow immediately after p
- Compute exp at Latest $\cap \sim$ Isolated

General Approach to analysis

- Computationally Optimal Placement
- Anticipatable computing \exp is useful along any path to exit
- Earliest
p is the earliest point to compute exp
- Compute exp Ant \cap Earliest
- Increases register Pressure
- Lazy Code Motion

Local Transparency (TRANSIoc)

An expression's value is locally transparent in a block if there are no assignments in the block to variables within the expression

- ie, expression not killed

Block	TRANSloc
entry	$\left\{\mathrm{a}+1, \mathrm{x}^{*} \mathrm{y}\right\}$
B1	$\left\{\mathrm{a}+1, \mathrm{x}^{*} \mathrm{y}\right\}$
B2	$\left\{\mathrm{x}^{*} \mathrm{y}\right\}$
B2a	$\left\{\mathrm{a}+1, \mathrm{x}^{*} \mathrm{y}\right\}$
B3	$\left\{\mathrm{a}+1, \mathrm{x}^{*} \mathrm{y}\right\}$
B3a	$\left\{\mathrm{a}+1, \mathrm{x}^{*} \mathrm{y}\right\}$
B4	$\left\{\mathrm{a}+1, \mathrm{x}^{*} \mathrm{y}\right\}$
B5	$\left\{\mathrm{a}+1, \mathrm{x}^{*} \mathrm{y}\right\}$
B6	$\left\{\mathrm{a}+1, \mathrm{x}^{*} \mathrm{y}\right\}$
B7	$\left\{\mathrm{a}+1, \mathrm{x}^{*} \mathrm{y}\right\}$
exit	$\left\{\mathrm{a}+1, \mathrm{x}^{*} \mathrm{y}\right\}$

Local Anticipatable (ANTloc)

An expression's value is locally anticipatable in a block if

- there is a computation of the expression in the block
- the computation can be safely moved to the beginning of the block

Block	ANTloc
entry	$\}$
B1	$\{a+1\}$
B2	$\left\{x^{*} y\right\}$
B2a	$\}$
B3	$\}$
B3a	$\}$
B4	$\left\{x^{*} \mathrm{y}\right\}$
B5	$\}$
B6	$\}$
B7	$\left\{x^{*} \mathrm{y}\right\}$
exit	$\}$

Globally Anticipatable (ANT)

An expression's value is globally anticipatable on entry to a block if

- every path from this point includes a computation of the expression
- it would be valid to place a computation of an expression anywhere along these paths

This is like liveness, only for expressions

Globally Anticipatable (ANT)

ANTin $(i)=$ ANTloc $(i) \cup($ TRANSIoc $(i) \cap$ ANTout $(i))$
ANTout $(i)=\bigcap_{j \in s u c c(i)} A N T i n(j)$
ANTout (exit) $=\{ \}$

Block	ANTin	ANTout
entry	$\{a+1\}$	$\{a+1\}$
B1	$\{a+1\}$	$\}$
B2	$\left\{x^{*} y\right\}$	$\left\{x^{*} y\right\}$
B2a	$\left\{x^{*} y\right\}$	$\left\{x^{*} y\right\}$
B3	$\}$	$\}$
B3a	$\left\{x^{*} y\right\}$	$\left\{x^{*} y\right\}$
B4	$\left\{x^{*} y\right\}$	$\}$
B5	$\left\{x^{*} y\right\}$	$\left\{x^{*} y\right\}$
B6	$\}$	$\}$
B7	$\left\{x^{*} y\right\}$	$\}$
exit	$\}$	$\}$

Earliest (EARL)

An expression's value is earliest on entry to a block if

- no path from entry to the block evaluates the expression to produce the same value as evaluating it at the block's entry would

Intuition:
at this point if we compute the expression we are computing something completely new
says nothing about usefulness of computing expression

Earliest (EARL)

$$
\begin{aligned}
& \operatorname{EARLin}(i)=\bigcup_{j \in \operatorname{pred}(i)} \operatorname{EARLout}(j) \\
& \text { EARLout }(i)=\overline{\operatorname{TRANSIoc}(i)} \cup(\overline{\operatorname{ANTin(i)}} \cap \operatorname{EARLin}(i)) \\
& \text { EARLin(entry) }=\mathrm{U}
\end{aligned}
$$

Computationally Optimal

It is computationally optimal to compute exp at entry to block if
$\exp \in \operatorname{ANTin}($ block $) \cap$ EARLin(block)

But, it may increase register pressure.

Delayedness (DELAY)

An expression is delayed on entry to a block if

- All paths from entry to block contain a anticipatable and early computation of \exp (could be this block) AND all uses of exp follow this block.
- l.e., exp can be delayed to at least this block.

Delayedness (DELAY)

```
DELAYin(i)}=(\operatorname{ANTin}(i)\cap\operatorname{EARLin}(i))\cup\mp@subsup{\bigcap}{j\inpred}{(i)
```



```
DELAYin(entry) = ANTin(entry) \cap EARLin(entry)
```

Block	ANTin(i) \cap EARLin(i)
entry	$\{a+1\}$
B2	$\left\{x^{*} \mathrm{y}\right\}$
B3a	$\left\{x^{*} \mathrm{y}\right\}$

Block	DELAYin	DELAYout
entry	$\{\mathrm{a}+1\}$	$\{\mathrm{a}+1\}$
B1	$\{\mathrm{a}+1\}$	$\}$
B2	$\left\{\mathrm{x}^{*} \mathrm{y}\right\}$	$\}$
B2a	$\}$	$\}$
B3	$\}$	$\}$
B3a	$\left\{\mathrm{x}^{*} \mathrm{y}\right\}$	$\left\{\mathrm{x}^{*} \mathrm{y}\right\}$
B4	$\}$	$\}$
B5	$\}$	$\}$
B6	$\}$	$\}$

Lateness (LATE)

An expression is latest on entry to a block if

- it is the optimal point for computing the expression and
- on every path from the block entry to exit, any other optimal computation point occurs after an expression computation in the original flowgraph
i.e., there is no "later" placement for this expression

Latestness (LATE)

$\operatorname{LATEin}(i)=\operatorname{DELAYin}(i) \cap($ ANTIoc $(i) \cup \underset{j \in \operatorname{succ}(i)}{ } \operatorname{DELAYin}(j))$

Block	LATEin
entry	$\}$
B1	$\{a+1\}$
B2	$\left\{\mathrm{x}^{*} \mathrm{y}\right\}$
B2a	$\}$
B3	$\}$
B3a	$\left\{\mathrm{x}^{*} \mathrm{y}\right\}$
B4	$\}$
B5	$\}$
B6	$\}$
B7	$\}$
exit	$\}$

Isolatedness (ISOL)

$\operatorname{ISOLin}(i)=\operatorname{LATEin}(i) \cup(\overline{\text { ANTloc }(i)} \cap \operatorname{ISOLout}(i))$
$\operatorname{ISOLout}(i)=\bigcap_{j \in \operatorname{succ}(i)} \operatorname{ISOLin}(j)$
ISOLout(exit) $=\{ \}$

Block	I SOLin	I SOLout
entry	$\}$	$\}$
B1	$\{a+1\}$	$\}$
B2	$\left\{x^{*} y\right\}$	$\}$
B2a	$\}$	$\}$
B3	$\}$	$\}$
B3a	$\left\{x^{*} y\right\}$	$\}$
B4	$\}$	$\}$
B5	$\}$	$\}$
B6	$\}$	$\}$
B7	$\}$	$\}$
exit	$\}$	$\}$

Optimal Placement

The set of expression for which a given block is the optimal computation point is the set of expressions that are latest and not isolated

OPT $(i)=\operatorname{LATEin}(i) \cap \overline{\operatorname{ISOLout}(i)}$

Redundant Computations

The set of redundant expressions in a block consist of those used in the block that are neither isolated nor latest

$$
\operatorname{REDN}(i)=\operatorname{ANTloc}(i) \cap \overline{\operatorname{LATEin}(i) \cup \operatorname{ISOLout}(i)}
$$

PRE Example

PRE Example

